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Abstract

Let G be a connected reductive algebraic group over C. Through the geometric Satake
equivalence, the fundamental classes of the Mirković–Vilonen cycles define a basis in each
tensor product V (λ1)⊗ · · · ⊗ V (λr) of irreducible representations of G. We compute this
basis in the case G = SL2(C) and conclude that in this case it coincides with the dual
canonical basis at q = 1.

1 Introduction

Let G be a connected reductive algebraic group over C, endowed with a Borel subgroup B and
a maximal torus T ⊂ B. Irreducible rational representations of G are classified by their highest
weight: to the dominant integral weight λ corresponds the irreducible representation V (λ).

Several constructions provide bases of V (λ), for instance:

• Exploiting the geometry of moduli spaces of quiver representations, Lusztig defines in [16]
the so-called canonical basis of the quantum deformation Vq(λ). We are in fact interested
in the dual of this basis, aka Kashiwara’s upper global basis [14]. Taking the classical
limit q = 1 provides a basis of V (λ).

• The geometric Satake correspondence [15, 18] realizes V (λ) as the intersection coho-
mology of a certain Schubert variety Grλ in the affine Grassmannian of the Langlands
dual of G. The fundamental classes of the Mirković–Vilonen cycles form a basis of this
cohomology space, hence of V (λ).

These two bases share nice properties; they can both be endowed with a Kashiwara crystal
structure which controls the action of the Chevalley generators of the Lie algebra of G, and
they are both bases over Z of the costandard integral form of V (λ). They coincide in small
rank but usually differ: counterexamples were found in [2] with G = SO8(C) and SL6(C). This
disparity seems related to the theory of cluster algebras. Namely, the algebra C[N ] of regular
functions on the unipotent radical N of B has a cluster structure, which is of infinite type
if G = SO8(C) or SL6(C). Each representation V (λ) can be embedded into C[N ], and the
counterexamples in [2] are located at points where the dual canonical basis elements are not
cluster monomials (see e.g. [10], sect. 19).
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A tensor product V (λ1)⊗· · ·⊗V (λr) of irreducible representations also admits a dual canonical
basis (see chapter 27 in [17]) and a Mirković–Vilonen basis (see sect. 2.4 in [12]). In each case,
one modifies the tensor product of the bases of the factors in a specific way to produce a new
basis, that still enjoys the pleasant properties mentioned earlier, and is moreover compatible
with the isotypic filtration. In this more general setup, the dual canonical basis and the
Mirković–Vilonen basis already differ for G = SL3(C) [6].

It is possible to carry out the complete calculations in the case G = SL2(C). This task was
performed by Frenkel and Khovanov [7] for the dual canonical basis, and the purpose of this
paper is to do the same for the Mirković–Vilonen basis. Recall that each dominant weight
of SL2(C) is a nonnegative multiple of the fundamental weight $. The following result is a
corollary of our work.

Theorem. For G = SL2(C), the Mirković–Vilonen basis of a tensor product V (n1$)⊗ · · · ⊗
V (nr$) coincides with the dual canonical basis of this space specialized at q = 1.

In truth, this theorem holds only after reversal of the order of the tensor factors, but this defect
is merely caused by a discrepancy in the conventions.

The theorem is trivial in the case r = 1 and can be expeditiously deduced from general
properties shared by the two bases in the case r = 2. When r ≥ 3, the presence of multiplicities
in the tensor product renders the result less obvious. Perhaps one can deduce the theorem from
a compatibility of both bases with an appropriate rigid structure. (One option here would be
to use the symmetric Howe duality relative to the dual pair (GL2,GLr) in conjunction with the
cluster algebras C[B−K\G] studied in [11].) However, we shall not pursue this avenue. Instead,
we regard V (n1$) ⊗ · · · ⊗ V (nr$) as a quotient of V ($)⊗(n1+···+nr) and note that both the
dual canonical basis and the Mirković–Vilonen basis behave well under this operation. We can
therefore reduce the general statement to the particular case of the tensor power V ($)⊗n. We
then deal with the latter by direct though complicated calculations.

The paper is organized in the following way. In sect. 2, we define a basis of V ($)⊗n by a
simple recursive formula and argue that it matches Frenkel and Khovanov’s characterization
of the dual canonical basis. In sect. 3, we recall the definition of the Mirković–Vilonen basis in
tensor products of irreducible representations and prove its good behavior under the quotient
operation of the previous paragraph. In sect. 4, we show that the Mirković–Vilonen basis of
V ($)⊗n satisfies the recursive formula from sect. 2 (this is the difficult part in the paper).

While preparing this paper, we learned that independently Pak-Hin Li computed the Mirković–
Vilonen basis for the tensor product of two irreducible representations of SL2(C).

This work is based on the PhD thesis of the second author [5]. We however rewrote the proof to
render it more accessible and remove ambiguities. We thank an anonymous referee for his/her
benevolent work and his/her pertinent suggestions.

The first author acknowledges support from the ANR (project GeoLie ANR-15-CE40-0012).
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2 Combinatorics and linear algebra

Let K be a field and let V be the vector space K2. In this section, we define in an elementary
manner an explicit basis in each tensor power V ⊗n that has nice properties with respect to the
natural action of SL2(K).

2.1 Words

Given a nonnegative integer n, we set Cn = {+,−}n. We regard an element in Cn as a word
of length n on the alphabet {+,−}. Concatenation of words endows C =

⋃
n≥0 Cn with the

structure of a monoid. The word of length zero is denoted by ∅.

The weight of a word w ∈ C , denoted by wt (w), is the number of letters + minus the number
of letters − that w contains. A word w = w(1)w(2) · · ·w(n) is said to be semistable if its
weight is 0 and if each initial segment w(1) · · ·w(j) has nonpositive weight.

Words are best understood through a representation as planar paths, where letters + and −
are depicted by upward and downward segments, respectively. A word is semistable if the
endpoints of its graphical representation are on the same horizontal line and if the whole path
lies below this line.

Any word w can be uniquely factorized as a concatenation

w−r+ · · ·+w−1+w0−w1− · · ·−ws

where r and s are nonnegative integers and where the words w−r, . . . , ws are semistable. The
r letters + and the s letters − that do not occur in the semistable words are called significant.
Informally, a letter + is significant if it records the first time an altitude is reached, and a
letter − is significant if it marks a descent from a height that is never attained again. A word
is semistable if and only if it does not contain any significant letter.

Example. The following picture illustrates the factorization of the word

w = −++−+−+++−−+−−++++−−+−.

This word has length 22 and weight 2. Here (r, s) = (4, 2) and the words w−2, w0 and w2 are
empty. Significant letters are written in black, non-significant ones in orange.
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Given a word w, we denote by P(w) the set of words obtained from w by changing a single
significant letter + into a −. With our previous notation, P(w) has r elements.

2.2 Bases

Let (x+, x−) be the standard basis of the vector space V . Each word w = w(1)w(2) · · ·w(n)
in C n defines an element xw = xw(1) ⊗ · · · ⊗ xw(n) in the n-th tensor power of V . The family
(xw)w∈Cn is a basis of V ⊗n.

We define another family of elements (yw)w∈C in the tensor algebra of V by the convention
y∅ = 1 and the recursive formulas

y+w = x+ ⊗ yw and y−w = x− ⊗ yw −
∑

v∈P(w)

x+ ⊗ yv.

Rewriting the latter as

x+ ⊗ yw = y+w and x− ⊗ yw = y−w +
∑

v∈P(w)

y+v (1)

one easily shows by induction on the length of words that each element xw can be expressed as
a linear combination of elements yv, using only words v that have the same length and weight
as w. It follows that for each nonnegative integer n, the family (yw)w∈Cn spans V ⊗n, hence is
a basis of this space.

Proposition 1 The family (yw)w∈C is characterized by the following conditions:

(i) If w is of the form + · · ·+− · · ·− (a collection of + followed by a collection of −), then
yw = xw.

(ii) y−+ = x−+ − x+−.

(iii) Let u be a semistable word and let (w′, w′′) ∈ Cn′ × Cn′′. Write yw′w′′ =
∑
i
z′i ⊗ z′′i with

(z′i, z
′′
i ) ∈ V ⊗n′ × V ⊗n′′ . Then yw′uw′′ =

∑
i
z′i ⊗ yu ⊗ z′′i .

Proof. Statements (i) and (ii) follow straightforwardly from the definition of the elements yw.
We prove (iii) by induction on the length of w′uw′′. Discarding a trivial case, we assume that
u is not the empty word.

Suppose first that w′ is the empty word. Let us write u as a concatenation −u′+u′′ where u′
and u′′ are (possibly empty) semistable words. Equation (1) gives

x− ⊗ yw′′ = y−w′′ +
∑

v∈P(w′′)

y+v.
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Applying the induction hypothesis to the semistable word u′′ and the pairs (−, w′′) and (+, v),
for each v ∈P(w′′), we obtain

x− ⊗ yu′′ ⊗ yw′′ = y−u′′w′′ +
∑

v∈P(w′′)

y+u′′v.

Since x− ⊗ yu′′ = y−u′′ , we get

y−u′′ ⊗ yw′′ = y−u′′w′′ +
∑

v∈P(w′′)

y+u′′v

and applying once more the induction hypothesis, this time to the semistable word u′ and the
pairs (∅,−u′′), (∅,−u′′w′′) and (∅,+u′′v), we arrive at

yu′−u′′ ⊗ yw′′ = yu′−u′′w′′ +
∑

v∈P(w′′)

yu′+u′′v. (2)

Starting now with
x+ ⊗ yw′′ = y+w′′

we arrive by similar transformations at

yu′+u′′ ⊗ yw′′ = yu′+u′′w′′ . (3)

Since P(u′+u′′) = {u′−u′′}, we have by definition

yu = x− ⊗ yu′+u′′ − x+ ⊗ yu′−u′′ . (4)

Likewise, P(u′+u′′w′′) = {u′−u′′w′′} ∪ {u′+u′′v | v ∈P(w′′)} leads to

yuw′′ = x− ⊗ yu′+u′′w′′ − x+ ⊗ yu′−u′′w′′ −
∑

v∈P(w′′)

x+ ⊗ yu′+u′′v. (5)

Combining (2)–(5), we obtain the desired equation

yuw′′ = yu ⊗ yw′′ .

We now address the case where w′ is not empty. Suppose that the first letter of w′ is a + and
write w′ = +w̃′. Then

yw′w′′ = x+ ⊗ yw̃′w′′ and yw′uw′′ = x+ ⊗ yw̃′uw′′

and the result follows from the induction hypothesis applied to the semistable word u and the
pair (w̃′, w′′).

If on the contrary the first letter of w′ is a −, then we write w′ = −w̃′. Since u is semistable, its
insertion in the middle of a word does not add or remove any significant letter; in particular,
the set of significant letters in w̃′w′′ is in natural bijection with the set of significant letters in

5



w̃′uw′′. This observation leads to a bijection from P(w̃′w′′) onto P(w̃′uw′′), which splits a
word v in two subwords v′ ∈ Cn′−1 and v′′ ∈ Cn′′ and then returns v′uv′′. With this notation,

yw′w′′ = x− ⊗ yw̃′w′′ −
∑

v∈P(w̃′w′′)

x+ ⊗ yv′v′′

and
yw′uw′′ = x− ⊗ yw̃′uw′′ −

∑
v∈P(w̃′w′′)

x+ ⊗ yv′uv′′ .

Again the desired equation follows from the induction hypothesis applied to the semistable
word u and the pairs (w̃′, w′′) and (v′, v′′), for each v ∈P(w̃′w′′).

Condition (iii) computes yw′uw′′ from the datum of yw′w′′ and yu whenever u is semistable;
condition (i) provide the value of yw when w is of the form + · · ·+− · · ·−; and condition (ii)
provides the value of y−+. Noting that any word in C can be obtained from a word of the
form + · · ·+− · · ·− by repetitively inserting the semistable word −+ (possibly at non disjoint
positions), we conclude that conditions (i)–(iii) fully characterize the family (yw)w∈C . �

As a consequence of this proposition, we see that if w−k+ · · ·+w−1+w0−w1− · · ·−w` is the
factorization of a word w, as in section 2.1, then

yw = yw−k ⊗ x+ ⊗ · · · ⊗ x+ ⊗ yw−1 ⊗ x+ ⊗ yw0 ⊗ x− ⊗ yw1 ⊗ x− ⊗ · · · ⊗ x− ⊗ yw` . (6)

Remark. The transition matrix between the two bases (xw)w∈Cn and (yw)w∈Cn of V ⊗n is uni-
triangular: if we write

xw =
∑
v∈Cn

nw,v yv

then the diagonal coefficient nw,w is equal to one and the entry nw,v is zero except when the
path representing v lies above the path representing w. In addition, all the coefficients nw,v
are nonnegative integers. The proof of these facts is left to the reader.

2.3 Representations

In this section, we regard V as the defining representation of SL2(K). From now on, we assume
that K has characteristic zero. We denote by (e, h, f) the usual basis of sl2(K).

Fix a nonnegative integer n. Given a word w ∈ Cn, we denote by ε(w) (respectively, ϕ(w))
the number of significant letters − (respectively, +) that w contains. Thus, in the notation of
section 2.1, ε(w) = s and ϕ(w) = r. If ε(w) > 0, we can change in w the leftmost significant
letter − into a +; the resulting word is denoted by ẽ(w). Likewise, if ϕ(w) > 0, we can change
in w the rightmost significant letter + into a −; the resulting word is denoted by f̃(w). If these
operations are not feasible, then ẽ(w) or f̃(w) is defined to be 0. Endowed with the maps wt ,
ε, ϕ, ẽ, f̃ , the set Cn identifies with the crystal∗ of the sl2(K)-module V ⊗n.
∗In fact, here we use the opposite of the usual tensor product of crystals.
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We denote by `(w) = ε(w)+ϕ(w) the number of significant letters in a word w ∈ Cn; thus w is
semistable if and only if `(w) = 0. For each p ∈ {0, . . . , n}, we denote by (V ⊗n)≤p the subspace
of V ⊗n spanned by the elements yw such that `(w) ≤ p. We agree that (V ⊗n)≤−1 = {0}.

Proposition 2 The basis (yw)w∈Cn of V ⊗n enjoys the following properties.

(i) For each w ∈ Cn, we have

e · yw ≡ ε(w) yẽ(w) and f · yw ≡ ϕ(w) yf̃(w)

modulo terms in (V ⊗n)≤`(w)−1.

(ii) For each p ∈ {0, . . . , n}, the subspace (V ⊗n)≤p is a subrepresentation of V ⊗n, and the
quotient (V ⊗n)≤p/(V

⊗n)≤p−1 is an isotypic representation, specifically the sum of simple
sl2(K)-modules of dimension p+ 1.

(iii) The elements yw with w semistable form a basis of the space of invariants (V ⊗n)SL2(K).

Sketch of proof. We first note that y−+ is invariant under the action of SL2(K) on V ⊗2 and
that any semistable word is the result of repetitive insertions of the word −+ inside the empty
word (possibly at non disjoint positions). From Proposition 1 (iii), it then follows that any
element yw with w semistable is SL2(K)-invariant. Using now (6), we reduce the proof of
statement (i) to the case where w is of the form + · · ·+− · · ·− (perhaps for a smaller n), which
is easily dealt with.

Statement (ii) is a direct consequence of statement (i) and implies that (V ⊗n)≤0 is the subspace
of invariants (V ⊗n)SL2(K), an assertion equivalent to statement (iii). �

The basis (yw)w∈Cn of V ⊗n is even more remarkable than what Proposition 2 claims. In fact,
let Vq be the vector space with basis (x+, x−) over the field C(q). On the one hand, we can
recover V (in the case K = C) as the specialization of Vq at q = 1; on the other hand, we can
regard Vq as the defining representation of the quantum group Uq(sl2). Frenkel and Khovanov
showed ([7], Theorem 1.9) that the elements in the dual canonical basis of the Uq(sl2)-module
V ⊗nq are produced by inserting repetitively the element x+⊗x−−q−1x−⊗x+ inside an element
of the form x− ⊗ · · · ⊗ x− ⊗ x+ ⊗ · · · ⊗ x+. Comparing with Proposition 1, we deduce:

Theorem 3 Up to the reversal of the order of the tensor factors, (yw)w∈Cn is the dual canonical
basis of V ⊗nq specialized at q = 1.

3 The Mirković–Vilonen basis

In this section, we consider a connected reductive group G over C and explain the definition
of the Mirković–Vilonen basis (from now on: MV basis) in a tensor product V (λ) = V (λ1)⊗
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· · · ⊗ V (λn) of irreducible representations of G. References for the material presented here
are [18] and sect. 2.4 in [12]. We recall the recipe from [1] to compute the transition matrix
between the MV basis of V (λ) and the tensor product of the MV bases of the factors V (λ1),
. . . , V (λn). We state and prove a compatibility property of the MV bases with tensor products
of projections onto Cartan components.

3.1 Definition of the basis

We choose a maximal torus T and a Borel subgroup B of G such that T ⊂ B. The Langlands
dual G∨ of G comes with a maximal torus T∨ and a Borel subgroup B∨. We denote by N−,∨

the unipotent radical of the Borel subgroup of G∨ opposite to B∨ with respect to T∨. We
denote by Λ the weight lattice of T and by Λ+ ⊂ Λ the set of dominant weights. Let ≤ be
the dominance order on Λ: positive elements with respect to ≤ are sums of positive roots. We
view the half-sum of all positive coroots as a linear form ρ : Λ→ Q.

The affine Grassmannian of G∨ is the homogeneous space Gr = G∨
(
C
[
z, z−1

])
/G∨(C[z]),

where z is an indeterminate. It is endowed with the structure of an ind-variety.

A weight λ ∈ Λ is a cocharacter of T∨. Its value at z is a point zλ ∈ T∨
(
C
[
z, z−1

])
, whose

image in Gr is denoted by Lλ.

Assume that λ is dominant. Then the G∨(C[z])-orbit through Lλ in Gr, denoted by Grλ, is a
smooth connected variety of dimension 2ρ(λ). The Cartan decomposition implies that

Gr =
⊔
λ∈Λ+

Grλ; moreover Grλ =
⊔
µ∈Λ+

µ≤λ

Grµ.

The geometric Satake correspondence identifies the irreducible representation of G of highest
weight λ with the intersection cohomology of Grλ with trivial local system of coefficients:

V (λ) = IH
(

Grλ,C
)
.

Let n be a positive integer. The group G∨(C[z])n acts on the space G∨
(
C
[
z, z−1

])n by

(h1, . . . , hn) · (g1, . . . , gn) = (g1h
−1
1 , h1g2h

−1
2 , . . . , hn−1gnh

−1
n )

where (h1, . . . , hn) ∈ G∨(C[z])n and (g1, . . . , gn) ∈ G∨
(
C
[
z, z−1

])n. The quotient is called the
n-fold convolution variety and is denoted by Grn. We will use the customary notation

Grn = G∨
(
C
[
z, z−1

])
×G∨(C[z]) · · · ×G∨(C[z]) G∨

(
C
[
z, z−1

])
/G∨(C[z])

to indicate this construction and denote the image in Grn of a tuple (g1, . . . , gn) by [g1, . . . , gn].
Then Grn is endowed with the structure of an ind-variety. One notes that Gr1 is just the affine
Grassmannian Gr. We define a map mn : Grn → Gr by mn([g1, . . . , gn]) = [g1 . . . gn].
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For each tuple λ = (λ1, . . . , λn) in Λn, we set

|λ| = λ1 + · · ·+ λn.

Given λ ∈ Λ+, we set Ĝrλ = G∨(C[z]) zλG∨(C[z]); this is the preimage of Grλ under the
quotient map G∨

(
C
[
z, z−1

])
→ Gr. Given λ = (λ1, . . . , λn) in (Λ+)n, we define

Grλn = Ĝrλ1 ×G∨(C[z]) · · · ×G∨(C[z]) Ĝrλn /G∨(C[z]),

a subset of Grn. The geometric Satake correspondence identifies the tensor product

V (λ) = V (λ1)⊗ · · · ⊗ V (λn)

with the intersection cohomology of Grλn .

Given µ ∈ Λ, the N−,∨
(
C
[
z, z−1

])
-orbit through Lµ is denoted by Tµ; this is a locally closed

sub-ind-variety of Gr. The Iwasawa decomposition implies that

Gr =
⊔
µ∈Λ

Tµ; moreover Tµ =
⊔
ν∈Λ
ν≥µ

Tν .

For each (λ, µ) ∈ Λ+×Λ, the intersection Grλ∩Tµ (if non-empty) has pure dimension ρ(λ−µ).
Using this fact, Mirković and Vilonen set up the geometric Satake correspondence so that the µ-
weight subspace of V (λ) identifies with the top-dimensional Borel–Moore homology of Grλ∩Tµ
([18], Corollary 7.4):

V (λ)µ = HBM
2ρ(λ−µ)

(
Grλ ∩ Tµ

)
.

We denote by Z (λ)µ the set of irreducible components of Grλ ∩ Tµ. If Z ∈ Z (λ)µ, then
Z ∩ Grλ is an irreducible component of Grλ ∩ Tµ, whose fundamental class in Borel–Moore
homology is denoted by 〈Z〉. The classes 〈Z〉, for Z ∈ Z (λ)µ, form a basis of V (λ)µ.

Likewise, for each (λ, µ) ∈ (Λ+)n × Λ, the intersection Grλn ∩ (mn)−1(Tµ) has pure dimension
ρ(|λ| − µ), and we can identify

V (λ)µ = HBM
2ρ(|λ|−µ)

(
Grλn ∩ (mn)−1(Tµ)

)
.

We denote by Z (λ)µ the set of irreducible components of Grλn ∩ (mn)−1(Tµ). If Z ∈ Z (λ)µ,
then Z ∩ Grλn is an irreducible component of Grλn ∩ (mn)−1(Tµ), whose fundamental class
in Borel–Moore homology is denoted by 〈Z〉. The classes 〈Z〉, for Z ∈ Z (λ)µ, form a basis
of V (λ)µ.

We set
Z (λ) =

⊔
µ∈Λ

Z (λ)µ and Z (λ) =
⊔
µ∈Λ

Z (λ)µ.

Elements in these sets are called Mirković–Vilonen (MV) cycles, and the bases of V (λ) and
V (λ) obtained above are called MV bases.
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3.2 Indexation of the Mirković–Vilonen cycles

In this short section, we explain that there is a natural bijection

Z (λ) ∼= Z (λ1)× · · · ×Z (λn) (7)

for any λ = (λ1, . . . , λn) in (Λ+)n. The construction goes back to Braverman and Gaitsgory [4];
details can be found in [1], Proposition 2.2 and Corollary 4.10.

For µ ∈ Λ, we define
T̃µ = N−,∨

(
C
[
z, z−1

])
zµ

and note that the natural map
T̃µ /N

−,∨(C[z])→ Tµ

is bijective. Given a N−,∨(C[z])-invariant subset Z ⊂ Tµ, we denote by Z̃ the preimage of Z
by the quotient map T̃µ → Tµ. In particular, the notation Z̃ is defined for any MV cycle Z.

Pick µ = (µ1, . . . , µn) in Λn and Z = (Z1, . . . , Zn) in Z (λ1)µ1 × · · · × Z (λn)µn . Then the
closure of {

[g1, . . . , gn]
∣∣∣ (g1, . . . , gn) ∈ Z̃1 × · · · × Z̃n

}
in (mn)−1

(
T|µ|

)
is an MV cycle, and actually belongs to Z (λ)|µ|. Each MV cycle in Z (λ)

can be uniquely obtained in this manner, which defines the bijection (7).

Because of this, we will allow ourselves to write elements in Z (λ) as tuples Z as above.

3.3 Transition matrix

We continue with our tuple of dominant weights λ = (λ1, . . . , λn). To compute the MV basis
of V (λ), we compare it with the tensor product of the MV bases of the factors V (λ1), . . . ,
V (λn). This requires the introduction of a nice geometric object.

Let n be a positive integer. We define the n-fold Beilinson–Drinfeld convolution variety Grn
as the set of pairs (x1, . . . , xn; [g1, . . . , gn]), where (x1, . . . , xn) ∈ Cn and [g1, . . . , gn] belongs to

G∨
(
C
[
z, (z − x1)−1

])
×G∨(C[z]) · · · ×G∨(C[z]) G∨

(
C
[
z, (z − xn)−1

])
/G∨

(
C[z]

)
.

We denote by π : Grn → Cn the morphism which forgets [g1, . . . , gn]. It is known that Grn is
endowed with the structure of an ind-variety and that π is ind-proper.

To each composition n = (n1, . . . , nr) of n in r parts corresponds a partial diagonal ∆n in Cn,
defined as the set of all elements of the form

x = (x1, . . . , x1︸ ︷︷ ︸
n1 times

, . . . , xr, . . . , xr︸ ︷︷ ︸
nr times

) (8)
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for (x1, . . . , xr) ∈ Cr. The small diagonal is the particular case n = (n); we denote it simply
by ∆. We define Grn

∣∣
∆n

to be π−1(∆n).

Given g ∈ G∨
(
C
[
z, z−1

])
and x ∈ C, we denote by g|x the result of substituting z−x for z in g.

We define Grλn to be the set of all pairs
(
x1, . . . , xn;

[
g1|x1 , . . . , gn|xn

])
with (x1, . . . , xn) ∈ Cn

and gj ∈ Ĝrλj for each j ∈ {1, . . . , n}. Similarly, given µ = (µ1, . . . , µn) in Λn, we define Tµ to
be the set of all pairs

(
x1, . . . , xn;

[
g1|x1 , . . . , gn|xn

])
with (x1, . . . , xn) ∈ Cn and gj ∈ T̃µj for

each j ∈ {1, . . . , n}. For µ ∈ Λ, we set (leaving n out of the notation)

Ṫµ =
⋃

µ∈Λn

|µ|=µ

Tµ.

Given (µ1, . . . , µn) ∈ Λn and Z = (Z1, . . . , Zn) in Z (λ1)µ1 × · · · ×Z (λn)µn , we define Ẋ (Z)

to be the set of all pairs
(
x1, . . . , xn;

[
g1|x1 , . . . , gn|xn

])
with (x1, . . . , xn) ∈ Cn and gj ∈ Z̃j for

each j ∈ {1, . . . , n}. Given in addition a composition n of n, we define

X (Z,n) = Ẋ (Z)
∣∣
∆n
∩ Grλn .

(In [1], Ẋ (Z) is denoted by Ψ(Z1 ∝ · · · ∝ Zn) and X (Z,n) is defined as Ẋ (Z)
∣∣
∆n
∩ Grλn ∩ Ṫµ.)

For given λ, µ and n, the subsets X (Z,n) ∩ Ṫµ for Z in

Z (λ)µ =
⊔

(µ1,...,µn)∈Λn

µ1+···+µn=µ

Z (λ1)µ1 × · · · × Z (λn)µn

are the irreducible components of
(
Grλn ∩ Ṫµ

)∣∣
∆n

(see [1], proof of Proposition 5.4). We adopt
a special notation for the small diagonal and set Y(Z) = X (Z, (n)).

Now fix n, the tuple λ ∈ (Λ+)n, the weight µ ∈ Λ, and the composition n of n. We write λ
as a concatenation

(
λ(1), . . . ,λ(r)

)
, where each λ(j) belongs to (Λ+)nj , and similarly we write

each tuple Z ∈ Z (λ)µ as
(
Z(1), . . . ,Z(r)

)
with Z(j) ∈ Z (λ(j)). Then

V (λ) = V
(
λ(1)

)
⊗ · · · ⊗ V

(
λ(r)

)
and

〈
Z(j)

〉
∈ V

(
λ(j)

)
.

With this notation ([1], Proposition 5.10):

Proposition 4 Let (Z′,Z′′) ∈ (Z (λ)µ)2. The coefficient bZ′,Z′′ in the expansion〈
Z′′(1)

〉
⊗ · · · ⊗

〈
Z′′(r)

〉
=

∑
Z∈Z (λ)µ

bZ,Z′′ 〈Z〉

is the multiplicity of Y(Z′) in the intersection product X (Z′′,n) · Grλn
∣∣
∆

computed in the am-
bient space Grλn

∣∣
∆n

.
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3.4 Projecting onto Cartan components

To begin with, let n be a positive integer and let λ ∈ (Λ+)n. We denote by p : V (λ)→ V (|λ|)
the projection onto the Cartan component of V (λ), i.e. the top step in the isotypic filtration.
The map mn : Grn → Gr restricts to an isomorphism Grλn ∩ (mn)−1

(
Gr|λ|

)
→ Gr|λ| (see [13],

p. 2110). Given µ ∈ Λ and Z ∈ Z (λ)µ, we define |Z| to be the closure in Tµ of mn(Z)∩Gr|λ|.

The following proposition is a direct consequence of Theorem 3.4 in [1] and its proof.

Proposition 5 (i) The map Z 7→ |Z| defines a bijection
{
Z ∈ Z (λ)

∣∣ |Z| 6= ∅
}
→ Z (|λ|).

(ii) Let Z ∈ Z (λ). If |Z| 6= ∅, then p(〈Z〉) =
〈
|Z|
〉
; otherwise p(〈Z〉) = 0.

By Corollary 4.10 in [1], the condition |Z| 6= ∅ concretely means that under the bijection (7),
Z ∈ Z (λ) belongs to the connected component of highest weight |λ| of the tensor product of
crystals Z (λ1)× · · · ×Z (λn).

Now let n = (n1, . . . , nr) be a composition of n in r parts. We again write λ as a concatenation(
λ(1), . . . ,λ(r)

)
, where each λ(j) belongs to (Λ+)nj , and set ‖λ‖ =

(∣∣λ(1)

∣∣, . . . , ∣∣λ(r)

∣∣); then
V (‖λ‖) = V

(∣∣λ(1)

∣∣)⊗ · · · ⊗ V (∣∣λ(r)

∣∣).
For each j ∈ {1, . . . , r}, we denote by p(j) : V

(
λ(j)

)
→ V

(∣∣λ(j)

∣∣) the projection onto the
Cartan component and define

p = p(1) ⊗ · · · ⊗ p(r);

thus p : V (λ)→ V (‖λ‖).

Likewise, we again write each tuple Z ∈ Z (λ) as a concatenation
(
Z(1), . . . ,Z(r)

)
with Z(j) ∈

Z (λ(j)) and set ‖Z‖ =
(∣∣Z(1)

∣∣, . . . , ∣∣Z(r)

∣∣).
Proposition 6 Let Z ∈ Z (λ). If

∣∣Z(j)

∣∣ 6= ∅ for all j ∈ {1, . . . , r}, then p(〈Z〉) =
〈
‖Z‖

〉
;

otherwise p(〈Z〉) = 0.

Proof. Let Z̊ (λ) be the set of all Z ∈ Z (λ) such that
∣∣Z(j)

∣∣ 6= ∅ for all j ∈ {1, . . . , r}; then
the map Z 7→ ‖Z‖ realizes a bijection from Z̊ (λ) onto Z (‖λ‖).

We fix a weight µ ∈ Λ and introduce the transition matrices (bZ′,Z′′) and (aY′,Y′′), where
(Z′,Z′′) ∈ (Z (λ)µ)2 and (Y′,Y′′) ∈ (Z (‖λ‖)µ)2, that encode the expansions〈

Z′′(1)

〉
⊗ · · · ⊗

〈
Z′′(r)

〉
=

∑
Z′∈Z (λ)µ

bZ′,Z′′ 〈Z′〉

and 〈
Y ′′1
〉
⊗ · · · ⊗

〈
Y ′′r
〉

=
∑

Y′∈Z (‖λ‖)µ

aY′,Y′′ 〈Y′〉
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in the MV bases of V (λ) and V (‖λ‖). We claim that if Z′ ∈ Z̊ (λ), then

bZ′,Z′′ =

{
a‖Z′‖,‖Z′′‖ if Z′′ ∈ Z̊ (λ),

0 otherwise.
(9)

Assuming (9), we conclude the proof as follows. Let p̃ : V (λ) → V (‖λ‖) be the linear map
defined by the requirement that for all Z ∈ Z (λ),

p̃(〈Z〉) =

{〈
‖Z‖

〉
if Z ∈ Z̊ (λ),

0 otherwise.

Then (9) gives

p̃
(〈
Z(1)

〉
⊗ · · · ⊗

〈
Z(r)

〉)
=

{〈
|Z(1)|

〉
⊗ · · · ⊗

〈
|Z(r)|

〉
if Z ∈ Z̊ (λ),

0 otherwise,

and from Proposition 5, we conclude that p̃ = p.

We are thus reduced to prove (9). We define a map mn : Grn
∣∣
∆n
→ Grr by

mn(x; [g1, . . . , gn]) = (x1, . . . , xr; [g1 · · · gn1 , gn1+1 · · · gn1+n2 , . . . , gn1+...+nr−1+1 · · · gn])

for x as in (8). Then U = Grλn
∣∣
∆n
∩(mn)−1

(
Gr‖λ‖r

)
is an open subset of Grλn

∣∣
∆n

and mn

restricts to an isomorphism U → Gr‖λ‖r .

Let (Z′,Z′′) ∈ (Z (λ)µ)2. By Proposition 4, the coefficient bZ′,Z′′ is the multiplicity of Y(Z′)
in the intersection product X (Z′′,n) ·

(
Grλn

)∣∣
∆

computed in the ambient space Grλn
∣∣
∆n

.

Assume first that both Z′ and Z′′ lie in Z̊ (λ). Then the open subset U meets Y(Z′) and
X (Z′′,n). Since intersection multiplicities are of local nature, bZ′,Z′′ is the multiplicity of
Y(Z′) ∩ U in the intersection product

(
X (Z′′,n) ∩ U

)
· U
∣∣
∆

computed in the ambient space
U
∣∣
∆n

. On the other hand, Proposition 4 for the composition (1r) = (1, . . . , 1) of r gives that

a‖Z′‖,‖Z′′‖ is the multiplicity of Y(‖Z′‖) in the intersection product X (‖Z′′‖, (1r)) ·
(
Gr‖λ‖r

)∣∣
∆

computed in the ambient space Gr‖λ‖r . Observing that

mn

(
Y(Z′) ∩ U

)
= Y(‖Z′‖) and mn

(
X (Z′′,n) ∩ U

)
= X (‖Z′′‖, (1r)),

we conclude that bZ′,Z′′ = a‖Z′‖,‖Z′′‖ in this case.

Now assume that Z′ is in Z̊ (λ) but not Z′′. Then there exists j ∈ {1, . . . , r} such that Z′′(j)

is contained in F = Gr
λ(j)
nj \ (mnj )

−1
(
Gr|λ(j)|

)
. For x ∈ C, denote by F̂ |x the set of all tuples(

g1|x, . . . , gnj |x
)
where

(g1, . . . , gnj ) ∈
(
G∨
(
C
[
z, z−1

]))nj and [g1, . . . , gnj ] ∈ F,
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and denote by F the subset of Grλn
∣∣
∆n

consisting of all pairs (x; [g1, . . . , gn]) such that

(gn1+···+nj−1+1, . . . , gn1+···+nj ) ∈ F̂ |xj

where x is written as in (8). Then F is closed in Gr
λ(j)
nj and X (Z′′,n) is contained in F . As

Y(Z′) is not contained in F , it is not contained in X (Z′′,n), so here bZ′,Z′′ = 0. �

3.5 Truncation

In this section, we come back to the setup of sect. 3.3 and record a property which will simplify
our analysis.

We fix nonnegative integers n1, n2, n3 and tuples λ(1) ∈ (Λ+)n1 , λ(2) ∈ (Λ+)n2 , λ(3) ∈ (Λ+)n3 .
We define λ to be the concatenation

(
λ(1),λ(2),λ(3)

)
and we regard elements Z ∈ Z (λ) as

concatenations
(
Z(1),Z(2),Z(3)

)
where each Z(j) belongs to Z (λ(j)). If ν ∈ Λ and Z(3) ∈

Z (λ(3))ν , then we set wtZ(3) = ν.

We fix a weight µ ∈ Λ and introduce the transition matrix (aZ′,Z′′), where (Z′,Z′′) ∈ (Z (λ)µ)2,
that encodes the expansions〈

Z′′(1)

〉
⊗
〈(
Z′′(2),Z

′′
(3)

)〉
=

∑
Z′∈Z (λ)µ

aZ′,Z′′
〈(
Z′(1),Z

′
(2),Z

′
(3)

)〉
in the MV basis of V (λ).

Proposition 7 (i) Let (Z′,Z′′) ∈ (Z (λ)µ)2. If aZ′,Z′′ 6= 0, then either wtZ′(3) < wtZ′′(3) or
Z′(3) = Z′′(3).

(ii) Let Z′′ ∈ Z (λ)µ. Then〈
Z′′(1)

〉
⊗
〈
Z′′(2)

〉
=

∑
Z′∈Z (λ)µ

Z′
(3)

=Z′′
(3)

aZ′,Z′′
〈(
Z′(1),Z

′
(2)

)〉

in V
(
λ(1)

)
⊗ V

(
λ(2)

)
.

Proof. Let Z′′ ∈ Z (λ)µ and set ν = wtZ′′(3). Expanding
〈
Z′′(1)

〉
⊗
〈
Z′′(2)

〉
in the MV basis of

V
(
λ(1)

)
⊗ V

(
λ(2)

)
, we write〈

Z′′(1)

〉
⊗
〈
Z′′(2)

〉
=

∑
Z∈Z (λ(1),λ(2))µ−ν

cZ 〈Z〉

for some complex numbers cZ.
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We denote by V
(
λ(3)

)
<ν the sum of the ξ-weight subspaces of V

(
λ(3)

)
with ξ < ν. By Theo-

rem 5.13 in [1], 〈
Z′′(2)

〉
⊗
〈
Z′′(3)

〉
≡
〈(
Z′′(2),Z

′′
(3)

)〉 (
mod V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν

)
and for each Z ∈ Z (λ(1),λ(2)),〈

Z
〉
⊗
〈
Z′′(3)

〉
≡
〈(
Z,Z′′(3)

)〉 (
mod V

(
λ(1)

)
⊗ V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν

)
.

Consequently, ∑
Z′∈Z (λ)µ

aZ′,Z′′
〈(
Z′(1),Z

′
(2),Z

′
(3)

)〉
≡

∑
Z∈Z (λ(1),λ(2))µ−ν

cZ
〈(
Z,Z′′(3)

)〉
modulo V

(
λ(1)

)
⊗ V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν .

We conclude by noticing that the subspace V
(
λ(1)

)
⊗ V

(
λ(2)

)
⊗ V

(
λ(3)

)
<ν is spanned by the

basis vectors 〈Z′〉 such that wtZ′(3) < ν; see Corollary 5.12 in [1]. �

4 Geometry

In this section, we prove that the MV basis of the tensor powers of the natural representation
of G = SL2(C) is the basis (yw) from sect. 2. As a matter of fact, by Theorem 5.13 in [1], the
MV basis satisfies the first equation in (1), so we only have to prove that it satisfies the second
one too.

4.1 Notation

We endowG with its usual maximal torus and Borel subgroup. The weight lattice is represented
as usual as the quotient (Zε1⊕Zε2)/Z(ε1 + ε2). The fundamental weight $ is the image of ε1

in this quotient. The notation Gr indicates the affine Grassmannian of G∨ = PGL2(C).

In this section, λ will always be of the form ($, . . . ,$); the number n of times $ is repeated
will usually appears as a subscript in notation like Grλn or Grλn .

The cell Gr$ is isomorphic to the projective line, hence is closed. The two MV cycles in Z ($)
are

Z+ = Gr$ ∩ T$ =

{[(
z 0
0 1

)]}
and Z− = Gr$ ∩ T−$ =

{[(
1 0
a z

)] ∣∣∣∣ a ∈ C
}

(the matrices above should actually be viewed in PGL2

(
C
[
z, z−1

])
). The standard basis of

V ($) = C2 is then (x+, x−) = (〈Z+〉, 〈Z−〉).

Given a word v ∈ Cn, we set

P (v) =
{
` ∈ {1, . . . , n}

∣∣ v(`) = +
}

and Zv =
(
Zv(1), . . . , Zv(n)

)
.
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Thanks to the bijection (7), we regard Zv as an element in Z (λ).

For (x, a) ∈ C2, we set

ϕ+(x, a) =

(
z − x a

0 1

)
and ϕ−(x, a) =

(
1 0
a z − x

)
.

Recall the notation introduced in sect. 3.3. For each word v ∈ Cn, we define an embedding
φv : C2n → Grλn by

φv(x;a) =
(
x;
[
ϕv(1)(x1, a1), . . . , ϕv(n)(xn, an)

])
where x = (x1, . . . , xn) and a = (a1, . . . , an). The image of φv is an open subset Uv and
φv can be regarded as a chart on the manifold Grλn . This chart is designed so that Ẋ (Zv) is
the algebraic subset of Uv defined by the equations a` = 0 for ` ∈ P (v) (compare with the
construction presented in [9]).

4.2 The simplest example

In this section, we consider the case n = 2; the variety Grλ2 has dimension 4. The words
v = +− and w = −+ give rise to charts φv and φw on Grλ2 defined by

φv(x1, x2; a1, a2) =

(
x1, x2;

[(
z − x1 a1

0 1

)
,

(
1 0
a2 z − x2

)])
,

φw(x1, x2; b1, b2) =

(
x1, x2;

[(
1 0
b1 z − x1

)
,

(
z − x2 b2

0 1

)])
.

The transition map (φw)−1 ◦ φv is given by

b1 = 1/a1, b2 = −a1(x2 − x1 + a1a2)

on the domain
(φv)

−1(Uv ∩ Uw) =
{

(x1, x2, a1, a2) ∈ C4
∣∣ a1 6= 0

}
.

We set A = C[x1, x2, a1, a2]; this is the coordinate ring of (φv)
−1(Uv). We let B = S −1A be

the localization of A with respect to the multiplicative subset S generated by a1; this is the
coordinate ring of (φv)

−1(Uv ∩ Uw).

In the chart φv, the cycle Y(Zv) is defined by the equations a1 = x1 − x2 = 0, so the ideal in
A of the subvariety

V = (φv)
−1(Uv ∩ Y(Zv))

is
p = (a1, x1 − x2).
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In the chart φw, the cycle Ẋ (Zw) is defined by the equation b2 = 0, and the closure in Uv
of Uv ∩ Ẋ (Zw) is Uv ∩ X (Zw, (1, 1)). Therefore the ideal in B of (φv)

−1
(
Uv ∩ Ẋ (Zw)

)
is

q̊ = (−a1(x2 − x1 + a1a2)) and the ideal in A of the subvariety

X = (φv)
−1(Uv ∩ X (Zw, (1, 1)))

is the preimage
q = (x2 − x1 + a1a2)

of q̊ under the canonical map A→ B.

Plainly q ⊂ p, which shows that V ⊂ X. The local ring OV,X of X along V is the localization
of A = A/q at the ideal p = p/q. Since a2 is not in p, its image in A p is invertible, and then we
see that x1 − x2 generates the maximal ideal of A p. As a consequence, the order of vanishing
of x1 − x2 along V (see [8], sect. 1.2) is equal to one. By definition, this is the multiplicity of
Y(Zv) in the intersection product X (Zw, (1, 1)) · Grλ2

∣∣
∆
.

Proposition 4 then asserts that y+− = 〈Zv〉 occurs with coefficient one in the expansion of
xw = 〈Z−〉 ⊗ 〈Z+〉 on the MV basis of V ($)⊗2, in agreement with the equation

x−+ = y−+ + y+−.

The proof of the general case follows the same pattern, but more elaborate combinatorics is
needed to manage the equations.

4.3 Transition maps

Pick v, w in Cn. Set P0 = S0 = 1 and Q0 = R0 = 0. For ` ∈ {1, . . . , n}, let K` =
C(x1, . . . , x`, a1, . . . , a`) be the field of rational functions and define by induction an element
b` ∈ K` and a matrix (

P` Q`
R` S`

)
with coefficients in K`[z] and determinant one as follows:

• If (v(`), w(`)) = (+,+), then

b` =

(
a`P`−1 +Q`−1

)(
x`
)(

a`R`−1 + S`−1

)(
x`
) ,

 P` = P`−1 − b`R`−1, Q` =
a`P`−1 +Q`−1 − b`S`

z − x`
,

R` = (z − x`)R`−1, S` = a`R`−1 + S`−1.

• If (v(`), w(`)) = (−,+), then

b` =

(
P`−1 + a`Q`−1

)(
x`
)(

R`−1 + a`S`−1

)(
x`
) ,

 P` =
P`−1 + a`Q`−1 − b`R`

z − x`
, Q` = Q`−1 − b`S`−1,

R` = R`−1 + a`S`−1, S` = (z − x`)S`−1.
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• If (v(`), w(`)) = (+,−), then

b` =

(
a`R`−1 + S`−1

)(
x`
)(

a`P`−1 +Q`−1

)(
x`
) ,


P` = (z − x`)P`−1, Q` = a`P`−1 +Q`−1,

R` = R`−1 − b`P`−1, S` =
a`R`−1 + S`−1 − b`Q`

z − x`
.

• If (v(`), w(`)) = (−,−), then

b` =

(
R`−1 + a`S`−1

)(
x`
)(

P`−1 + a`Q`−1

)(
x`
) ,


P` = P`−1 + a`Q`−1, Q` = (z − x`)Q`−1,

R` =
R`−1 + a`S`−1 − b`P`

z − x`
, S` = S`−1 − b`Q`−1.

Since the matrix
(
P`−1 Q`−1

R`−1 S`−1

)
has determinant one, the denominator in the fraction that

defines b` is not the zero polynomial and everything is well-defined.

Proposition 8 The transition map

(φw)−1 ◦ φv : (φv)
−1(Uv ∩ Uw)→ (φw)−1(Uv ∩ Uw)

is given by the rational map

(x1, . . . , xn; a1, . . . , an) 7→ (x1, . . . , xn; b1, . . . , bn)

where b1, . . . , bn are defined above.

Proof. The definitions are set up so that

ϕw(`)(x`, b`)

(
P` Q`
R` S`

)
=

(
P`−1 Q`−1

R`−1 S`−1

)
ϕv(`)(x`, a`)

and therefore (∏̀
j=1

ϕw(j)(xj , bj)

)(
P` Q`
R` S`

)
=

(∏̀
j=1

ϕv(j)(xj , aj)

)
for each ` ∈ {1, . . . , n}. Thus, when complex values are assigned to the indeterminates x1, . . . ,
xn, a1, . . . , an, we get [∏̀

j=1

ϕv(j)(xj , aj)

]
=

[∏̀
j=1

ϕw(j)(xj , bj)

]

in PGL2

(
C
[
z, (z − x1)−1, . . . , (z − x`)−1

])
/PGL2(C[z]). This implies the equality

φv(x1, . . . , xn; a1, . . . , an) = φw(x1, . . . , xn; b1, . . . , bn)

in Grn. �
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The parameters b` and the coefficients of the polynomials P`, Q`, R`, S` were defined as
elements in K`. We can however be more precise and define recursively a subring B` ⊂ K` to
which they belong: we start with B0 = C, and for ` ∈ {1, . . . , n}, we set B` = B`−1

[
x`, a`, f

−1
`

]
,

where f` ∈ B`−1[x`, a`] is the denominator in the fraction that defines b`.

Let A` = C[x1, . . . , x`, a1, . . . , a`] be the polynomial algebra. One can easily build by induction
a finitely generated multiplicative set S` ⊂ A` such that B` is the localization S −1

` A`. While
An is the coordinate ring of (φv)

−1(Uv), we see that Bn is the coordinate ring of the open subset

(φv)
−1(Uv∩Uw). In fact, since the matrix

(
P` Q`
R` S`

)
has determinant one, the numerator and

the denominator of b` cannot both vanish at the same time. As a consequence, (φw)−1 ◦ φv
cannot be defined at a point where a function in Sn vanishes.

4.4 Finding the equations

To prove that the MV basis satisfies the equation (1), we need intersection multiplicities in the
ambient space Grλn

∣∣
∆(1,n−1)

. In practice, we make the base change ∆(1,n−1) → Cn by letting
x2 = · · · = xn in the definition of the charts and by agreeing that from now on, Uv actually
means Uv

∣∣
∆(1,n−1)

. Then, in view of the invariance of the whole system under translation
along the small diagonal ∆, all our equations will only involve the difference x = x1 − x2.

We will consider words v and w in Cn such that (v(1), w(1)) = (+,−) and wt (v) = wt (w).
The planar paths that represent v and w have then the same endpoints. We write w as a
concatenation −w′ where w′ ∈ Cn−1. Proposition 4 asserts that the basis element yv occurs in
the expansion of x− ⊗ yw′ in the MV basis of V ($)⊗n only if Y(Zv) ⊂ X (Zw, (1, n− 1)), and
when this condition is fulfilled, its coefficient is the multiplicity of Y(Zv) in the intersection
product X (Zw, (1, n− 1)) · Grλn

∣∣
∆
.

The next sections are devoted to the determination of these inclusions and intersection multi-
plicities. The actual calculations require the ideals in An of the subvarieties (φv)

−1(Uv∩Y(Zv))
and (φv)

−1(Uv ∩X (Zw, (1, n− 1))) of (φv)
−1(Uv): the first one, denoted by p, is generated by

x and the elements a` for ` ∈ P (v); the second one, denoted by q, is less easily determined.

Taking into account our notational convention regarding the base change ∆(1,n−1) → Cn, we
observe that Uv ∩ X (Zw, (1, n − 1)) is the closure in Uv of Uv ∩ Ẋ (Zw). Let q̊n be the ideal
in Bn of the closed subset (φv)

−1
(
Uv ∩ Ẋ (Zw)

)
of (φv)

−1(Uv ∩ Uw). Then q̊n is generated by
the elements b` for ` ∈ P (w) and q is the preimage of q̊n under the canonical map An → Bn.
In other words, q is the saturation with respect to Sn of the ideal of An generated by the
numerators of the elements b` for ` ∈ P (w). Though algorithmically doable in any concrete
example, finding the saturation is a demanding calculation, which we will bypass by replacing
q by an approximation q̃n.
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4.5 Inclusion and multiplicity, I

This section is devoted to the situation where the paths representing v and w stay parallel to
each other at distance two; specifically, we assume that v(`) = w(`) for each ` ∈ {2, . . . , n− 1}
and (v(n), w(n)) = (−,+).

Proposition 9 Under these assumptions:

(i) The inclusion Y(Zv) ⊂ X (Zw, (1, n − 1)) holds if and only if the last letter of w′ is
significant.

(ii) If the condition in (i) is fulfilled, then the multiplicity of Y(Zv) in the intersection product
X (Zw, (1, n− 1)) · Grλn

∣∣
∆

is equal to one.

The proof of Proposition 9 fills the remainder of this section.

Let us denote by S(v) the set of all positions ` ∈ {1, . . . , n} such that the letter v(`) is significant
in v.

In agreement with the convention set forth in sect. 4.4, we define A` = C[x2][x, a1, . . . , a`] for
each ` ∈ {1, . . . , n}, where x = x1 − x2. We rewrite the indeterminate z as z̃ + x2. We set
P̃1 = z̃ − x and Q̃1 = a1. For ` ∈ {2, . . . , n − 1}, we define by induction two polynomials P̃`,
Q̃` in A`[z̃] as follows:

• If v(`) = w(`) = + and ` ∈ S(v), then

P̃` = P̃`−1 and Q̃` =
a`P̃`−1 + Q̃`−1 −

(
a`P̃`−1 + Q̃`−1

)(
0
)

z̃
.

• If v(`) = w(`) = + and ` /∈ S(v), then P̃` = P̃`−1 and Q̃` =
(
Q̃`−1 − Q̃`−1

(
0
))
/z̃.

• If v(`) = w(`) = −, then P̃` = P̃`−1 + a`Q̃`−1 and Q̃` = z̃ Q̃`−1.

Moreover, in the case where v(`) = w(`) = +, set

c̃` =


(
a`P̃`−1 + Q̃`−1

)(
0
)

if ` ∈ S(v),

a` otherwise,

and set
c̃n =

(
P̃n−1 + anQ̃n−1

)(
0
)
.

Remark 10. The polynomials P̃` and Q̃` do not depend on the variables aj with j ∈ P (v)\S(v).
The elements c̃` for ` ∈ {2, . . . , n− 1} ∩ P (v) ∩ S(v) and c̃n enjoy the same property.
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For ` ∈ {1, . . . , n}:

• let q̊` be the ideal of B` generated by {bj | j ∈ P (w), j ≤ `};

• let q̃` be the ideal of A` generated by {c̃j | j ∈ P (w), j ≤ `};

• let d` be the weight of the word v(1)v(2) · · · v(`) and set D` = max(d1, d2, . . . , d`).

As noticed before, a + letter at position ` in v is significant if and only if ` marks the first time
that the path representing v reaches a new height; agreeing that D0 = 0, this translates to

` ∈ P (v) ∩ S(v) ⇐⇒ d` > D`−1.

For the record, we also note that the last letter of w′ is significant if and only if dn−1 = Dn−1.

Lemma 11 For ` ∈ {1, . . . , n− 1}, we have

(i)` S −1
` q̃` = q̊`,

(ii)` P̃`(z̃) ≡ P`(z) (mod q̊`[z]) and Q̃`(z̃) ≡ Q`(z) (mod q̊`[z]),

(iii)` z̃D`−d` divides Q̃`.

Proof. We proceed by induction on `. The statements are banal for ` = 1. Suppose that
2 ≤ ` ≤ n− 1 and that statements (i)`−1, (ii)`−1 and (iii)`−1 hold.

Suppose first that (v(`), w(`)) = (+,+). Then by construction

b` =
(
a`P`−1 +Q`−1

)(
x2

)
× f−1

` , (10)

P` = P`−1 − b`R`−1, Q` =
a`P`−1 +Q`−1 − b`S`

z − x2
. (11)

If ` /∈ S(v), then d`−1 + 1 = d` ≤ D`−1, and we see by (iii)`−1 that Q̃`−1(0) = 0. Using (ii)`−1,

we deduce that Q`−1(x2) ∈ q̊`−1. On the other hand, the matrix
(
P`−1(x2) Q`−1(x2)
R`−1(x2) S`−1(x2)

)
with coefficients in B`−1 has determinant one. After reduction modulo q̊`−1, the coefficient in
the top right corner becomes zero; it follows that P`−1(x2) is invertible in the quotient ring
B`−1/̊q`−1. Reducing (10) modulo q̊`−1B` and noting that here c̃` = a`, we deduce that b`
and c̃` generate the same ideal in B`/̊q`−1B`. This piece of information allows to deduce (i)`
from (i)`−1. From (11) and the fact that a` ∈ q̊`, we get

P` ≡ P`−1 (mod q̊`[z]), Q` ≡
Q`−1 −Q`−1(x2)

z − x2
(mod q̊`[z]).

Then (ii)` and (iii)` follow from (ii)`−1 and (iii)`−1 and from the definition of P̃` and Q̃`.
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If ` ∈ S(v), then (10) and (ii)`−1 lead to b` ≡ c̃`/f` modulo q̊`−1B`. Again, b` and c̃` generate
the same ideal in B`/̊q`−1B`, so we can deduce (i)` from (i)`−1. Then (ii)` follows from (ii)`−1

and (11). Also, (iii)`−1 holds trivially since D` = d`.

It remains to tackle the case (v(`), w(`)) = (−,−). Here (i)`, (ii)` and (iii)` can be deduced
from (i)`−1, (ii)`−1 and (iii)`−1 without ado. �

Lemma 12 With the notation above,

S −1
n q̃n = q̊n and q =

{
g ∈ An

∣∣ ∃f ∈ Sn, fg ∈ q̃n
}
.

Proof. From (v(n), w(n)) = (−,+), we deduce

bn =
(
Pn−1 + anQn−1

)(
x2

)
× f−1

n .

From the assertion (ii)n−1 in Lemma 11, we deduce that bn ≡ c̃n/fn modulo q̊n−1Bn. Thus, bn
and c̃n generate the same ideal in Bn/̊qn−1Bn, and from the assertion (i)n−1 in Lemma 11, we
conclude that S −1

n q̃n = q̊n. The second announced equality then follows from the definition
of q as the preimage of q̊n under the canonical map An → Bn, with Bn = S −1

n An. �

Lemma 13 If the last letter of w′ is not significant, then q̊n = Bn.

Proof. Assume that the last letter of w′ is not significant. Then Dn−1 − dn−1 ≥ 1, and by
assertion (iii)n−1 in Lemma 11, we get Q̃n−1(0) = 0. Using assertion (ii)n−1 in that lemma, we

deduce that Qn−1(x2) ∈ q̊n−1. Since the matrix
(
Pn−1(x2) Qn−1(x2)
Rn−1(x2) Sn−1(x2)

)
has determinant 1, we

see that Pn−1(x2) is invertible in the ring Bn−1/̊qn−1. Then bn =
(
Pn−1 + anQn−1

)(
x2

)
× f−1

n

is invertible in Bn/̊qn−1Bn, and we conclude that q̊n = Bn. �

Lemma 13 asserts that if the last letter of w′ is not significant, then Uv ∩ Ẋ (Zw) = ∅, and
thus Uv ∩ X (Zw, (1, n − 1)) = ∅. Since Uv contains a dense subset of Y(Zv), this proves half
of Proposition 9 (i).

For the rest of this section, we assume that the last letter of w′ is significant. We want to show
that Y(Zv) is contained in X (Zw, (1, n − 1)). It would be rather easy to prove the inclusion
q̃n ⊂ p, but this would not be quite enough, since we do not know that q̃n = q. (We believe
that this equality is correct but we are not able to prove it.) Instead we will look explicitly at
the zero set of q̃n in the neighborhood of (φv)

−1(Uv ∩ Y(Zv)). This zero set is the algebraic
subset of (φv)

−1(Uv) defined by the equations c̃` for ` ∈ P (w).

Our analysis is pedestrian. We observe that there are two kinds of equations c̃`. When
` ∈ P (v) \ S(v), the equation c̃` reduces to the variable a`; this equation and variable can
simply be discarded because a` is an equation for Y(Zv) as well. The other equations involve
the other variables.
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Set D = Dn. The map ` 7→ d` is an increasing bijection from P (v)∩S(v) onto {1, . . . , D}. We
define L as the largest element in P (v) ∩ S(v); then L is the smallest element in {` | d` = D}.
For ` ∈ {1, . . . , n}, we denote by `− the largest element in {1, . . . , `} ∩ P (v) ∩ S(v). In partic-
ular, `− = ` if ` ∈ P (v) ∩ S(v) and `− = L if ` ≥ L; also d`− = D`.

Given ` ∈ {1, . . . , n}, let σ` be the sum of the variables aj for j ∈ {2, . . . , `} such that v(j) = −
and dj−1 = D; thus σ` = 0 if ` ≤ L.

We define a grading on An by setting deg x = 1, deg a` = D + 1− d` for ` ∈ P (v) ∩ S(v), and
deg a` = 0 for the other variables. For d ≥ 1, we denote by Jd the ideal of An spanned by
monomials of degree at least d.

Lemma 14 Let ` ∈ {1, . . . , n− 1}.

(i)` If ` ≤ L, then P̃`(z̃) ≡ z̃ − x (mod J2[z̃]); if ` ≥ L, then P̃`(0) ≡ aLσ` − x (mod J2).

(ii)` Q̃`(z̃) ≡ z̃D`−d` a`− (mod JD+2−d`− [z̃]).

Proof. The proof starts with a banal verification for ` = 1 and then proceeds by induction
on `. Suppose that 2 ≤ ` ≤ n− 1 and that statements (i)`−1 and (ii)`−1 hold.

Assume first that v(`) = w(`) = −. Here (ii)` is an immediate consequence of (ii)`−1. If
`− 1 < L, then d(`−1)− < D, so deg a(`−1)− ≥ 2, and Q̃`−1 ∈ J2[z̃] by statement (ii)`−1. As a
result, P̃` ≡ P̃`−1 (mod J2[z̃]), so (i)` follows from (i)`−1. If `−1 ≥ L, then either d`−1 = D, in
which case Q̃`−1(0) ≡ aL (mod J2) and σ` = σ`−1 +a`, or d`−1 < D, in which case Q̃`−1(0) ≡ 0

(mod J2) and σ` = σ`−1. In both cases, P̃`(0) − (aLσ`) ≡ P̃`−1(0) − (aLσ`−1) (mod J2), and
again (i)` follows from (i)`−1.

Assume now that v(`) = w(`) = + and that ` ∈ S(v). Certainly then (i)` follows from (i)`−1.
Further, d(`−1)− = d`−−1, so deg a(`−1)− = D+2−d`− , hence Q̃`−1 is zero modulo JD+2−d`− [z̃]

by (ii)`−1. Using (i)`−1, we conclude that Q̃` ≡ a` (mod JD+2−d`− [z̃]), so (ii)` holds.

The third situation, namely v(`) = w(`) = + and ` /∈ S(v), presents no difficulties. �

Lemma 15

(i) For ` ∈ {2, . . . , n− 1} ∩ P (v) ∩ S(v), we have c̃` ≡ −a` x+ a(`−1)− (mod JD+3−d`).

(ii) We have c̃n ≡ aLσn − x (mod J2).

Proof. Let ` ∈ {2, . . . , n − 1} ∩ P (v) ∩ S(v). Then D`−1 = d`−1 and d(`−1)− = d` − 1. By
Lemma 14, P̃`−1(0) ≡ −x (mod J2) and Q̃`−1(0) ≡ a(`−1)− (mod JD+3−d`). This gives (i).

Since the last letter of w′ is assumed to be significant, we have dn−1 = Dn−1 = D, so σn =
σn−1 + an. From Lemma 14, we get P̃n−1(0) ≡ aLσn−1 − x (mod J2) and Q̃n−1(0) ≡ aL
(mod J2). This gives (ii). �
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Lemma 16 There exists an element g̃ ∈ An, which depends only on the variables x, a1, and
aj with v(j) = −, such that

g̃ ≡ c̃n xD−1 ×
∏

`∈P (v)∩S(v)
`≥2

(
−P̃`−1(0)

)p`
(mod q̃L) (12)

g̃ ≡ xq
(
a1σn − xD

)
(mod Jq+D+1) (13)

where each p` and q are nonnegative integers.

Proof. Consider
g̃L = c̃n x

D−1 +
∑

`∈P (v)∩S(v)

`≥2

c̃` σn x
d`−2.

An immediate calculation based on Lemma 15 yields

g̃L ≡ a1σn − xD (mod JD+1).

This g̃L meets the specifications for g̃ (with p` and q all equal to zero) except that it may
involve other variables than those prescribed.

We are not bothered by the variables aj for j ∈ P (v)\S(v) because g̃L do not depend on them
(see Remark 10). The variables x and aj with v(j) = − are allowed. The only trouble comes
then from the variables aj with j ∈ {2, . . . , n − 1} ∩ P (v) ∩ S(v). We will eliminate them in
turn.

Assume that L ≥ 2. Let ` ∈ {2, . . . , n − 1} ∩ P (v) ∩ S(v) and assume that we succeeded in
constructing an element g̃` ∈ q̃n which satisfies (12) and (13) and depends only on the variables
x and aj with v(j) = − or j ≤ `. Expand g̃` as a polynomial in a`

g̃` =
r∑
s=0

hs a
s
`

where the coefficients hs only depend on x and on the variables aj such that v(j) = − or j < `.
Then define

g̃(`−1)− =

r∑
s=0

hs

(
−P̃`−1(0)

)r−s (
Q̃`−1(0)

)s
.

This g̃(`−1)− only involves the variables x and aj with v(j) = − or j ≤ ` − 1. In fact, we
can strengthen the latter inequality to j ≤ (` − 1)− because g̃(`−1)− does not depend on the
variables aj with j ∈ P (v)\S(v). Moreover, g̃(`−1)− also satisfies (12) and (13), but for different
integers than g̃`: one has to increase p` and q by r. (To verify that g̃(`−1)− satisfies (13) with
q + r instead of q, one observes that

h0 ≡ xq
(
a1σn − xD

)
(mod Jq+D+1)

hs ∈ Jq+D+1−s(D+1−d`) for each s ∈ {1, . . . , r}
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and uses Lemma 14.)

At the end of the process, we obtain an element g̃ = g̃1 which enjoys the desired properties. �

Let us recall a few important points:

• An = C[x2][x, a1, . . . , an] is the coordinate ring of (φv)
−1(Uv). The variable x2 is dummy

(no equations depend on it); we get rid of it by specializing it to an arbitrary value.

• The ring B1 is C[x2]
[
x, a1, f

−1
1

]
with f1 = a1. For ` ≥ 2, we produce an explicit function

f` ∈ B`−1[a`] and we set B` = B`−1

[
a`, f

−1
`

]
. The ring Bn is the coordinate ring

of (φv)
−1(Uv ∩ Uw).

• Sn is a finitely generated multiplicative subset of An such that Bn = S −1
n An.

• Polynomials c̃` ∈ A` are defined for each ` ∈ P (w). The ideal of An generated by these
elements is denoted by q̃n.

• The ideal p ⊂ An of (φv)
−1(Uv ∩ Y(Zv)) is generated by the variables x and a` for

` ∈ P (v).

• The ideal q ⊂ An of (φv)
−1(Uv ∩ X (Zw, (1, n− 1))) is the saturation of q̃n with respect

to Sn.

• σ1, . . . , σn are certain sums of variables a` with v(`) = −; these linear forms are not
pairwise distinct, but σn differs from all the other ones, for only it involves an.

Lemma 17 Fix α` ∈ C for each ` ∈ {1, . . . , n} \P (v) such that, when a` is assigned the value
α`, the linear form σn takes a value different from all the other σj. Consider these numbers α`
as constant functions of the variable ξ. Set also α` = 0 for ` ∈ P (v) \ S(v). Then there exists
a neighborhood Ω of 0 in C and analytic functions α` : Ω→ C for ` ∈ P (v) ∩ S(v) such that

(i) If ` ∈ P (v) ∩ S(v), then α`(ξ) ∼ ξD+1−d`/σn.

(ii) The point (ξ, α1(ξ), . . . , αn(ξ)) belongs to the zero locus of q̃n for each ξ ∈ Ω.

(iii) The point (ξ, α1(ξ), . . . , αn(ξ)) belongs to (φv)
−1(Uv ∩ Uw) for each ξ 6= 0 in Ω.

Proof. Let g̃ be as in Lemma 16. We consider that the variables a` with ` > 1 occurring in
g̃ are assigned the values α` fixed in the statement of the lemma. We can then regard g̃ as
a polynomial in the indeterminates x and a1 with complex coefficients, or as a polynomial in
the indeterminate a1 with coefficients in the valued field C((x)). Equation (13) shows that the
points (0, D + q) and (1, q) are vertices of the Newton polygon of g̃. Therefore g̃ admits a
unique root of valuation D in C((x)), which we denote by α1, and the power series α1 has a
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positive radius of convergence. Proceeding by induction on ` ∈ {2, . . . , n − 1} ∩ P (v) ∩ S(v),
and solving the equation c̃` = 0, we define

α`(ξ) = −Q̃`−1(0)/P̃`−1(0), (14)

where the right-hand side is evaluated at (ξ, α1(ξ), . . . , α`−1(ξ)); this is a well-defined process
and α`(ξ) satisfies the equivalent given in the statement, because Lemma 14 guarantees that
after evaluation

P̃`−1(0) = −ξ +O
(
ξ2
)

and Q̃`−1(0) = α(`−1)−(ξ) +O
(
ξ
D+2−d(`−1)−

)
,

so the denominator in (14) does not vanish if ξ 6= 0. Moreover, (12) ensures that the equation
c̃n = 0 is enforced too. Therefore this construction gives (i) and (ii).

We will prove (iii) by showing that none of the functions f` vanish when evaluated at the point
(ξ, α1(ξ), . . . , αn(ξ)) with ξ 6= 0 in Ω. Further, to achieve this result, we have the latitude to
shrink Ω as needed.

Since f1 = a1, we have f1(ξ, α1(ξ), . . . , αn(ξ)) = α1(ξ), and this quantity does not vanish for
ξ 6= 0 small enough, because α1(ξ) ∼ ξD/σn. Proceeding by induction, we assume known that
f1, . . . , f`−1 do not vanish at our point.

• In the case (v(`), w(`)) = (+,+), we have

f` =
(
a`R`−1 + S`−1

)(
x2

)
.

The congruences in Lemma 11 allow to rewrite the equation c̃` = 0 in the form(
a`P`−1 +Q`−1

)(
x2

)
= 0;

this is satisfied after evaluation at the point (ξ, α1(ξ), . . . , αn(ξ)). Using then the relation(
P`−1S`−1 −Q`−1R`−1

)(
x2

)
= 1, we obtain

P`−1(x2)× f` = P`−1(x2)
(
a`R`−1 + S`−1

)(
x2

)
= 1 +R`−1(x2)

(
a`P`−1 +Q`−1

)(
x2

)
= 1.

Thus, f` does not vanish at (ξ, α1(ξ), . . . , αn(ξ)).

• The case (v(`), w(`)) = (−,+), that is ` = n, is amenable to a similar treatment.

• The remaining case is (v(`), w(`)) = (−,−). Here by Lemma 11 we have after substitution

f` =
(
P`−1 + a`Q`−1

)(
x2

)
=
(
P̃`−1 + a`Q̃`−1

)(
0
)
,

and by Lemma 14 and the equivalence in (i)

P̃`−1(0) = (σ`−1/σn−1) ξ+O
(
ξ2
)
and Q̃`−1(0) =

{
ξ/σn +O(ξ2) if d`−1 = D`−1 = D,
O(ξ2) otherwise.

Therefore f`(ξ, α1(ξ), . . . , αn(ξ)) is equivalent to (σ`/σn − 1) ξ, hence does not vanish if
ξ 6= 0 is small enough.
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This concludes the induction and establishes (iii). �

To sum up, the lemma constructs a germ of a (parameterized) smooth algebraic curve ξ 7→
(ξ, α1(ξ), . . . , αn(ξ)) contained in the zero locus of q̃n. The ideal of this curve is a prime ideal
of An which contains q̃n and is disjoint from Sn, hence it contains q. As a result, our curve is
contained in (φv)

−1(Uv ∩X (Zw, (1, n− 1))). The point ξ = 0 of this curve has for coordinates
x = 0, a` = 0 if ` ∈ P (v), and a` = α` if ` ∈ {1, . . . , n} \ P (v). Now points of this form fill
an open dense subset of (φv)

−1(Uv ∩ Y(Zv)), because the values α` were chosen arbitrarily,
subject to the sole requirement that σn 6= σj for j ∈ {1, . . . , n−1}. We can then conclude that
Y(Zv) ⊂ X (Zw, (1, n− 1)). This proves the missing half of Proposition 9 (i) (the first half was
obtained just after Lemma 13).

As a consequence, q ⊂ p. To ease the reading of the sequel, we will omit the subscripts n in
the notation An and q̃n. For ` ∈ {1, . . . , n}, we set R(`) =

{
j ∈ {2, . . . , `}

∣∣ v(j) = −, dj−1 =
Dj−1

}
.

Lemma 18 (i) For each ` ∈ {1, . . . , n− 1}, we have

P̃` ≡ z̃ (mod p[z̃]), Q̃` ≡ z̃D`−d` a`− (mod p2[z̃]),

P̃`(0) ≡ −x+
∑
j∈R(`)

a(j−1)−aj (mod p2).

(ii) In the local ring Ap, we have pAp = xAp + qAp + p2Ap.

Proof. Statement (i) is proved by a banal induction. Let us tackle (ii).

If ` ∈ P (v) \ S(v), then a` = c̃` belongs to q̃.

If ` ∈ (P (v) ∩ S(v)) \ {L}, then there exists m ∈ P (v) ∩ S(v) such that d` = dm − 1. Then
` = (m− 1)− and Dm−1 = dm−1, whence by statement (i)

a` ≡ Q̃m−1(0) = c̃m − amP̃m−1(0) ≡ c̃m (mod p2),

and therefore a` ∈ q̃ + p2.

Surely Dn−1 = dn−1 = D and L = (n− 1)−, so again by statement (i), we have

c̃n = P̃n−1(0) + anQ̃n−1(0) ≡ P̃n−1(0) + aLan ≡ −x+
∑

j∈R(n)

a(j−1)−aj (mod p2).

In the last sum, we gather the terms with the same value ` for (j − 1)−: denoting by τ` the
sum of the variables aj for j ∈ {2, . . . , n} such that v(j) = − and dj−1 = Dj−1 = d`, we obtain

c̃n ≡ −x+
∑

`∈P (v)∩S(v)

a` τ` (mod p2).
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Noting that a` ∈ q̃+p2 for ` ∈ P (v)∩S(v)\{L} and that τL = σn, we get aLσn ∈ (x) + q̃+p2.
Since σn is invertible in Ap, we conclude that aL ∈ xAp + q̃Ap + p2Ap.

Altogether the remarks above show the inclusion

pAp ⊂ xAp + q̃Ap + p2Ap.

Joint with q̃ ⊂ q ⊂ p, this gives statement (ii). �

The ideal in A of the subvarieties

V = (φv)
−1(Uv ∩ Y(Zv)) and X = (φv)

−1(Uv ∩ X (Zw, (1, n− 1)))

are p and q, respectively. The local ring OV,X of X along V is the localization of A = A/q at
the ideal p = p/q. Lemma 18 (ii) combined with Nakayama’s lemma shows that the image of
x = x1 − x2 in A generates the ideal pAp. As a consequence, the order of vanishing of x1 − x2

along V is equal to one, and by definition, this is the multiplicity of Y(Zv) in the intersection
product X (Zw, (1, n− 1)) · Grλn

∣∣
∆
. This proves Proposition 9 (ii).

4.6 Inclusion, II

In this section, we again consider words v and w such that (v(1), w(1)) = (+,−) and wt (v) =
wt (w) and explore the situation where the path representing v lies strictly above the one
representing w (except of course at the two endpoints) but does not stay parallel to it. We
thus assume that there exists k ∈ {2, . . . , n− 1} such that (v(k), w(k)) = (+,−).

Proposition 19 Under these assumptions, Y(Zv) 6⊂ X (Zw, (1, n− 1)).

The proof of Proposition 19 fills the remainder of this section. Our argument is similar to our
proof in Proposition 9 (i).

For each ` ∈ {1, . . . , n}, we define A` = C[x2][x, a1, . . . , a`], where x = x1 − x2. We introduce
z̃ = z − x2.

In addition:

• let K be the largest integer k ∈ {2, . . . , n− 1} such that (v(k), w(k)) = (+,−);

• for ` ∈ {K, . . . , n}, let d` be the weight of the word v(K + 1)v(K + 2) · · · v(`), with the
convention dK = 0;

• let L be the smallest position ` > K such that (v(`), w(`)) = (−,+) or d` > 0.

Set P̃1 = z̃ − x and Q̃1 = a1. For ` ∈ {2, . . . , L− 1}, define by induction two polynomials P̃`,
Q̃` in A`[z] as follows:
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• If (v(`), w(`)) = (+,+), then

P̃` = P̃`−1 and Q̃` =


a`P̃`−1 + Q̃`−1 −

(
a`P̃`−1 + Q̃`−1

)(
0
)

z̃
if ` < K,

Q̃`−1 − Q̃`−1(0)

z̃
if ` > K.

• If (v(`), w(`)) = (−,+), then

P̃` =
P̃`−1 + a`Q̃`−1 −

(
P̃`−1 + a`Q̃`−1

)(
0
)

z̃
and Q̃` = Q̃`−1.

• If (v(`), w(`)) = (+,−), then P̃` = z̃ P̃`−1 and Q̃` = a`P̃`−1 + Q̃`−1.

• If (v(`), w(`)) = (−,−), then P̃` = P̃`−1 + a`Q̃`−1 and Q̃` = z̃ Q̃`−1.

For ` ∈ {1, . . . , L}:

• let q̊` be the ideal of B` generated by {bj | j ∈ P (w), j ≤ `};

• if ` ≥ K, let σ` be the sum of the aj for j ∈ {K + 1, . . . , `} such that v(j) = − and
dj−1 = 0, with the convention σK = 0.

Lemma 20 For ` ∈ {1, . . . , L− 1}, we have

(i)` P̃`(z̃) ≡ P`(z) (mod q̊`[z]) and Q̃`(z̃) ≡ Q`(z) (mod q̊`[z]),

(ii)` if ` ≥ K, then P̃`(0) = Q̃K(0)σ` and Q̃` = z̃−d`Q̃K .

Proof. One again proceeds by induction. The details are straightforward, except in the case
where (v(`), w(`)) = (+,+) and ` > K, where one can follow the arguments offered in the
proof of Lemma 11 to get a` ∈ q̊`. �

We now distinguish three cases:

• Assume that dL−1 < 0. Then necessarily (v(L), w(L)) = (−,+). By assertion (ii)L−1

in Lemma 20, we get Q̃L−1(0) = 0. Using assertion (i)L−1 in that lemma, we deduce
that QL−1(x2) ∈ q̊L−1. Then, by the identity PL−1SL−1 − QL−1RL−1 = 1, we see that
PL−1(x2) is invertible in the ring BL−1/̊qL−1. Thus, bL =

(
PL−1 + aLQL−1

)(
x2

)
× f−1

L

is invertible in BL/̊qL−1BL. We conclude that q̊L = BL, and therefore q̊n = Bn. Thus,
Uv ∩ Ẋ (Zw) = ∅, so X (Zw, (1, n− 1)) does not meet Uv and cannot contain Y(Zv).
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• Assume that dL−1 = 0 and (v(L), w(L)) = (−,+). We note that PK(x2) = 0 by con-
struction. The identity PKSK − QKRK = 1 then implies that QK(x2) is invertible
in BK , and by assertion (i)K in Lemma 20, Q̃K(0) is invertible in BK /̊qK . Moreover,
fLbL =

(
PL−1 + aLQL−1

)(
x2

)
belongs to q̊L. Using assertion (ii)L−1 in Lemma 20, we

deduce that (
P̃L−1 + aLQ̃L−1

)(
0
)

= Q̃K(0)(σL−1 + aL) = Q̃K(0)σL

belongs to q̊L too. Therefore σL belongs to q̊L, hence to q. However σL /∈ p, because aL
is a summand in the sum that defines σL whereas L /∈ P (v). We must then conclude
that q 6⊂ p, in other words that Y(Zv) 6⊂ X (Zw, (1, n− 1)).

• Assume that dL−1 = 0 and (v(L), w(L)) = (+,+). As in the previous case, we note that
Q̃K(0) is invertible in BK /̊qK . But now we have fLbL =

(
aLPL−1 + QL−1

)(
x2

)
, so we

get
Q̃K(0)(aLσL−1 + 1) ∈ q̊L

and then aLσL−1 + 1 ∈ q. Here however aL ∈ p, so aLσL−1 + 1 /∈ p. Again we must
conclude that q 6⊂ p and Y(Zv) 6⊂ X (Zw, (1, n− 1)).

Proposition 19 is then proved.

4.7 Loose ends

We can now prove that the MV basis of V ($)⊗n satisfies the second formula in (1). We
consider two words v and w in Cn with w(1) = − and wt (v) = wt (w) and we look for the
coefficient of yv in the expansion of x−⊗ yw′ in the MV basis, where w′ is the word w stripped
from its first letter.

If v(1) = −, then this coefficient is zero except for v = w, in which case the coefficient is one.
This follows from Theorem 5.13 in [1].

If v(1) = +, then the path representing v starts above the path representing w. We distinguish
two cases.

In the case where v stays strictly above w until the very end, we can refer to Propositions 9
and 19: the coefficient of yv is non-zero only if v stays parallel to w at distance two and the
last letter of w′ is significant. If this condition is fulfilled, then the coefficient is one.

In the case where v and w rejoin before the end, after m letters, then we write v and w as
concatenations +v(2)v(3) and −w(2)w(3), respectively, with v(2) and w(2) of lengthm−1 and v(3)

and w(3) of length n−m. By assumption, wt v(3) = wtw(3). We can then apply Proposition 7
with n1 = 1, n2 = m − 1 and n3 = n − m: if v(3) 6= w(3), then the coefficient of yv in the
expansion of x−⊗ yw′ is zero; otherwise, it is equal to the coefficient of y+v(2) in the expansion
of x− ⊗ yw(2) in the MV basis of V ($)⊗m.
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Thus, Proposition 7 reduces the second case to the first one, but for words of length m. The
coefficient is then non-zero only if +v(2) stays parallel to −w(2) at distance two and the last
letter of w(2) is significant, in which case the coefficient is one.

To sum up: if (v(1), w(1)) = (+,−), then the coefficient of yv in the expansion of x− ⊗ yw′ is
either zero or one; it is one if and only if v is obtained by flipping the first letter − of w into
a + and flipping a significant letter + in w′ into a −. This shows that the MV basis satisfies
the second formula in (1). We have proved:

Theorem 21 (yw)w∈Cn is the MV basis of V ($)⊗n.

Putting Theorem 21 alongside Theorem 3, Proposition 6, and Theorem 1.11 in [7], we obtain
the result stated in the introduction.
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