Mirković-Vilonen basis in type A_{1}

Pierre Baumann and Arnaud Demarais

Abstract

Let G be a connected reductive algebraic group over \mathbb{C}. Through the geometric Satake equivalence, the fundamental classes of the Mirković-Vilonen cycles define a basis in each tensor product $V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{r}\right)$ of irreducible representations of G. We compute this basis in the case $G=\mathrm{SL}_{2}(\mathbb{C})$ and conclude that in this case it coincides with the dual canonical basis at $q=1$.

1 Introduction

Let G be a connected reductive algebraic group over \mathbb{C}, endowed with a Borel subgroup B and a maximal torus $T \subset B$. Irreducible rational representations of G are classified by their highest weight: to the dominant integral weight λ corresponds the irreducible representation $V(\lambda)$.

Several constructions provide bases of $V(\lambda)$, for instance:

- Exploiting the geometry of moduli spaces of quiver representations, Lusztig defines in [16] the so-called canonical basis of the quantum deformation $V_{q}(\lambda)$. We are in fact interested in the dual of this basis, aka Kashiwara's upper global basis [14]. Taking the classical limit $q=1$ provides a basis of $V(\lambda)$.
- The geometric Satake correspondence $[15,18]$ realizes $V(\lambda)$ as the intersection cohomology of a certain Schubert variety Gr^{λ} in the affine Grassmannian of the Langlands dual of G. The fundamental classes of the Mirković-Vilonen cycles form a basis of this cohomology space, hence of $V(\lambda)$.

These two bases share nice properties; they can both be endowed with a Kashiwara crystal structure which controls the action of the Chevalley generators of the Lie algebra of G, and they are both bases over \mathbb{Z} of the costandard integral form of $V(\lambda)$. They coincide in small rank but usually differ: counterexamples were found in [2] with $G=\mathrm{SO}_{8}(\mathbb{C})$ and $\mathrm{SL}_{6}(\mathbb{C})$. This disparity seems related to the theory of cluster algebras. Namely, the algebra $\mathbb{C}[N]$ of regular functions on the unipotent radical N of B has a cluster structure, which is of infinite type if $G=\mathrm{SO}_{8}(\mathbb{C})$ or $\mathrm{SL}_{6}(\mathbb{C})$. Each representation $V(\lambda)$ can be embedded into $\mathbb{C}[N]$, and the counterexamples in [2] are located at points where the dual canonical basis elements are not cluster monomials (see e.g. [10], sect. 19).

A tensor product $V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{r}\right)$ of irreducible representations also admits a dual canonical basis (see chapter 27 in [17]) and a Mirković-Vilonen basis (see sect. 2.4 in [12]). In each case, one modifies the tensor product of the bases of the factors in a specific way to produce a new basis, that still enjoys the pleasant properties mentioned earlier, and is moreover compatible with the isotypic filtration. In this more general setup, the dual canonical basis and the Mirković-Vilonen basis already differ for $G=\mathrm{SL}_{3}(\mathbb{C})$ [6].

It is possible to carry out the complete calculations in the case $G=\mathrm{SL}_{2}(\mathbb{C})$. This task was performed by Frenkel and Khovanov [7] for the dual canonical basis, and the purpose of this paper is to do the same for the Mirković-Vilonen basis. Recall that each dominant weight of $\mathrm{SL}_{2}(\mathbb{C})$ is a nonnegative multiple of the fundamental weight ϖ. The following result is a corollary of our work.

Theorem. For $G=\mathrm{SL}_{2}(\mathbb{C})$, the Mirković-Vilonen basis of a tensor product $V\left(n_{1} \varpi\right) \otimes \cdots \otimes$ $V\left(n_{r} \varpi\right)$ coincides with the dual canonical basis of this space specialized at $q=1$.

In truth, this theorem holds only after reversal of the order of the tensor factors, but this defect is merely caused by a discrepancy in the conventions.

The theorem is trivial in the case $r=1$ and can be expeditiously deduced from general properties shared by the two bases in the case $r=2$. When $r \geq 3$, the presence of multiplicities in the tensor product renders the result less obvious. Perhaps one can deduce the theorem from a compatibility of both bases with an appropriate rigid structure. (One option here would be to use the symmetric Howe duality relative to the dual pair $\left(\mathrm{GL}_{2}, \mathrm{GL}_{r}\right)$ in conjunction with the cluster algebras $\mathbb{C}\left[B_{K}^{-} \backslash G\right]$ studied in [11].) However, we shall not pursue this avenue. Instead, we regard $V\left(n_{1} \varpi\right) \otimes \cdots \otimes V\left(n_{r} \varpi\right)$ as a quotient of $V(\varpi)^{\otimes\left(n_{1}+\cdots+n_{r}\right)}$ and note that both the dual canonical basis and the Mirković-Vilonen basis behave well under this operation. We can therefore reduce the general statement to the particular case of the tensor power $V(\varpi)^{\otimes n}$. We then deal with the latter by direct though complicated calculations.

The paper is organized in the following way. In sect. 2, we define a basis of $V(\varpi)^{\otimes n}$ by a simple recursive formula and argue that it matches Frenkel and Khovanov's characterization of the dual canonical basis. In sect. 3, we recall the definition of the Mirković-Vilonen basis in tensor products of irreducible representations and prove its good behavior under the quotient operation of the previous paragraph. In sect. 4, we show that the Mirković-Vilonen basis of $V(\varpi)^{\otimes n}$ satisfies the recursive formula from sect. 2 (this is the difficult part in the paper).

While preparing this paper, we learned that independently Pak-Hin Li computed the MirkovićVilonen basis for the tensor product of two irreducible representations of $\mathrm{SL}_{2}(\mathbb{C})$.

This work is based on the PhD thesis of the second author [5]. We however rewrote the proof to render it more accessible and remove ambiguities. We thank an anonymous referee for his/her benevolent work and his/her pertinent suggestions.

The first author acknowledges support from the ANR (project GeoLie ANR-15-CE40-0012).

2 Combinatorics and linear algebra

Let \mathbb{K} be a field and let V be the vector space \mathbb{K}^{2}. In this section, we define in an elementary manner an explicit basis in each tensor power $V^{\otimes n}$ that has nice properties with respect to the natural action of $\mathrm{SL}_{2}(\mathbb{K})$.

2.1 Words

Given a nonnegative integer n, we set $\mathscr{C}_{n}=\{+,-\}^{n}$. We regard an element in \mathscr{C}_{n} as a word of length n on the alphabet $\{+,-\}$. Concatenation of words endows $\mathscr{C}=\bigcup_{n \geq 0} \mathscr{C}_{n}$ with the structure of a monoid. The word of length zero is denoted by \varnothing.

The weight of a word $w \in \mathscr{C}$, denoted by $\mathrm{wt}(w)$, is the number of letters + minus the number of letters - that w contains. A word $w=w(1) w(2) \cdots w(n)$ is said to be semistable if its weight is 0 and if each initial segment $w(1) \cdots w(j)$ has nonpositive weight.

Words are best understood through a representation as planar paths, where letters + and are depicted by upward and downward segments, respectively. A word is semistable if the endpoints of its graphical representation are on the same horizontal line and if the whole path lies below this line.

Any word w can be uniquely factorized as a concatenation

$$
w_{-r}+\cdots+w_{-1}+w_{0}-w_{1}-\cdots-w_{s}
$$

where r and s are nonnegative integers and where the words w_{-r}, \ldots, w_{s} are semistable. The r letters + and the s letters - that do not occur in the semistable words are called significant. Informally, a letter + is significant if it records the first time an altitude is reached, and a letter - is significant if it marks a descent from a height that is never attained again. A word is semistable if and only if it does not contain any significant letter.

Example. The following picture illustrates the factorization of the word

$$
w=-++-+-+++--+--++++--+-.
$$

This word has length 22 and weight 2 . Here $(r, s)=(4,2)$ and the words w_{-2}, w_{0} and w_{2} are empty. Significant letters are written in black, non-significant ones in orange.

Given a word w, we denote by $\mathscr{P}(w)$ the set of words obtained from w by changing a single significant letter + into $\mathrm{a}-$. With our previous notation, $\mathscr{P}(w)$ has r elements.

2.2 Bases

Let $\left(x_{+}, x_{-}\right)$be the standard basis of the vector space V. Each word $w=w(1) w(2) \cdots w(n)$ in \mathscr{C}^{n} defines an element $x_{w}=x_{w(1)} \otimes \cdots \otimes x_{w(n)}$ in the n-th tensor power of V. The family $\left(x_{w}\right)_{w \in \mathscr{C}_{n}}$ is a basis of $V^{\otimes n}$.

We define another family of elements $\left(y_{w}\right)_{w \in \mathscr{C}}$ in the tensor algebra of V by the convention $y_{\varnothing}=1$ and the recursive formulas

$$
y_{+w}=x_{+} \otimes y_{w} \quad \text { and } \quad y_{-w}=x_{-} \otimes y_{w}-\sum_{v \in \mathscr{P}(w)} x_{+} \otimes y_{v}
$$

Rewriting the latter as

$$
\begin{equation*}
x_{+} \otimes y_{w}=y_{+w} \quad \text { and } \quad x_{-} \otimes y_{w}=y_{-w}+\sum_{v \in \mathscr{P}(w)} y_{+v} \tag{1}
\end{equation*}
$$

one easily shows by induction on the length of words that each element x_{w} can be expressed as a linear combination of elements y_{v}, using only words v that have the same length and weight as w. It follows that for each nonnegative integer n, the family $\left(y_{w}\right)_{w \in \mathscr{C}_{n}}$ spans $V^{\otimes n}$, hence is a basis of this space.

Proposition 1 The family $\left(y_{w}\right)_{w \in \mathscr{C}}$ is characterized by the following conditions:
(i) If w is of the form $+\cdots+-\cdots-$ (a collection of + followed by a collection of -$)$, then $y_{w}=x_{w}$.
(ii) $y_{-+}=x_{-+}-x_{+-}$.
(iii) Let u be a semistable word and let $\left(w^{\prime}, w^{\prime \prime}\right) \in \mathscr{C}_{n^{\prime}} \times \mathscr{C}_{n^{\prime \prime}}$. Write $y_{w^{\prime} w^{\prime \prime}}=\sum_{i} z_{i}^{\prime} \otimes z_{i}^{\prime \prime}$ with $\left(z_{i}^{\prime}, z_{i}^{\prime \prime}\right) \in V^{\otimes n^{\prime}} \times V^{\otimes n^{\prime \prime}}$. Then $y_{w^{\prime} u w^{\prime \prime}}=\sum_{i} z_{i}^{\prime} \otimes y_{u} \otimes z_{i}^{\prime \prime}$.

Proof. Statements (i) and (ii) follow straightforwardly from the definition of the elements y_{w}. We prove (iii) by induction on the length of $w^{\prime} u w^{\prime \prime}$. Discarding a trivial case, we assume that u is not the empty word.

Suppose first that w^{\prime} is the empty word. Let us write u as a concatenation $-u^{\prime}+u^{\prime \prime}$ where u^{\prime} and $u^{\prime \prime}$ are (possibly empty) semistable words. Equation (1) gives

$$
x_{-} \otimes y_{w^{\prime \prime}}=y_{-w^{\prime \prime}}+\sum_{v \in \mathscr{P}\left(w^{\prime \prime}\right)} y_{+v}
$$

Applying the induction hypothesis to the semistable word $u^{\prime \prime}$ and the pairs $\left(-, w^{\prime \prime}\right)$ and $(+, v)$, for each $v \in \mathscr{P}\left(w^{\prime \prime}\right)$, we obtain

$$
x_{-} \otimes y_{u^{\prime \prime}} \otimes y_{w^{\prime \prime}}=y_{-u^{\prime \prime} w^{\prime \prime}}+\sum_{v \in \mathscr{P}\left(w^{\prime \prime}\right)} y_{+u^{\prime \prime} v}
$$

Since $x_{-} \otimes y_{u^{\prime \prime}}=y_{-u^{\prime \prime}}$, we get

$$
y_{-u^{\prime \prime}} \otimes y_{w^{\prime \prime}}=y_{-u^{\prime \prime} w^{\prime \prime}}+\sum_{v \in \mathscr{P}\left(w^{\prime \prime}\right)} y_{+u^{\prime \prime} v}
$$

and applying once more the induction hypothesis, this time to the semistable word u^{\prime} and the pairs $\left(\varnothing,-u^{\prime \prime}\right),\left(\varnothing,-u^{\prime \prime} w^{\prime \prime}\right)$ and $\left(\varnothing,+u^{\prime \prime} v\right)$, we arrive at

$$
\begin{equation*}
y_{u^{\prime}-u^{\prime \prime}} \otimes y_{w^{\prime \prime}}=y_{u^{\prime}-u^{\prime \prime} w^{\prime \prime}}+\sum_{v \in \mathscr{P}\left(w^{\prime \prime}\right)} y_{u^{\prime}+u^{\prime \prime} v} \tag{2}
\end{equation*}
$$

Starting now with

$$
x_{+} \otimes y_{w^{\prime \prime}}=y_{+w^{\prime \prime}}
$$

we arrive by similar transformations at

$$
\begin{equation*}
y_{u^{\prime}+u^{\prime \prime}} \otimes y_{w^{\prime \prime}}=y_{u^{\prime}+u^{\prime \prime} w^{\prime \prime}} \tag{3}
\end{equation*}
$$

Since $\mathscr{P}\left(u^{\prime}+u^{\prime \prime}\right)=\left\{u^{\prime}-u^{\prime \prime}\right\}$, we have by definition

$$
\begin{equation*}
y_{u}=x_{-} \otimes y_{u^{\prime}+u^{\prime \prime}}-x_{+} \otimes y_{u^{\prime}-u^{\prime \prime}} \tag{4}
\end{equation*}
$$

Likewise, $\mathscr{P}\left(u^{\prime}+u^{\prime \prime} w^{\prime \prime}\right)=\left\{u^{\prime}-u^{\prime \prime} w^{\prime \prime}\right\} \cup\left\{u^{\prime}+u^{\prime \prime} v \mid v \in \mathscr{P}\left(w^{\prime \prime}\right)\right\}$ leads to

$$
\begin{equation*}
y_{u w^{\prime \prime}}=x_{-} \otimes y_{u^{\prime}+u^{\prime \prime} w^{\prime \prime}}-x_{+} \otimes y_{u^{\prime}-u^{\prime \prime} w^{\prime \prime}}-\sum_{v \in \mathscr{P}\left(w^{\prime \prime}\right)} x_{+} \otimes y_{u^{\prime}+u^{\prime \prime} v} \tag{5}
\end{equation*}
$$

Combining (2)-(5), we obtain the desired equation

$$
y_{u w^{\prime \prime}}=y_{u} \otimes y_{w^{\prime \prime}}
$$

We now address the case where w^{\prime} is not empty. Suppose that the first letter of w^{\prime} is a + and write $w^{\prime}=+\widetilde{w}^{\prime}$. Then

$$
y_{w^{\prime} w^{\prime \prime}}=x_{+} \otimes y_{\widetilde{w}^{\prime} w^{\prime \prime}} \quad \text { and } \quad y_{w^{\prime} u w^{\prime \prime}}=x_{+} \otimes y_{\widetilde{w}^{\prime} u w^{\prime \prime}}
$$

and the result follows from the induction hypothesis applied to the semistable word u and the pair $\left(\widetilde{w}^{\prime}, w^{\prime \prime}\right)$.

If on the contrary the first letter of w^{\prime} is a - , then we write $w^{\prime}=-\widetilde{w}^{\prime}$. Since u is semistable, its insertion in the middle of a word does not add or remove any significant letter; in particular, the set of significant letters in $\widetilde{w}^{\prime} w^{\prime \prime}$ is in natural bijection with the set of significant letters in
$\widetilde{w}^{\prime} u w^{\prime \prime}$. This observation leads to a bijection from $\mathscr{P}\left(\widetilde{w}^{\prime} w^{\prime \prime}\right)$ onto $\mathscr{P}\left(\widetilde{w}^{\prime} u w^{\prime \prime}\right)$, which splits a word v in two subwords $v^{\prime} \in \mathscr{C}_{n^{\prime}-1}$ and $v^{\prime \prime} \in \mathscr{C}_{n^{\prime \prime}}$ and then returns $v^{\prime} u v^{\prime \prime}$. With this notation,

$$
y_{w^{\prime} w^{\prime \prime}}=x_{-} \otimes y_{\widetilde{w}^{\prime} w^{\prime \prime}}-\sum_{v \in \mathscr{P}\left(\widetilde{w}^{\prime} w^{\prime \prime}\right)} x_{+} \otimes y_{v^{\prime} v^{\prime \prime}}
$$

and

$$
y_{w^{\prime} u w^{\prime \prime}}=x_{-} \otimes y_{\widetilde{w}^{\prime} u w^{\prime \prime}}-\sum_{v \in \mathscr{P}\left(\widetilde{w}^{\prime} w^{\prime \prime}\right)} x_{+} \otimes y_{v^{\prime} u v^{\prime \prime}}
$$

Again the desired equation follows from the induction hypothesis applied to the semistable word u and the pairs $\left(\widetilde{w}^{\prime}, w^{\prime \prime}\right)$ and $\left(v^{\prime}, v^{\prime \prime}\right)$, for each $v \in \mathscr{P}\left(\widetilde{w}^{\prime} w^{\prime \prime}\right)$.

Condition (iii) computes $y_{w^{\prime} u w^{\prime \prime}}$ from the datum of $y_{w^{\prime} w^{\prime \prime}}$ and y_{u} whenever u is semistable; condition (i) provide the value of y_{w} when w is of the form $+\cdots+-\cdots-$; and condition (ii) provides the value of y_{-+}. Noting that any word in \mathscr{C} can be obtained from a word of the form $+\cdots+-\cdots-$ by repetitively inserting the semistable word -+ (possibly at non disjoint positions), we conclude that conditions (i)-(iii) fully characterize the family $\left(y_{w}\right)_{w \in \mathscr{C}}$.

As a consequence of this proposition, we see that if $w_{-k}+\cdots+w_{-1}+w_{0}-w_{1}-\cdots-w_{\ell}$ is the factorization of a word w, as in section 2.1 , then

$$
\begin{equation*}
y_{w}=y_{w_{-k}} \otimes x_{+} \otimes \cdots \otimes x_{+} \otimes y_{w_{-1}} \otimes x_{+} \otimes y_{w_{0}} \otimes x_{-} \otimes y_{w_{1}} \otimes x_{-} \otimes \cdots \otimes x_{-} \otimes y_{w_{\ell}} \tag{6}
\end{equation*}
$$

Remark. The transition matrix between the two bases $\left(x_{w}\right)_{w \in \mathscr{C}_{n}}$ and $\left(y_{w}\right)_{w \in \mathscr{C}_{n}}$ of $V^{\otimes n}$ is unitriangular: if we write

$$
x_{w}=\sum_{v \in \mathscr{C}_{n}} n_{w, v} y_{v}
$$

then the diagonal coefficient $n_{w, w}$ is equal to one and the entry $n_{w, v}$ is zero except when the path representing v lies above the path representing w. In addition, all the coefficients $n_{w, v}$ are nonnegative integers. The proof of these facts is left to the reader.

2.3 Representations

In this section, we regard V as the defining representation of $\mathrm{SL}_{2}(\mathbb{K})$. From now on, we assume that \mathbb{K} has characteristic zero. We denote by (e, h, f) the usual basis of $\mathfrak{s l}_{2}(\mathbb{K})$.

Fix a nonnegative integer n. Given a word $w \in \mathscr{C}_{n}$, we denote by $\varepsilon(w)$ (respectively, $\varphi(w)$) the number of significant letters - (respectively, +) that w contains. Thus, in the notation of section 2.1, $\varepsilon(w)=s$ and $\varphi(w)=r$. If $\varepsilon(w)>0$, we can change in w the leftmost significant letter - into $\mathrm{a}+$; the resulting word is denoted by $\tilde{e}(w)$. Likewise, if $\varphi(w)>0$, we can change in w the rightmost significant letter + into a -; the resulting word is denoted by $\tilde{f}(w)$. If these operations are not feasible, then $\tilde{e}(w)$ or $\tilde{f}(w)$ is defined to be 0 . Endowed with the maps wt, $\varepsilon, \varphi, \tilde{e}, \tilde{f}$, the set \mathscr{C}_{n} identifies with the crystal* of the $\mathfrak{s l}_{2}(\mathbb{K})$-module $V^{\otimes n}$.

[^0]We denote by $\ell(w)=\varepsilon(w)+\varphi(w)$ the number of significant letters in a word $w \in \mathscr{C}_{n}$; thus w is semistable if and only if $\ell(w)=0$. For each $p \in\{0, \ldots, n\}$, we denote by $\left(V^{\otimes n}\right)_{\leq p}$ the subspace of $V^{\otimes n}$ spanned by the elements y_{w} such that $\ell(w) \leq p$. We agree that $\left(V^{\otimes n}\right)_{\leq-1}=\{0\}$.

Proposition 2 The basis $\left(y_{w}\right)_{w \in \mathscr{C}_{n}}$ of $V^{\otimes n}$ enjoys the following properties.
(i) For each $w \in \mathscr{C}_{n}$, we have

$$
e \cdot y_{w} \equiv \varepsilon(w) y_{\tilde{e}(w)} \quad \text { and } \quad f \cdot y_{w} \equiv \varphi(w) y_{\tilde{f}(w)}
$$

modulo terms in $\left(V^{\otimes n}\right)_{\leq \ell(w)-1}$.
(ii) For each $p \in\{0, \ldots, n\}$, the subspace $\left(V^{\otimes n}\right)_{\leq p}$ is a subrepresentation of $V^{\otimes n}$, and the quotient $\left(V^{\otimes n}\right)_{\leq p} /\left(V^{\otimes n}\right)_{\leq p-1}$ is an isotypic representation, specifically the sum of simple $\mathfrak{s l}_{2}(\mathbb{K})$-modules of dimension $p+1$.
(iii) The elements y_{w} with w semistable form a basis of the space of invariants $\left(V^{\otimes n}\right)^{\mathrm{SL}_{2}(\mathbb{K})}$.

Sketch of proof. We first note that y_{-+}is invariant under the action of $\mathrm{SL}_{2}(\mathbb{K})$ on $V^{\otimes 2}$ and that any semistable word is the result of repetitive insertions of the word -+ inside the empty word (possibly at non disjoint positions). From Proposition 1 (iii), it then follows that any element y_{w} with w semistable is $\mathrm{SL}_{2}(\mathbb{K})$-invariant. Using now (6), we reduce the proof of statement (i) to the case where w is of the form $+\cdots+-\cdots-$ (perhaps for a smaller n), which is easily dealt with.

Statement (ii) is a direct consequence of statement (i) and implies that $\left(V^{\otimes n}\right)_{\leq 0}$ is the subspace of invariants $\left(V^{\otimes n}\right)^{\mathrm{SL}_{2}(\mathbb{K})}$, an assertion equivalent to statement (iii).

The basis $\left(y_{w}\right)_{w \in \mathscr{C}_{n}}$ of $V^{\otimes n}$ is even more remarkable than what Proposition 2 claims. In fact, let V_{q} be the vector space with basis $\left(x_{+}, x_{-}\right)$over the field $\mathbb{C}(q)$. On the one hand, we can recover V (in the case $\mathbb{K}=\mathbb{C}$) as the specialization of V_{q} at $q=1$; on the other hand, we can regard V_{q} as the defining representation of the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$. Frenkel and Khovanov showed ([7], Theorem 1.9) that the elements in the dual canonical basis of the $U_{q}\left(\mathfrak{s l}_{2}\right)$-module $V_{q}^{\otimes n}$ are produced by inserting repetitively the element $x_{+} \otimes x_{-}-q^{-1} x_{-} \otimes x_{+}$inside an element of the form $x_{-} \otimes \cdots \otimes x_{-} \otimes x_{+} \otimes \cdots \otimes x_{+}$. Comparing with Proposition 1, we deduce:

Theorem 3 Up to the reversal of the order of the tensor factors, $\left(y_{w}\right)_{w \in \mathcal{C}_{n}}$ is the dual canonical basis of $V_{q}^{\otimes n}$ specialized at $q=1$.

3 The Mirković-Vilonen basis

In this section, we consider a connected reductive group G over \mathbb{C} and explain the definition of the Mirković-Vilonen basis (from now on: MV basis) in a tensor product $V(\boldsymbol{\lambda})=V\left(\lambda_{1}\right) \otimes$
$\cdots \otimes V\left(\lambda_{n}\right)$ of irreducible representations of G. References for the material presented here are [18] and sect. 2.4 in [12]. We recall the recipe from [1] to compute the transition matrix between the MV basis of $V(\boldsymbol{\lambda})$ and the tensor product of the MV bases of the factors $V\left(\lambda_{1}\right)$, $\ldots, V\left(\lambda_{n}\right)$. We state and prove a compatibility property of the MV bases with tensor products of projections onto Cartan components.

3.1 Definition of the basis

We choose a maximal torus T and a Borel subgroup B of G such that $T \subset B$. The Langlands dual G^{\vee} of G comes with a maximal torus T^{\vee} and a Borel subgroup B^{\vee}. We denote by $N^{-, \vee}$ the unipotent radical of the Borel subgroup of G^{\vee} opposite to B^{\vee} with respect to T^{\vee}. We denote by Λ the weight lattice of T and by $\Lambda^{+} \subset \Lambda$ the set of dominant weights. Let \leq be the dominance order on Λ : positive elements with respect to \leq are sums of positive roots. We view the half-sum of all positive coroots as a linear form $\rho: \Lambda \rightarrow \mathbb{Q}$.

The affine Grassmannian of G^{\vee} is the homogeneous space $\operatorname{Gr}=G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right) / G^{\vee}(\mathbb{C}[z])$, where z is an indeterminate. It is endowed with the structure of an ind-variety.

A weight $\lambda \in \Lambda$ is a cocharacter of T^{\vee}. Its value at z is a point $z^{\lambda} \in T^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right)$, whose image in Gr is denoted by L_{λ}.
Assume that λ is dominant. Then the $G^{\vee}(\mathbb{C}[z])$-orbit through L_{λ} in Gr , denoted by Gr^{λ}, is a smooth connected variety of dimension $2 \rho(\lambda)$. The Cartan decomposition implies that

$$
\mathrm{Gr}=\bigsqcup_{\lambda \in \Lambda^{+}} \mathrm{Gr}^{\lambda} ; \text { moreover } \overline{\mathrm{Gr}^{\lambda}}=\bigsqcup_{\substack{\mu \in \Lambda^{+} \\ \mu \leq \lambda}} \mathrm{Gr}^{\mu}
$$

The geometric Satake correspondence identifies the irreducible representation of G of highest weight λ with the intersection cohomology of $\overline{\mathrm{Gr}^{\lambda}}$ with trivial local system of coefficients:

$$
V(\lambda)=I H\left(\overline{\mathrm{Gr}^{\lambda}}, \mathbb{C}\right) .
$$

Let n be a positive integer. The group $G^{\vee}(\mathbb{C}[z])^{n}$ acts on the space $G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right)^{n}$ by

$$
\left(h_{1}, \ldots, h_{n}\right) \cdot\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1} h_{1}^{-1}, h_{1} g_{2} h_{2}^{-1}, \ldots, h_{n-1} g_{n} h_{n}^{-1}\right)
$$

where $\left(h_{1}, \ldots, h_{n}\right) \in G^{\vee}(\mathbb{C}[z])^{n}$ and $\left(g_{1}, \ldots, g_{n}\right) \in G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right)^{n}$. The quotient is called the n-fold convolution variety and is denoted by Gr_{n}. We will use the customary notation

$$
\operatorname{Gr}_{n}=G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right) \times^{G^{\vee}(\mathbb{C}[z])} \cdots \times^{G^{\vee}(\mathbb{C}[z])} G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right) / G^{\vee}(\mathbb{C}[z])
$$

to indicate this construction and denote the image in Gr_{n} of a tuple $\left(g_{1}, \ldots, g_{n}\right)$ by $\left[g_{1}, \ldots, g_{n}\right]$. Then Gr_{n} is endowed with the structure of an ind-variety. One notes that Gr_{1} is just the affine Grassmannian Gr. We define a map $m_{n}: \mathrm{Gr}_{n} \rightarrow$ Gr by $m_{n}\left(\left[g_{1}, \ldots, g_{n}\right]\right)=\left[g_{1} \ldots g_{n}\right]$.

For each tuple $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in Λ^{n}, we set

$$
|\boldsymbol{\lambda}|=\lambda_{1}+\cdots+\lambda_{n} .
$$

Given $\lambda \in \Lambda^{+}$, we set $\widehat{\mathrm{Gr}^{\lambda}}=G^{\vee}(\mathbb{C}[z]) z^{\lambda} G^{\vee}(\mathbb{C}[z])$; this is the preimage of Gr^{λ} under the quotient map $G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right) \rightarrow \operatorname{Gr}$. Given $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in $\left(\Lambda^{+}\right)^{n}$, we define

$$
\operatorname{Gr}_{n}^{\lambda}=\widehat{\operatorname{Gr}^{\lambda_{1}}} \times \times^{G^{\vee}}(\mathbb{C}[z]) \cdots \times^{G^{\vee}}(\mathbb{C}[z]) \widehat{\operatorname{Gr}^{\lambda_{n}}} / G^{\vee}(\mathbb{C}[z]),
$$

a subset of Gr_{n}. The geometric Satake correspondence identifies the tensor product

$$
V(\boldsymbol{\lambda})=V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{n}\right)
$$

with the intersection cohomology of $\overline{\mathrm{Gr}_{n}^{\boldsymbol{\lambda}}}$.
Given $\mu \in \Lambda$, the $N^{-, V}\left(\mathbb{C}\left[z, z^{-1}\right]\right)$-orbit through L_{μ} is denoted by T_{μ}; this is a locally closed sub-ind-variety of Gr. The Iwasawa decomposition implies that

$$
\mathrm{Gr}=\bigsqcup_{\mu \in \Lambda} T_{\mu} ; \text { moreover } \overline{T_{\mu}}=\bigsqcup_{\substack{\nu \in \Lambda \\ \nu \geq \mu}} T_{\nu} .
$$

For each $(\lambda, \mu) \in \Lambda^{+} \times \Lambda$, the intersection $\overline{\operatorname{Gr}^{\lambda}} \cap T_{\mu}$ (if non-empty) has pure dimension $\rho(\lambda-\mu)$. Using this fact, Mirković and Vilonen set up the geometric Satake correspondence so that the μ weight subspace of $V(\lambda)$ identifies with the top-dimensional Borel-Moore homology of $\operatorname{Gr}^{\lambda} \cap T_{\mu}$ ([18], Corollary 7.4):

$$
V(\lambda)_{\mu}=H_{2 \rho(\lambda-\mu)}^{\mathrm{BM}}\left(\operatorname{Gr}^{\lambda} \cap T_{\mu}\right) .
$$

We denote by $\mathscr{Z}(\lambda)_{\mu}$ the set of irreducible components of $\overline{\operatorname{Gr}^{\lambda}} \cap T_{\mu}$. If $Z \in \mathscr{Z}(\lambda)_{\mu}$, then $Z \cap \mathrm{Gr}^{\lambda}$ is an irreducible component of $\mathrm{Gr}^{\lambda} \cap T_{\mu}$, whose fundamental class in Borel-Moore homology is denoted by $\langle Z\rangle$. The classes $\langle Z\rangle$, for $Z \in \mathscr{Z}(\lambda)_{\mu}$, form a basis of $V(\lambda)_{\mu}$.

Likewise, for each $(\boldsymbol{\lambda}, \mu) \in\left(\Lambda^{+}\right)^{n} \times \Lambda$, the intersection $\overline{\operatorname{Gr}_{n}^{\boldsymbol{\lambda}}} \cap\left(m_{n}\right)^{-1}\left(T_{\mu}\right)$ has pure dimension $\rho(|\boldsymbol{\lambda}|-\mu)$, and we can identify

$$
V(\boldsymbol{\lambda})_{\mu}=H_{2 \rho(|\boldsymbol{\lambda}|-\mu)}^{\mathrm{BM}}\left(\operatorname{Gr}_{n}^{\boldsymbol{\lambda}} \cap\left(m_{n}\right)^{-1}\left(T_{\mu}\right)\right) .
$$

We denote by $\mathscr{Z}(\boldsymbol{\lambda})_{\mu}$ the set of irreducible components of $\overline{\operatorname{Gr}_{n}^{\boldsymbol{\lambda}}} \cap\left(m_{n}\right)^{-1}\left(T_{\mu}\right)$. If $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}$, then $\mathbf{Z} \cap \mathrm{Gr}_{n}^{\boldsymbol{\lambda}}$ is an irreducible component of $\operatorname{Gr}_{n}^{\boldsymbol{\lambda}} \cap\left(m_{n}\right)^{-1}\left(T_{\mu}\right)$, whose fundamental class in Borel-Moore homology is denoted by $\langle\mathbf{Z}\rangle$. The classes $\langle\mathbf{Z}\rangle$, for $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}$, form a basis of $V(\boldsymbol{\lambda})_{\mu}$.

We set

$$
\mathscr{Z}(\lambda)=\bigsqcup_{\mu \in \Lambda} \mathscr{Z}(\lambda)_{\mu} \quad \text { and } \quad \mathscr{Z}(\boldsymbol{\lambda})=\bigsqcup_{\mu \in \Lambda} \mathscr{Z}(\boldsymbol{\lambda})_{\mu} .
$$

Elements in these sets are called Mirković-Vilonen (MV) cycles, and the bases of $V(\lambda)$ and $V(\boldsymbol{\lambda})$ obtained above are called MV bases.

3.2 Indexation of the Mirković-Vilonen cycles

In this short section, we explain that there is a natural bijection

$$
\begin{equation*}
\mathscr{Z}(\boldsymbol{\lambda}) \cong \mathscr{Z}\left(\lambda_{1}\right) \times \cdots \times \mathscr{Z}\left(\lambda_{n}\right) \tag{7}
\end{equation*}
$$

for any $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in $\left(\Lambda^{+}\right)^{n}$. The construction goes back to Braverman and Gaitsgory [4]; details can be found in [1], Proposition 2.2 and Corollary 4.10.

For $\mu \in \Lambda$, we define

$$
\widetilde{T_{\mu}}=N^{-, v}\left(\mathbb{C}\left[z, z^{-1}\right]\right) z^{\mu}
$$

and note that the natural map

$$
\widetilde{T_{\mu}} / N^{-, V}(\mathbb{C}[z]) \rightarrow T_{\mu}
$$

is bijective. Given a $N^{-, v}(\mathbb{C}[z])$-invariant subset $Z \subset T_{\mu}$, we denote by \widetilde{Z} the preimage of Z by the quotient map $\widetilde{T_{\mu}} \rightarrow T_{\mu}$. In particular, the notation \widetilde{Z} is defined for any MV cycle Z.

Pick $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ in Λ^{n} and $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ in $\mathscr{Z}\left(\lambda_{1}\right)_{\mu_{1}} \times \cdots \times \mathscr{Z}\left(\lambda_{n}\right)_{\mu_{n}}$. Then the closure of

$$
\left\{\left[g_{1}, \ldots, g_{n}\right] \mid\left(g_{1}, \ldots, g_{n}\right) \in \widetilde{Z_{1}} \times \cdots \times \widetilde{Z_{n}}\right\}
$$

in $\left(m_{n}\right)^{-1}\left(T_{|\boldsymbol{\mu}|}\right)$ is an MV cycle, and actually belongs to $\mathscr{Z}(\boldsymbol{\lambda})_{|\boldsymbol{\mu}|}$. Each MV cycle in $\mathscr{Z}(\boldsymbol{\lambda})$ can be uniquely obtained in this manner, which defines the bijection (7).

Because of this, we will allow ourselves to write elements in $\mathscr{Z}(\boldsymbol{\lambda})$ as tuples \mathbf{Z} as above.

3.3 Transition matrix

We continue with our tuple of dominant weights $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. To compute the MV basis of $V(\boldsymbol{\lambda})$, we compare it with the tensor product of the MV bases of the factors $V\left(\lambda_{1}\right), \ldots$, $V\left(\lambda_{n}\right)$. This requires the introduction of a nice geometric object.

Let n be a positive integer. We define the n-fold Beilinson-Drinfeld convolution variety $\mathcal{G} r_{n}$ as the set of pairs $\left(x_{1}, \ldots, x_{n} ;\left[g_{1}, \ldots, g_{n}\right]\right)$, where $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ and $\left[g_{1}, \ldots, g_{n}\right]$ belongs to

$$
G^{\vee}\left(\mathbb{C}\left[z,\left(z-x_{1}\right)^{-1}\right]\right) \times^{G^{\vee}(\mathbb{C}[z])} \cdots \times^{G^{\vee}(\mathbb{C}[z])} G^{\vee}\left(\mathbb{C}\left[z,\left(z-x_{n}\right)^{-1}\right]\right) / G^{\vee}(\mathbb{C}[z]) .
$$

We denote by $\pi: \mathcal{G} r_{n} \rightarrow \mathbb{C}^{n}$ the morphism which forgets $\left[g_{1}, \ldots, g_{n}\right]$. It is known that $\mathcal{G} r_{n}$ is endowed with the structure of an ind-variety and that π is ind-proper.

To each composition $\mathbf{n}=\left(n_{1}, \ldots, n_{r}\right)$ of n in r parts corresponds a partial diagonal $\Delta_{\mathbf{n}}$ in \mathbb{C}^{n}, defined as the set of all elements of the form

$$
\begin{equation*}
\mathbf{x}=(\underbrace{x_{1}, \ldots, x_{1}}_{n_{1} \text { times }}, \ldots, \underbrace{x_{r}, \ldots, x_{r}}_{n_{r} \text { times }}) \tag{8}
\end{equation*}
$$

for $\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{C}^{r}$. The small diagonal is the particular case $\mathbf{n}=(n)$; we denote it simply by Δ. We define $\left.\mathcal{G} r_{n}\right|_{\Delta_{\mathbf{n}}}$ to be $\pi^{-1}\left(\Delta_{\mathbf{n}}\right)$.

Given $g \in G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right)$ and $x \in \mathbb{C}$, we denote by $g_{\mid x}$ the result of substituting $z-x$ for z in g. We define $\mathcal{G} r_{n}^{\boldsymbol{\lambda}}$ to be the set of all pairs $\left(x_{1}, \ldots, x_{n} ;\left[g_{1 \mid x_{1}}, \ldots, g_{n \mid x_{n}}\right]\right)$ with $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ and $g_{j} \in \widehat{\mathrm{Gr}^{\lambda_{j}}}$ for each $j \in\{1, \ldots, n\}$. Similarly, given $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ in Λ^{n}, we define $\mathcal{T}_{\boldsymbol{\mu}}$ to be the set of all pairs $\left(x_{1}, \ldots, x_{n} ;\left[g_{1 \mid x_{1}}, \ldots, g_{n \mid x_{n}}\right]\right)$ with $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ and $g_{j} \in \widetilde{T_{\mu_{j}}}$ for each $j \in\{1, \ldots, n\}$. For $\mu \in \Lambda$, we set (leaving n out of the notation)

$$
\dot{T}_{\mu}=\bigcup_{\substack{\boldsymbol{\mu} \in \Lambda^{n} \\|\boldsymbol{\mu}|=\mu}} \mathcal{T}_{\boldsymbol{\mu}}
$$

Given $\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Lambda^{n}$ and $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ in $\mathscr{Z}\left(\lambda_{1}\right)_{\mu_{1}} \times \cdots \times \mathscr{Z}\left(\lambda_{n}\right)_{\mu_{n}}$, we define $\dot{\mathcal{X}}(\mathbf{Z})$ to be the set of all pairs $\left(x_{1}, \ldots, x_{n} ;\left[g_{1 \mid x_{1}}, \ldots, g_{n \mid x_{n}}\right]\right)$ with $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ and $g_{j} \in \widetilde{Z_{j}}$ for each $j \in\{1, \ldots, n\}$. Given in addition a composition \mathbf{n} of n, we define

$$
\mathcal{X}(\mathbf{Z}, \mathbf{n})=\overline{\left.\mathcal{X}(\mathbf{Z})\right|_{\Delta_{\mathbf{n}}}} \cap \mathcal{G} r_{n}^{\boldsymbol{\lambda}}
$$

(In [1], $\dot{\mathcal{X}}(\mathbf{Z})$ is denoted by $\Psi\left(Z_{1} \propto \cdots \propto Z_{n}\right)$ and $\mathcal{X}(\mathbf{Z}, \mathbf{n})$ is defined as $\left.\overline{\left.\dot{\mathcal{X}}(\mathbf{Z})\right|_{\Delta_{\mathbf{n}}}} \cap \mathcal{G} r_{n}^{\boldsymbol{\lambda}} \cap \dot{T}_{\mu}.\right)$
For given $\boldsymbol{\lambda}, \mu$ and \mathbf{n}, the subsets $\mathcal{X}(\mathbf{Z}, \mathbf{n}) \cap \dot{T}_{\mu}$ for \mathbf{Z} in

$$
\mathscr{Z}(\boldsymbol{\lambda})_{\mu}=\bigsqcup_{\substack{\left(\mu_{1}, \ldots, \mu_{n}\right) \in \Lambda^{n} \\ \mu_{1}+\cdots+\mu_{n}=\mu}} \mathscr{Z}\left(\lambda_{1}\right)_{\mu_{1}} \times \cdots \times \mathscr{Z}\left(\lambda_{n}\right)_{\mu_{n}}
$$

are the irreducible components of $\left.\left(\mathcal{G} r_{n}^{\boldsymbol{\lambda}} \cap \dot{T}_{\mu}\right)\right|_{\Delta_{\mathbf{n}}}$ (see [1], proof of Proposition 5.4). We adopt a special notation for the small diagonal and set $\mathcal{Y}(\mathbf{Z})=\mathcal{X}(\mathbf{Z},(n))$.

Now fix n, the tuple $\boldsymbol{\lambda} \in\left(\Lambda^{+}\right)^{n}$, the weight $\mu \in \Lambda$, and the composition \mathbf{n} of n. We write $\boldsymbol{\lambda}$ as a concatenation $\left(\boldsymbol{\lambda}_{(1)}, \ldots, \boldsymbol{\lambda}_{(r)}\right)$, where each $\boldsymbol{\lambda}_{(j)}$ belongs to $\left(\Lambda^{+}\right)^{n_{j}}$, and similarly we write each tuple $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}$ as $\left(\mathbf{Z}_{(1)}, \ldots, \mathbf{Z}_{(r)}\right)$ with $\mathbf{Z}_{(j)} \in \mathscr{Z}\left(\boldsymbol{\lambda}_{(j)}\right)$. Then

$$
V(\boldsymbol{\lambda})=V\left(\boldsymbol{\lambda}_{(1)}\right) \otimes \cdots \otimes V\left(\boldsymbol{\lambda}_{(r)}\right) \quad \text { and } \quad\left\langle\mathbf{Z}_{(j)}\right\rangle \in V\left(\boldsymbol{\lambda}_{(j)}\right)
$$

With this notation ([1], Proposition 5.10):

Proposition 4 Let $\left(\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) \in\left(\mathscr{Z}(\boldsymbol{\lambda})_{\mu}\right)^{2}$. The coefficient $b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}$ in the expansion

$$
\left\langle\mathbf{Z}_{(1)}^{\prime \prime}\right\rangle \otimes \cdots \otimes\left\langle\mathbf{Z}_{(r)}^{\prime \prime}\right\rangle=\sum_{\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}} b_{\mathbf{Z}, \mathbf{Z}^{\prime \prime}}\langle\mathbf{Z}\rangle
$$

is the multiplicity of $\mathcal{Y}\left(\mathbf{Z}^{\prime}\right)$ in the intersection product $\left.\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right) \cdot \mathcal{G} r_{n}^{\boldsymbol{\lambda}}\right|_{\Delta}$ computed in the ambient space $\left.\mathcal{G} r_{n}^{\boldsymbol{\lambda}}\right|_{\Delta_{\mathbf{n}}}$.

3.4 Projecting onto Cartan components

To begin with, let n be a positive integer and let $\boldsymbol{\lambda} \in\left(\Lambda^{+}\right)^{n}$. We denote by $p: V(\boldsymbol{\lambda}) \rightarrow V(|\boldsymbol{\lambda}|)$ the projection onto the Cartan component of $V(\boldsymbol{\lambda})$, i.e. the top step in the isotypic filtration. The map $m_{n}: \operatorname{Gr}_{n} \rightarrow \operatorname{Gr}$ restricts to an isomorphism $\operatorname{Gr}_{n}^{\boldsymbol{\lambda}} \cap\left(m_{n}\right)^{-1}\left(\operatorname{Gr}^{|\boldsymbol{\lambda}|}\right) \rightarrow \operatorname{Gr}^{|\boldsymbol{\lambda}|}$ (see [13], p. 2110). Given $\mu \in \Lambda$ and $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}$, we define $|\mathbf{Z}|$ to be the closure in T_{μ} of $m_{n}(\mathbf{Z}) \cap \mathrm{Gr}^{|\boldsymbol{\lambda}|}$. The following proposition is a direct consequence of Theorem 3.4 in [1] and its proof.

Proposition 5 (i) The map $\mathbf{Z} \mapsto|\mathbf{Z}|$ defines a bijection $\{\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})||\mathbf{Z}| \neq \varnothing\} \rightarrow \mathscr{Z}(|\boldsymbol{\lambda}|)$.
(ii) Let $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$. If $|\mathbf{Z}| \neq \varnothing$, then $p(\langle\mathbf{Z}\rangle)=\langle | \mathbf{Z}| \rangle$; otherwise $p(\langle\mathbf{Z}\rangle)=0$.

By Corollary 4.10 in [1], the condition $|\mathbf{Z}| \neq \varnothing$ concretely means that under the bijection (7), $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$ belongs to the connected component of highest weight $|\boldsymbol{\lambda}|$ of the tensor product of crystals $\mathscr{Z}\left(\lambda_{1}\right) \times \cdots \times \mathscr{Z}\left(\lambda_{n}\right)$.

Now let $\mathbf{n}=\left(n_{1}, \ldots, n_{r}\right)$ be a composition of n in r parts. We again write $\boldsymbol{\lambda}$ as a concatenation $\left(\boldsymbol{\lambda}_{(1)}, \ldots, \boldsymbol{\lambda}_{(r)}\right)$, where each $\boldsymbol{\lambda}_{(j)}$ belongs to $\left(\Lambda^{+}\right)^{n_{j}}$, and set $\|\boldsymbol{\lambda}\|=\left(\left|\boldsymbol{\lambda}_{(1)}\right|, \ldots,\left|\boldsymbol{\lambda}_{(r)}\right|\right)$; then

$$
V(\|\boldsymbol{\lambda}\|)=V\left(\left|\boldsymbol{\lambda}_{(1)}\right|\right) \otimes \cdots \otimes V\left(\left|\boldsymbol{\lambda}_{(r)}\right|\right) .
$$

For each $j \in\{1, \ldots, r\}$, we denote by $p_{(j)}: V\left(\boldsymbol{\lambda}_{(j)}\right) \rightarrow V\left(\left|\boldsymbol{\lambda}_{(j)}\right|\right)$ the projection onto the Cartan component and define

$$
\mathbf{p}=p_{(1)} \otimes \cdots \otimes p_{(r)}
$$

thus $\mathbf{p}: V(\boldsymbol{\lambda}) \rightarrow V(\|\boldsymbol{\lambda}\|)$.
Likewise, we again write each tuple $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$ as a concatenation $\left(\mathbf{Z}_{(1)}, \ldots, \mathbf{Z}_{(r)}\right)$ with $\mathbf{Z}_{(j)} \in$ $\mathscr{Z}\left(\boldsymbol{\lambda}_{(j)}\right)$ and set $\|\mathbf{Z}\|=\left(\left|\mathbf{Z}_{(1)}\right|, \ldots,\left|\mathbf{Z}_{(r)}\right|\right)$.

Proposition 6 Let $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$. If $\left|\mathbf{Z}_{(j)}\right| \neq \varnothing$ for all $j \in\{1, \ldots, r\}$, then $\mathbf{p}(\langle\mathbf{Z}\rangle)=\langle\|\mathbf{Z}\|\rangle$; otherwise $p(\langle\mathbf{Z}\rangle)=0$.

Proof. Let $\mathscr{\mathscr { Z }}(\boldsymbol{\lambda})$ be the set of all $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$ such that $\left|\mathbf{Z}_{(j)}\right| \neq \varnothing$ for all $j \in\{1, \ldots, r\}$; then the map $\mathbf{Z} \mapsto\|\mathbf{Z}\|$ realizes a bijection from $\mathscr{\mathscr { Z }}(\boldsymbol{\lambda})$ onto $\mathscr{Z}(\|\boldsymbol{\lambda}\|)$.

We fix a weight $\mu \in \Lambda$ and introduce the transition matrices ($b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}$) and ($a_{\mathbf{Y}^{\prime}, \mathbf{Y}^{\prime \prime}}$), where $\left(\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) \in\left(\mathscr{Z}(\boldsymbol{\lambda})_{\mu}\right)^{2}$ and $\left(\mathbf{Y}^{\prime}, \mathbf{Y}^{\prime \prime}\right) \in\left(\mathscr{Z}(\|\boldsymbol{\lambda}\|)_{\mu}\right)^{2}$, that encode the expansions

$$
\left\langle\mathbf{Z}_{(1)}^{\prime \prime}\right\rangle \otimes \cdots \otimes\left\langle\mathbf{Z}_{(r)}^{\prime \prime}\right\rangle=\sum_{\mathbf{Z}^{\prime} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}} b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}\left\langle\mathbf{Z}^{\prime}\right\rangle
$$

and

$$
\left\langle Y_{1}^{\prime \prime}\right\rangle \otimes \cdots \otimes\left\langle Y_{r}^{\prime \prime}\right\rangle=\sum_{\mathbf{Y}^{\prime} \in \mathscr{Z}(\|\lambda\|)_{\mu}} a_{\mathbf{Y}^{\prime}, \mathbf{Y}^{\prime \prime}}\left\langle\mathbf{Y}^{\prime}\right\rangle
$$

in the MV bases of $V(\boldsymbol{\lambda})$ and $V(\|\boldsymbol{\lambda}\|)$. We claim that if $\mathbf{Z}^{\prime} \in \mathscr{\mathscr { Z }}(\boldsymbol{\lambda})$, then

$$
b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}= \begin{cases}a_{\left\|\mathbf{Z}^{\prime}\right\|,\left\|\mathbf{Z}^{\prime \prime}\right\|} & \text { if } \mathbf{Z}^{\prime \prime} \in \mathscr{\mathscr { Z }}(\boldsymbol{\lambda}) \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

Assuming (9), we conclude the proof as follows. Let $\widetilde{\mathbf{p}}: V(\boldsymbol{\lambda}) \rightarrow V(\|\boldsymbol{\lambda}\|)$ be the linear map defined by the requirement that for all $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$,

$$
\widetilde{\mathbf{p}}(\langle\mathbf{Z}\rangle)= \begin{cases}\langle\|\mathbf{Z}\|\rangle & \text { if } \mathbf{Z} \in \mathscr{\mathscr { Z }}(\boldsymbol{\lambda}), \\ 0 & \text { otherwise } .\end{cases}
$$

Then (9) gives

$$
\widetilde{\mathbf{p}}\left(\left\langle\mathbf{Z}_{(1)}\right\rangle \otimes \cdots \otimes\left\langle\mathbf{Z}_{(r)}\right\rangle\right)= \begin{cases}\langle | \mathbf{Z}_{(1)}| \rangle \otimes \cdots \otimes\langle | \mathbf{Z}_{(r)}| \rangle & \text { if } \mathbf{Z} \in \mathscr{\mathscr { Z }}(\boldsymbol{\lambda}), \\ 0 & \text { otherwise },\end{cases}
$$

and from Proposition 5, we conclude that $\widetilde{\mathbf{p}}=\mathbf{p}$.
We are thus reduced to prove (9). We define a map $\mathbf{m}_{\mathbf{n}}:\left.\mathcal{G} r_{n}\right|_{\Delta_{\mathbf{n}}} \rightarrow \mathcal{G} r_{r}$ by

$$
\mathbf{m}_{\mathbf{n}}\left(\mathbf{x} ;\left[g_{1}, \ldots, g_{n}\right]\right)=\left(x_{1}, \ldots, x_{r} ;\left[g_{1} \cdots g_{n_{1}}, g_{n_{1}+1} \cdots g_{n_{1}+n_{2}}, \ldots, g_{n_{1}+\ldots+n_{r-1}+1} \cdots g_{n}\right]\right)
$$

for \mathbf{x} as in (8). Then $\mathcal{U}=\left.\mathcal{G} r_{n}^{\lambda}\right|_{\Delta_{\mathbf{n}}} \cap\left(\mathbf{m}_{\mathbf{n}}\right)^{-1}\left(\mathcal{G} r_{r}^{\|\lambda\|}\right)$ is an open subset of $\left.\mathcal{G} r_{n}^{\lambda}\right|_{\Delta_{\mathbf{n}}}$ and $\mathbf{m}_{\mathbf{n}}$ restricts to an isomorphism $\mathcal{U} \rightarrow \mathcal{G} r_{r}^{\|\lambda\|}$.
Let $\left(\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) \in\left(\mathscr{Z}(\boldsymbol{\lambda})_{\mu}\right)^{2}$. By Proposition 4, the coefficient $b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}$ is the multiplicity of $\mathcal{Y}\left(\mathbf{Z}^{\prime}\right)$ in the intersection product $\left.\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right) \cdot\left(\mathcal{G} r_{n}^{\lambda}\right)\right|_{\Delta}$ computed in the ambient space $\left.\mathcal{G} r_{n}^{\lambda}\right|_{\Delta_{\mathrm{n}}}$.

Assume first that both \mathbf{Z}^{\prime} and $\mathbf{Z}^{\prime \prime}$ lie in $\mathscr{\mathscr { Z }}(\boldsymbol{\lambda})$. Then the open subset \mathcal{U} meets $\mathcal{Y}\left(\mathbf{Z}^{\prime}\right)$ and $\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right)$. Since intersection multiplicities are of local nature, $b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}$ is the multiplicity of $\mathcal{Y}\left(\mathbf{Z}^{\prime}\right) \cap \mathcal{U}$ in the intersection product $\left.\left(\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right) \cap \mathcal{U}\right) \cdot \mathcal{U}\right|_{\Delta}$ computed in the ambient space $\left.\mathcal{U}\right|_{\Delta_{\mathrm{n}}}$. On the other hand, Proposition 4 for the composition $\left(1^{r}\right)=(1, \ldots, 1)$ of r gives that $a_{\left\|\mathbf{Z}^{\prime}\right\|,\left\|\mathbf{Z}^{\prime \prime}\right\|}$ is the multiplicity of $\mathcal{Y}\left(\left\|\mathbf{Z}^{\prime}\right\|\right)$ in the intersection product $\left.\mathcal{X}\left(\left\|\mathbf{Z}^{\prime \prime}\right\|,\left(1^{r}\right)\right) \cdot\left(\mathcal{G} r_{r}^{\|\lambda\|}\right)\right|_{\Delta}$ computed in the ambient space $\mathcal{G} r_{r}^{\|\lambda\|}$. Observing that

$$
\mathbf{m}_{\mathbf{n}}\left(\mathcal{Y}\left(\mathbf{Z}^{\prime}\right) \cap \mathcal{U}\right)=\mathcal{Y}\left(\left\|\mathbf{Z}^{\prime}\right\|\right) \quad \text { and } \quad \mathbf{m}_{\mathbf{n}}\left(\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right) \cap \mathcal{U}\right)=\mathcal{X}\left(\left\|\mathbf{Z}^{\prime \prime}\right\|,\left(1^{r}\right)\right)
$$

we conclude that $b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}=a_{\left\|\mathbf{Z}^{\prime}\right\|,\left\|\mathbf{Z}^{\prime \prime}\right\|}$ in this case.
Now assume that \mathbf{Z}^{\prime} is in $\mathscr{\mathscr { Z }}(\boldsymbol{\lambda})$ but not $\mathbf{Z}^{\prime \prime}$. Then there exists $j \in\{1, \ldots, r\}$ such that $\mathbf{Z}_{(j)}^{\prime \prime}$ is contained in $F=\overline{\operatorname{Gr}_{n_{j}}^{\boldsymbol{\lambda}_{(j)}}} \backslash\left(m_{n_{j}}\right)^{-1}\left(\operatorname{Gr}^{\left|\boldsymbol{\lambda}_{(j)}\right|}\right)$. For $x \in \mathbb{C}$, denote by $\widehat{F}_{\mid x}$ the set of all tuples $\left(g_{1 \mid x}, \ldots, g_{n_{j} \mid x}\right)$ where

$$
\left(g_{1}, \ldots, g_{n_{j}}\right) \in\left(G^{\vee}\left(\mathbb{C}\left[z, z^{-1}\right]\right)\right)^{n_{j}} \quad \text { and } \quad\left[g_{1}, \ldots, g_{n_{j}}\right] \in F,
$$

and denote by \mathcal{F} the subset of $\left.\mathcal{G} r_{n}^{\lambda}\right|_{\Delta_{\mathrm{n}}}$ consisting of all pairs $\left(\mathbf{x} ;\left[g_{1}, \ldots, g_{n}\right]\right)$ such that

$$
\left(g_{n_{1}+\cdots+n_{j-1}+1}, \ldots, g_{n_{1}+\cdots+n_{j}}\right) \in \widehat{F}_{\mid x_{j}}
$$

where \mathbf{x} is written as in (8). Then F is closed in $\overline{\operatorname{Gr}_{n_{j}}^{\boldsymbol{\lambda}_{(j)}}}$ and $\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right)$ is contained in \mathcal{F}. As $\mathcal{Y}\left(\mathbf{Z}^{\prime}\right)$ is not contained in \mathcal{F}, it is not contained in $\mathcal{X}\left(\mathbf{Z}^{\prime \prime}, \mathbf{n}\right)$, so here $b_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}=0$.

3.5 Truncation

In this section, we come back to the setup of sect. 3.3 and record a property which will simplify our analysis.

We fix nonnegative integers n_{1}, n_{2}, n_{3} and tuples $\boldsymbol{\lambda}_{(1)} \in\left(\Lambda^{+}\right)^{n_{1}}, \boldsymbol{\lambda}_{(2)} \in\left(\Lambda^{+}\right)^{n_{2}}, \boldsymbol{\lambda}_{(3)} \in\left(\Lambda^{+}\right)^{n_{3}}$. We define $\boldsymbol{\lambda}$ to be the concatenation $\left(\boldsymbol{\lambda}_{(1)}, \boldsymbol{\lambda}_{(2)}, \boldsymbol{\lambda}_{(3)}\right)$ and we regard elements $\mathbf{Z} \in \mathscr{Z}(\boldsymbol{\lambda})$ as concatenations $\left(\mathbf{Z}_{(1)}, \mathbf{Z}_{(2)}, \mathbf{Z}_{(3)}\right)$ where each $\mathbf{Z}_{(j)}$ belongs to $\mathscr{Z}\left(\boldsymbol{\lambda}_{(j)}\right)$. If $\nu \in \Lambda$ and $\mathbf{Z}_{(3)} \in$ $\mathscr{Z}\left(\boldsymbol{\lambda}_{(3)}\right)_{\nu}$, then we set wt $\mathbf{Z}_{(3)}=\nu$.

We fix a weight $\mu \in \Lambda$ and introduce the transition matrix $\left(a_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}\right)$, where $\left(\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) \in\left(\mathscr{Z}(\boldsymbol{\lambda})_{\mu}\right)^{2}$, that encodes the expansions

$$
\left\langle\mathbf{Z}_{(1)}^{\prime \prime}\right\rangle \otimes\left\langle\left(\mathbf{Z}_{(2)}^{\prime \prime}, \mathbf{Z}_{(3)}^{\prime \prime}\right)\right\rangle=\sum_{\mathbf{Z}^{\prime} \in \mathscr{Z}(\boldsymbol{\lambda}) \mu} a_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}\left\langle\left(\mathbf{Z}_{(1)}^{\prime}, \mathbf{Z}_{(2)}^{\prime}, \mathbf{Z}_{(3)}^{\prime}\right)\right\rangle
$$

in the MV basis of $V(\boldsymbol{\lambda})$.
Proposition $\mathbf{7}$ (i) Let $\left(\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}\right) \in\left(\mathscr{Z}(\boldsymbol{\lambda})_{\mu}\right)^{2}$. If $a_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}} \neq 0$, then either wt $\mathbf{Z}_{(3)}^{\prime}<\mathrm{wt} \mathbf{Z}_{(3)}^{\prime \prime}$ or $\mathbf{Z}_{(3)}^{\prime}=\mathbf{Z}_{(3)}^{\prime \prime}$.
(ii) Let $\mathbf{Z}^{\prime \prime} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}$. Then

$$
\left\langle\mathbf{Z}_{(1)}^{\prime \prime}\right\rangle \otimes\left\langle\mathbf{Z}_{(2)}^{\prime \prime}\right\rangle=\sum_{\substack{\mathbf{Z}^{\prime} \in \mathscr{Z}(\boldsymbol{\lambda}) \mu \\ \mathbf{Z}_{(3)}^{\prime}=\mathbf{Z}_{(3)}^{\prime \prime}}} a_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}\left\langle\left(\mathbf{Z}_{(1)}^{\prime}, \mathbf{Z}_{(2)}^{\prime}\right)\right\rangle
$$

$$
i n V\left(\boldsymbol{\lambda}_{(1)}\right) \otimes V\left(\boldsymbol{\lambda}_{(2)}\right)
$$

Proof. Let $\mathbf{Z}^{\prime \prime} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}$ and set $\nu=\operatorname{wt} \mathbf{Z}_{(3)}^{\prime \prime}$. Expanding $\left\langle\mathbf{Z}_{(1)}^{\prime \prime}\right\rangle \otimes\left\langle\mathbf{Z}_{(2)}^{\prime \prime}\right\rangle$ in the MV basis of $V\left(\boldsymbol{\lambda}_{(1)}\right) \otimes V\left(\boldsymbol{\lambda}_{(2)}\right)$, we write

$$
\left\langle\mathbf{Z}_{(1)}^{\prime \prime}\right\rangle \otimes\left\langle\mathbf{Z}_{(2)}^{\prime \prime}\right\rangle=\sum_{\mathbf{Z} \in \mathscr{Z}\left(\boldsymbol{\lambda}_{(1)}, \boldsymbol{\lambda}_{(2)}\right)_{\mu-\nu}} c_{\mathbf{Z}}\langle\mathbf{Z}\rangle
$$

for some complex numbers $c_{\mathbf{Z}}$.

We denote by $V\left(\boldsymbol{\lambda}_{(3)}\right)_{<\nu}$ the sum of the ξ-weight subspaces of $V\left(\boldsymbol{\lambda}_{(3)}\right)$ with $\xi<\nu$. By Theorem 5.13 in [1],

$$
\left\langle\mathbf{Z}_{(2)}^{\prime \prime}\right\rangle \otimes\left\langle\mathbf{Z}_{(3)}^{\prime \prime}\right\rangle \equiv\left\langle\left(\mathbf{Z}_{(2)}^{\prime \prime}, \mathbf{Z}_{(3)}^{\prime \prime}\right)\right\rangle \quad\left(\bmod V\left(\boldsymbol{\lambda}_{(2)}\right) \otimes V\left(\boldsymbol{\lambda}_{(3)}\right)_{<\nu}\right)
$$

and for each $\mathbf{Z} \in \mathscr{Z}\left(\boldsymbol{\lambda}_{(1)}, \boldsymbol{\lambda}_{(2)}\right)$,

$$
\langle\mathbf{Z}\rangle \otimes\left\langle\mathbf{Z}_{(3)}^{\prime \prime}\right\rangle \equiv\left\langle\left(\mathbf{Z}, \mathbf{Z}_{(3)}^{\prime \prime}\right)\right\rangle \quad\left(\bmod V\left(\boldsymbol{\lambda}_{(1)}\right) \otimes V\left(\boldsymbol{\lambda}_{(2)}\right) \otimes V\left(\boldsymbol{\lambda}_{(3)}\right)_{<\nu}\right) .
$$

Consequently,

$$
\sum_{\mathbf{Z}^{\prime} \in \mathscr{Z}(\boldsymbol{\lambda})_{\mu}} a_{\mathbf{Z}^{\prime}, \mathbf{Z}^{\prime \prime}}\left\langle\left(\mathbf{Z}_{(1)}^{\prime}, \mathbf{Z}_{(2)}^{\prime}, \mathbf{Z}_{(3)}^{\prime}\right)\right\rangle \equiv \sum_{\mathbf{Z} \in \mathscr{Z}\left(\boldsymbol{\lambda}_{(1)}, \boldsymbol{\lambda}_{(2)}\right)_{\mu-\nu}} c_{\mathbf{Z}}\left\langle\left(\mathbf{Z}, \mathbf{Z}_{(3)}^{\prime \prime}\right)\right\rangle
$$

modulo $V\left(\boldsymbol{\lambda}_{(1)}\right) \otimes V\left(\boldsymbol{\lambda}_{(2)}\right) \otimes V\left(\boldsymbol{\lambda}_{(3)}\right)_{<\nu}$.
We conclude by noticing that the subspace $V\left(\boldsymbol{\lambda}_{(1)}\right) \otimes V\left(\boldsymbol{\lambda}_{(2)}\right) \otimes V\left(\boldsymbol{\lambda}_{(3)}\right)_{<\nu}$ is spanned by the basis vectors $\left\langle\mathbf{Z}^{\prime}\right\rangle$ such that $\mathrm{wt} \mathbf{Z}_{(3)}^{\prime}<\nu$; see Corollary 5.12 in [1].

4 Geometry

In this section, we prove that the MV basis of the tensor powers of the natural representation of $G=\mathrm{SL}_{2}(\mathbb{C})$ is the basis $\left(y_{w}\right)$ from sect. 2 . As a matter of fact, by Theorem 5.13 in [1], the MV basis satisfies the first equation in (1), so we only have to prove that it satisfies the second one too.

4.1 Notation

We endow G with its usual maximal torus and Borel subgroup. The weight lattice is represented as usual as the quotient $\left(\mathbb{Z} \varepsilon_{1} \oplus \mathbb{Z} \varepsilon_{2}\right) / \mathbb{Z}\left(\varepsilon_{1}+\varepsilon_{2}\right)$. The fundamental weight ϖ is the image of ε_{1} in this quotient. The notation Gr indicates the affine Grassmannian of $G^{\vee}=\mathrm{PGL}_{2}(\mathbb{C})$.

In this section, $\boldsymbol{\lambda}$ will always be of the form (ϖ, \ldots, ϖ); the number n of times ϖ is repeated will usually appears as a subscript in notation like $\mathrm{Gr}_{n}^{\boldsymbol{\lambda}}$ or $\mathcal{G} r_{n}^{\boldsymbol{\lambda}}$.

The cell Gr^{ϖ} is isomorphic to the projective line, hence is closed. The two MV cycles in $\mathscr{Z}(\varpi)$ are

$$
Z_{+}=\operatorname{Gr}^{\varpi} \cap T_{\varpi}=\left\{\left[\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)\right]\right\} \quad \text { and } \quad Z_{-}=\operatorname{Gr}^{\varpi} \cap T_{-\varpi}=\left\{\left.\left[\left(\begin{array}{ll}
1 & 0 \\
a & z
\end{array}\right)\right] \right\rvert\, a \in \mathbb{C}\right\}
$$

(the matrices above should actually be viewed in $\mathrm{PGL}_{2}\left(\mathbb{C}\left[z, z^{-1}\right]\right)$). The standard basis of $V(\varpi)=\mathbb{C}^{2}$ is then $\left(x_{+}, x_{-}\right)=\left(\left\langle Z_{+}\right\rangle,\left\langle Z_{-}\right\rangle\right)$.

Given a word $v \in \mathscr{C}_{n}$, we set

$$
P(v)=\{\ell \in\{1, \ldots, n\} \mid v(\ell)=+\} \quad \text { and } \quad \mathbf{Z}_{v}=\left(Z_{v(1)}, \ldots, Z_{v(n)}\right) .
$$

Thanks to the bijection (7), we regard \mathbf{Z}_{v} as an element in $\mathscr{Z}(\boldsymbol{\lambda})$.
For $(x, a) \in \mathbb{C}^{2}$, we set

$$
\varphi_{+}(x, a)=\left(\begin{array}{cc}
z-x & a \\
0 & 1
\end{array}\right) \quad \text { and } \quad \varphi_{-}(x, a)=\left(\begin{array}{cc}
1 & 0 \\
a & z-x
\end{array}\right) .
$$

Recall the notation introduced in sect. 3.3. For each word $v \in \mathscr{C}_{n}$, we define an embedding $\phi_{v}: \mathbb{C}^{2 n} \rightarrow \mathcal{G} r_{n}^{\boldsymbol{\lambda}}$ by

$$
\phi_{v}(\mathbf{x} ; \mathbf{a})=\left(\mathbf{x} ;\left[\varphi_{v(1)}\left(x_{1}, a_{1}\right), \ldots, \varphi_{v(n)}\left(x_{n}, a_{n}\right)\right]\right)
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$. The image of ϕ_{v} is an open subset U_{v} and ϕ_{v} can be regarded as a chart on the manifold $\mathcal{G} r_{n}^{\boldsymbol{\lambda}}$. This chart is designed so that $\dot{\mathcal{X}}\left(\mathbf{Z}_{v}\right)$ is the algebraic subset of U_{v} defined by the equations $a_{\ell}=0$ for $\ell \in P(v)$ (compare with the construction presented in [9]).

4.2 The simplest example

In this section, we consider the case $n=2$; the variety $\mathcal{G} r_{2}^{\lambda}$ has dimension 4. The words $v=+-$ and $w=-+$ give rise to charts ϕ_{v} and ϕ_{w} on $\mathcal{G} r_{2}^{\lambda}$ defined by

$$
\begin{aligned}
& \phi_{v}\left(x_{1}, x_{2} ; a_{1}, a_{2}\right)=\left(x_{1}, x_{2} ;\left[\left(\begin{array}{cc}
z-x_{1} & a_{1} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
a_{2} & z-x_{2}
\end{array}\right)\right]\right), \\
& \phi_{w}\left(x_{1}, x_{2} ; b_{1}, b_{2}\right)=\left(x_{1}, x_{2} ;\left[\left(\begin{array}{cc}
1 & 0 \\
b_{1} & z-x_{1}
\end{array}\right),\left(\begin{array}{cc}
z-x_{2} & b_{2} \\
0 & 1
\end{array}\right)\right]\right) .
\end{aligned}
$$

The transition map $\left(\phi_{w}\right)^{-1} \circ \phi_{v}$ is given by

$$
b_{1}=1 / a_{1}, \quad b_{2}=-a_{1}\left(x_{2}-x_{1}+a_{1} a_{2}\right)
$$

on the domain

$$
\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right)=\left\{\left(x_{1}, x_{2}, a_{1}, a_{2}\right) \in \mathbb{C}^{4} \mid a_{1} \neq 0\right\} .
$$

We set $A=\mathbb{C}\left[x_{1}, x_{2}, a_{1}, a_{2}\right]$; this is the coordinate ring of $\left(\phi_{v}\right)^{-1}\left(U_{v}\right)$. We let $B=\mathscr{S}^{-1} A$ be the localization of A with respect to the multiplicative subset \mathscr{S} generated by a_{1}; this is the coordinate ring of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right)$.
In the chart ϕ_{v}, the cycle $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ is defined by the equations $a_{1}=x_{1}-x_{2}=0$, so the ideal in A of the subvariety

$$
V=\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{Y}\left(\mathbf{Z}_{v}\right)\right)
$$

is

$$
\mathfrak{p}=\left(a_{1}, x_{1}-x_{2}\right) .
$$

In the chart ϕ_{w}, the cycle $\dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)$ is defined by the equation $b_{2}=0$, and the closure in U_{v} of $U_{v} \cap \dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)$ is $U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1,1)\right)$. Therefore the ideal in B of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)\right)$ is $\mathfrak{q}=\left(-a_{1}\left(x_{2}-x_{1}+a_{1} a_{2}\right)\right)$ and the ideal in A of the subvariety

$$
X=\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1,1)\right)\right)
$$

is the preimage

$$
\mathfrak{q}=\left(x_{2}-x_{1}+a_{1} a_{2}\right)
$$

of \mathfrak{q} under the canonical map $A \rightarrow B$.
Plainly $\mathfrak{q} \subset \mathfrak{p}$, which shows that $V \subset X$. The local ring $\mathscr{O}_{V, X}$ of X along V is the localization of $\bar{A}=A / \mathfrak{q}$ at the ideal $\overline{\mathfrak{p}}=\mathfrak{p} / \mathfrak{q}$. Since a_{2} is not in \mathfrak{p}, its image in $\bar{A}_{\overline{\mathfrak{p}}}$ is invertible, and then we see that $x_{1}-x_{2}$ generates the maximal ideal of $\bar{A}_{\bar{p}}$. As a consequence, the order of vanishing of $x_{1}-x_{2}$ along V (see [8], sect. 1.2) is equal to one. By definition, this is the multiplicity of $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ in the intersection product $\left.\mathcal{X}\left(\mathbf{Z}_{w},(1,1)\right) \cdot \mathcal{G} r_{2}^{\boldsymbol{\lambda}}\right|_{\Delta}$.
Proposition 4 then asserts that $y_{+-}=\left\langle\mathbf{Z}_{v}\right\rangle$ occurs with coefficient one in the expansion of $x_{w}=\left\langle Z_{-}\right\rangle \otimes\left\langle Z_{+}\right\rangle$on the MV basis of $V(\varpi)^{\otimes 2}$, in agreement with the equation

$$
x_{-+}=y_{-+}+y_{+-} .
$$

The proof of the general case follows the same pattern, but more elaborate combinatorics is needed to manage the equations.

4.3 Transition maps

Pick v, w in \mathscr{C}_{n}. Set $P_{0}=S_{0}=1$ and $Q_{0}=R_{0}=0$. For $\ell \in\{1, \ldots, n\}$, let $K_{\ell}=$ $\mathbb{C}\left(x_{1}, \ldots, x_{\ell}, a_{1}, \ldots, a_{\ell}\right)$ be the field of rational functions and define by induction an element $b_{\ell} \in K_{\ell}$ and a matrix

$$
\left(\begin{array}{cc}
P_{\ell} & Q_{\ell} \\
R_{\ell} & S_{\ell}
\end{array}\right)
$$

with coefficients in $K_{\ell}[z]$ and determinant one as follows:

- If $(v(\ell), w(\ell))=(+,+)$, then

$$
b_{\ell}=\frac{\left(a_{\ell} P_{\ell-1}+Q_{\ell-1}\right)\left(x_{\ell}\right)}{\left(a_{\ell} R_{\ell-1}+S_{\ell-1}\right)\left(x_{\ell}\right)}, \quad \begin{cases}P_{\ell}=P_{\ell-1}-b_{\ell} R_{\ell-1}, & Q_{\ell}=\frac{a_{\ell} P_{\ell-1}+Q_{\ell-1}-b_{\ell} S_{\ell}}{z-x_{\ell}} \\ R_{\ell}=\left(z-x_{\ell}\right) R_{\ell-1}, & S_{\ell}=a_{\ell} R_{\ell-1}+S_{\ell-1}\end{cases}
$$

- If $(v(\ell), w(\ell))=(-,+)$, then

$$
b_{\ell}=\frac{\left(P_{\ell-1}+a_{\ell} Q_{\ell-1}\right)\left(x_{\ell}\right)}{\left(R_{\ell-1}+a_{\ell} S_{\ell-1}\right)\left(x_{\ell}\right)}, \quad \begin{cases}P_{\ell}=\frac{P_{\ell-1}+a_{\ell} Q_{\ell-1}-b_{\ell} R_{\ell}}{z-x_{\ell}}, & Q_{\ell}=Q_{\ell-1}-b_{\ell} S_{\ell-1} \\ R_{\ell}=R_{\ell-1}+a_{\ell} S_{\ell-1}, & S_{\ell}=\left(z-x_{\ell}\right) S_{\ell-1}\end{cases}
$$

- If $(v(\ell), w(\ell))=(+,-)$, then

$$
b_{\ell}=\frac{\left(a_{\ell} R_{\ell-1}+S_{\ell-1}\right)\left(x_{\ell}\right)}{\left(a_{\ell} P_{\ell-1}+Q_{\ell-1}\right)\left(x_{\ell}\right)}, \quad \begin{cases}P_{\ell}=\left(z-x_{\ell}\right) P_{\ell-1}, & Q_{\ell}=a_{\ell} P_{\ell-1}+Q_{\ell-1} \\ R_{\ell}=R_{\ell-1}-b_{\ell} P_{\ell-1}, & S_{\ell}=\frac{a_{\ell} R_{\ell-1}+S_{\ell-1}-b_{\ell} Q_{\ell}}{z-x_{\ell}} .\end{cases}
$$

- If $(v(\ell), w(\ell))=(-,-)$, then

$$
b_{\ell}=\frac{\left(R_{\ell-1}+a_{\ell} S_{\ell-1}\right)\left(x_{\ell}\right)}{\left(P_{\ell-1}+a_{\ell} Q_{\ell-1}\right)\left(x_{\ell}\right)}, \quad \begin{cases}P_{\ell}=P_{\ell-1}+a_{\ell} Q_{\ell-1}, & Q_{\ell}=\left(z-x_{\ell}\right) Q_{\ell-1} \\ R_{\ell}=\frac{R_{\ell-1}+a_{\ell} S_{\ell-1}-b_{\ell} P_{\ell}}{z-x_{\ell}}, & S_{\ell}=S_{\ell-1}-b_{\ell} Q_{\ell-1}\end{cases}
$$

Since the matrix $\left(\begin{array}{cc}P_{\ell-1} & Q_{\ell-1} \\ R_{\ell-1} & S_{\ell-1}\end{array}\right)$ has determinant one, the denominator in the fraction that defines b_{ℓ} is not the zero polynomial and everything is well-defined.

Proposition 8 The transition map

$$
\left(\phi_{w}\right)^{-1} \circ \phi_{v}:\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right) \rightarrow\left(\phi_{w}\right)^{-1}\left(U_{v} \cap U_{w}\right)
$$

is given by the rational map

$$
\left(x_{1}, \ldots, x_{n} ; a_{1}, \ldots, a_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n} ; b_{1}, \ldots, b_{n}\right)
$$

where b_{1}, \ldots, b_{n} are defined above.

Proof. The definitions are set up so that

$$
\varphi_{w(\ell)}\left(x_{\ell}, b_{\ell}\right)\left(\begin{array}{cc}
P_{\ell} & Q_{\ell} \\
R_{\ell} & S_{\ell}
\end{array}\right)=\left(\begin{array}{cc}
P_{\ell-1} & Q_{\ell-1} \\
R_{\ell-1} & S_{\ell-1}
\end{array}\right) \varphi_{v(\ell)}\left(x_{\ell}, a_{\ell}\right)
$$

and therefore

$$
\left(\prod_{j=1}^{\ell} \varphi_{w(j)}\left(x_{j}, b_{j}\right)\right)\left(\begin{array}{cc}
P_{\ell} & Q_{\ell} \\
R_{\ell} & S_{\ell}
\end{array}\right)=\left(\prod_{j=1}^{\ell} \varphi_{v(j)}\left(x_{j}, a_{j}\right)\right)
$$

for each $\ell \in\{1, \ldots, n\}$. Thus, when complex values are assigned to the indeterminates x_{1}, \ldots, $x_{n}, a_{1}, \ldots, a_{n}$, we get

$$
\left[\prod_{j=1}^{\ell} \varphi_{v(j)}\left(x_{j}, a_{j}\right)\right]=\left[\prod_{j=1}^{\ell} \varphi_{w(j)}\left(x_{j}, b_{j}\right)\right]
$$

in $\operatorname{PGL}_{2}\left(\mathbb{C}\left[z,\left(z-x_{1}\right)^{-1}, \ldots,\left(z-x_{\ell}\right)^{-1}\right]\right) / \mathrm{PGL}_{2}(\mathbb{C}[z])$. This implies the equality

$$
\phi_{v}\left(x_{1}, \ldots, x_{n} ; a_{1}, \ldots, a_{n}\right)=\phi_{w}\left(x_{1}, \ldots, x_{n} ; b_{1}, \ldots, b_{n}\right)
$$

in $\mathcal{G} r_{n}$.

The parameters b_{ℓ} and the coefficients of the polynomials $P_{\ell}, Q_{\ell}, R_{\ell}, S_{\ell}$ were defined as elements in K_{ℓ}. We can however be more precise and define recursively a subring $B_{\ell} \subset K_{\ell}$ to which they belong: we start with $B_{0}=\mathbb{C}$, and for $\ell \in\{1, \ldots, n\}$, we set $B_{\ell}=B_{\ell-1}\left[x_{\ell}, a_{\ell}, f_{\ell}^{-1}\right]$, where $f_{\ell} \in B_{\ell-1}\left[x_{\ell}, a_{\ell}\right]$ is the denominator in the fraction that defines b_{ℓ}.
Let $A_{\ell}=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}, a_{1}, \ldots, a_{\ell}\right]$ be the polynomial algebra. One can easily build by induction a finitely generated multiplicative set $\mathscr{S}_{\ell} \subset A_{\ell}$ such that B_{ℓ} is the localization $\mathscr{S}_{\ell}^{-1} A_{\ell}$. While A_{n} is the coordinate ring of $\left(\phi_{v}\right)^{-1}\left(U_{v}\right)$, we see that B_{n} is the coordinate ring of the open subset $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right)$. In fact, since the matrix $\left(\begin{array}{cc}P_{\ell} & Q_{\ell} \\ R_{\ell} & S_{\ell}\end{array}\right)$ has determinant one, the numerator and the denominator of b_{ℓ} cannot both vanish at the same time. As a consequence, $\left(\phi_{w}\right)^{-1} \circ \phi_{v}$ cannot be defined at a point where a function in \mathscr{S}_{n} vanishes.

4.4 Finding the equations

To prove that the MV basis satisfies the equation (1), we need intersection multiplicities in the ambient space $\left.\mathcal{G} r_{n}^{\boldsymbol{\lambda}}\right|_{\Delta_{(1, n-1)}}$. In practice, we make the base change $\Delta_{(1, n-1)} \rightarrow \mathbb{C}^{n}$ by letting $x_{2}=\cdots=x_{n}$ in the definition of the charts and by agreeing that from now on, U_{v} actually means $\left.U_{v}\right|_{\Delta_{(1, n-1)}}$. Then, in view of the invariance of the whole system under translation along the small diagonal Δ, all our equations will only involve the difference $x=x_{1}-x_{2}$.

We will consider words v and w in \mathscr{C}_{n} such that $(v(1), w(1))=(+,-)$ and $\operatorname{wt}(v)=\operatorname{wt}(w)$. The planar paths that represent v and w have then the same endpoints. We write w as a concatenation $-w^{\prime}$ where $w^{\prime} \in \mathscr{C}_{n-1}$. Proposition 4 asserts that the basis element y_{v} occurs in the expansion of $x_{-} \otimes y_{w^{\prime}}$ in the MV basis of $V(\varpi)^{\otimes n}$ only if $\mathcal{Y}\left(\mathbf{Z}_{v}\right) \subset \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$, and when this condition is fulfilled, its coefficient is the multiplicity of $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ in the intersection product $\left.\mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right) \cdot \mathcal{G} r_{n}^{\lambda}\right|_{\Delta}$.
The next sections are devoted to the determination of these inclusions and intersection multiplicities. The actual calculations require the ideals in A_{n} of the subvarieties $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{Y}\left(\mathbf{Z}_{v}\right)\right)$ and $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)\right)$ of $\left(\phi_{v}\right)^{-1}\left(U_{v}\right)$: the first one, denoted by \mathfrak{p}, is generated by x and the elements a_{ℓ} for $\ell \in P(v)$; the second one, denoted by \mathfrak{q}, is less easily determined.

Taking into account our notational convention regarding the base change $\Delta_{(1, n-1)} \rightarrow \mathbb{C}^{n}$, we observe that $U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$ is the closure in U_{v} of $U_{v} \cap \dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)$. Let $\dot{\mathfrak{q}}_{n}$ be the ideal in B_{n} of the closed subset $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)\right)$ of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right)$. Then $\dot{\mathfrak{q}}_{n}$ is generated by the elements b_{ℓ} for $\ell \in P(w)$ and \mathfrak{q} is the preimage of \mathfrak{q}_{n} under the canonical map $A_{n} \rightarrow B_{n}$. In other words, \mathfrak{q} is the saturation with respect to \mathscr{S}_{n} of the ideal of A_{n} generated by the numerators of the elements b_{ℓ} for $\ell \in P(w)$. Though algorithmically doable in any concrete example, finding the saturation is a demanding calculation, which we will bypass by replacing \mathfrak{q} by an approximation $\widetilde{\mathfrak{q}}_{n}$.

4.5 Inclusion and multiplicity, I

This section is devoted to the situation where the paths representing v and w stay parallel to each other at distance two; specifically, we assume that $v(\ell)=w(\ell)$ for each $\ell \in\{2, \ldots, n-1\}$ and $(v(n), w(n))=(-,+)$.

Proposition 9 Under these assumptions:
(i) The inclusion $\mathcal{Y}\left(\mathbf{Z}_{v}\right) \subset \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$ holds if and only if the last letter of w^{\prime} is significant.
(ii) If the condition in (i) is fulfilled, then the multiplicity of $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ in the intersection product $\left.\mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right) \cdot \mathcal{G} r_{n}^{\lambda}\right|_{\Delta}$ is equal to one.

The proof of Proposition 9 fills the remainder of this section.
Let us denote by $S(v)$ the set of all positions $\ell \in\{1, \ldots, n\}$ such that the letter $v(\ell)$ is significant in v.

In agreement with the convention set forth in sect. 4.4, we define $A_{\ell}=\mathbb{C}\left[x_{2}\right]\left[x, a_{1}, \ldots, a_{\ell}\right]$ for each $\ell \in\{1, \ldots, n\}$, where $x=x_{1}-x_{2}$. We rewrite the indeterminate z as $\tilde{z}+x_{2}$. We set $\widetilde{P}_{1}=\tilde{z}-x$ and $\widetilde{Q}_{1}=a_{1}$. For $\ell \in\{2, \ldots, n-1\}$, we define by induction two polynomials \widetilde{P}_{ℓ}, \widetilde{Q}_{ℓ} in $A_{\ell}[\tilde{z}]$ as follows:

- If $v(\ell)=w(\ell)=+$ and $\ell \in S(v)$, then

$$
\widetilde{P}_{\ell}=\widetilde{P}_{\ell-1} \quad \text { and } \quad \widetilde{Q}_{\ell}=\frac{a_{\ell} \widetilde{P}_{\ell-1}+\widetilde{Q}_{\ell-1}-\left(a_{\ell} \widetilde{P}_{\ell-1}+\widetilde{Q}_{\ell-1}\right)(0)}{\tilde{z}} .
$$

- If $v(\ell)=w(\ell)=+$ and $\ell \notin S(v)$, then $\widetilde{P}_{\ell}=\widetilde{P}_{\ell-1}$ and $\widetilde{Q}_{\ell}=\left(\widetilde{Q}_{\ell-1}-\widetilde{Q}_{\ell-1}(0)\right) / \tilde{z}$.
- If $v(\ell)=w(\ell)=-$, then $\widetilde{P}_{\ell}=\widetilde{P}_{\ell-1}+a_{\ell} \widetilde{Q}_{\ell-1}$ and $\widetilde{Q}_{\ell}=\tilde{z} \widetilde{Q}_{\ell-1}$.

Moreover, in the case where $v(\ell)=w(\ell)=+$, set

$$
\widetilde{c}_{\ell}= \begin{cases}\left(a_{\ell} \widetilde{P}_{\ell-1}+\widetilde{Q}_{\ell-1}\right)(0) & \text { if } \ell \in S(v), \\ a_{\ell} & \text { otherwise }\end{cases}
$$

and set

$$
\widetilde{c}_{n}=\left(\widetilde{P}_{n-1}+a_{n} \widetilde{Q}_{n-1}\right)(0) .
$$

Remark 10. The polynomials \widetilde{P}_{ℓ} and \widetilde{Q}_{ℓ} do not depend on the variables a_{j} with $j \in P(v) \backslash S(v)$. The elements \widetilde{c}_{ℓ} for $\ell \in\{2, \ldots, n-1\} \cap P(v) \cap S(v)$ and \widetilde{c}_{n} enjoy the same property.

For $\ell \in\{1, \ldots, n\}$:

- let $\dot{\mathfrak{q}}_{\ell}$ be the ideal of B_{ℓ} generated by $\left\{b_{j} \mid j \in P(w), j \leq \ell\right\}$;
- let $\widetilde{\mathfrak{q}}_{\ell}$ be the ideal of A_{ℓ} generated by $\left\{\widetilde{c}_{j} \mid j \in P(w), j \leq \ell\right\}$;
- let d_{ℓ} be the weight of the word $v(1) v(2) \cdots v(\ell)$ and set $D_{\ell}=\max \left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$.

As noticed before, a + letter at position ℓ in v is significant if and only if ℓ marks the first time that the path representing v reaches a new height; agreeing that $D_{0}=0$, this translates to

$$
\ell \in P(v) \cap S(v) \Longleftrightarrow d_{\ell}>D_{\ell-1} .
$$

For the record, we also note that the last letter of w^{\prime} is significant if and only if $d_{n-1}=D_{n-1}$.
Lemma 11 For $\ell \in\{1, \ldots, n-1\}$, we have
(i) $\mathscr{S}_{\ell}^{-1} \tilde{\mathfrak{q}}_{\ell}=\dot{\mathfrak{q}}_{\ell}$,
$(i i)_{\ell} \widetilde{P}_{\ell}(\tilde{z}) \equiv P_{\ell}(z)\left(\bmod \dot{\mathfrak{q}}_{\ell}[z]\right)$ and $\widetilde{Q}_{\ell}(\tilde{z}) \equiv Q_{\ell}(z)\left(\bmod \dot{q}_{\ell}[z]\right)$,
(iii) $)_{\ell} \tilde{z}^{D_{\ell}-d_{\ell}}$ divides \widetilde{Q}_{ℓ}.

Proof. We proceed by induction on ℓ. The statements are banal for $\ell=1$. Suppose that $2 \leq \ell \leq n-1$ and that statements (i) $)_{\ell-1}$, (ii) $\ell_{\ell-1}$ and (iii) $)_{\ell-1}$ hold.
Suppose first that $(v(\ell), w(\ell))=(+,+)$. Then by construction

$$
\begin{gather*}
b_{\ell}=\left(a_{\ell} P_{\ell-1}+Q_{\ell-1}\right)\left(x_{2}\right) \times f_{\ell}^{-1} \tag{10}\\
P_{\ell}=P_{\ell-1}-b_{\ell} R_{\ell-1}, \quad Q_{\ell}=\frac{a_{\ell} P_{\ell-1}+Q_{\ell-1}-b_{\ell} S_{\ell}}{z-x_{2}} \tag{11}
\end{gather*}
$$

If $\ell \notin S(v)$, then $d_{\ell-1}+1=d_{\ell} \leq D_{\ell-1}$, and we see by (iii) $)_{\ell-1}$ that $\widetilde{Q}_{\ell-1}(0)=0$. Using (ii) $)_{\ell-1}$, we deduce that $Q_{\ell-1}\left(x_{2}\right) \in \dot{\mathfrak{q}}_{\ell-1}$. On the other hand, the matrix $\left(\begin{array}{ll}P_{\ell-1}\left(x_{2}\right) & Q_{\ell-1}\left(x_{2}\right) \\ R_{\ell-1}\left(x_{2}\right) & S_{\ell-1}\left(x_{2}\right)\end{array}\right)$ with coefficients in $B_{\ell-1}$ has determinant one. After reduction modulo $\mathfrak{q}_{\ell-1}$, the coefficient in the top right corner becomes zero; it follows that $P_{\ell-1}\left(x_{2}\right)$ is invertible in the quotient ring $B_{\ell-1} / \mathfrak{q}_{\ell-1}$. Reducing (10) modulo $\dot{\mathfrak{q}}_{\ell-1} B_{\ell}$ and noting that here $\widetilde{c}_{\ell}=a_{\ell}$, we deduce that b_{ℓ} and \widetilde{c}_{ℓ} generate the same ideal in $B_{\ell} / \mathfrak{q}_{\ell-1} B_{\ell}$. This piece of information allows to deduce (i) $)_{\ell}$ from (i) $)_{\ell-1}$. From (11) and the fact that $a_{\ell} \in \dot{q}_{\ell}$, we get

$$
P_{\ell} \equiv P_{\ell-1} \quad\left(\bmod \dot{\mathfrak{q}}_{\ell}[z]\right), \quad Q_{\ell} \equiv \frac{Q_{\ell-1}-Q_{\ell-1}\left(x_{2}\right)}{z-x_{2}} \quad\left(\bmod \dot{\mathfrak{q}}_{\ell}[z]\right) .
$$

Then $(\text { ii })_{\ell}$ and $(\text { iii })_{\ell}$ follow from $(\text { ii })_{\ell-1}$ and $(\text { iii })_{\ell-1}$ and from the definition of \widetilde{P}_{ℓ} and \widetilde{Q}_{ℓ}.

If $\ell \in S(v)$, then (10) and (ii) $)_{\ell-1}$ lead to $b_{\ell} \equiv \widetilde{c}_{\ell} / f_{\ell}$ modulo $\stackrel{\circ}{\mathfrak{q}}_{\ell-1} B_{\ell}$. Again, b_{ℓ} and \widetilde{c}_{ℓ} generate the same ideal in $B_{\ell} / \stackrel{\mathfrak{q}}{\ell-1} B_{\ell}$, so we can deduce $(\mathrm{i})_{\ell}$ from (i) $)_{\ell-1}$. Then (ii) follows from (ii) $)_{\ell-1}$ and (11). Also, (iii) $\ell_{\ell-1}$ holds trivially since $D_{\ell}=d_{\ell}$.

It remains to tackle the case $(v(\ell), w(\ell))=(-,-)$. Here $(i)_{\ell},(i i)_{\ell}$ and $(i i i)_{\ell}$ can be deduced from (i) $)_{\ell-1}$, (ii $)_{\ell-1}$ and (iii $)_{\ell-1}$ without ado.

Lemma 12 With the notation above,

$$
\mathscr{S}_{n}^{-1} \widetilde{\mathfrak{q}}_{n}=\stackrel{\grave{q}}{n} \quad \text { and } \quad \mathfrak{q}=\left\{g \in A_{n} \mid \exists f \in \mathscr{S}_{n}, f g \in \widetilde{\mathfrak{q}}_{n}\right\}
$$

Proof. From $(v(n), w(n))=(-,+)$, we deduce

$$
b_{n}=\left(P_{n-1}+a_{n} Q_{n-1}\right)\left(x_{2}\right) \times f_{n}^{-1}
$$

From the assertion (ii) $)_{n-1}$ in Lemma 11 , we deduce that $b_{n} \equiv \widetilde{c}_{n} / f_{n}$ modulo $\dot{\mathfrak{q}}_{n-1} B_{n}$. Thus, b_{n} and \widetilde{c}_{n} generate the same ideal in $B_{n} / \dot{\mathfrak{q}}_{n-1} B_{n}$, and from the assertion (i) ${ }_{n-1}$ in Lemma 11, we conclude that $\mathscr{S}_{n}^{-1} \widetilde{\mathfrak{q}}_{n}=\mathfrak{q}_{n}$. The second announced equality then follows from the definition of \mathfrak{q} as the preimage of $\dot{\mathfrak{q}}_{n}$ under the canonical map $A_{n} \rightarrow B_{n}$, with $B_{n}=\mathscr{S}_{n}^{-1} A_{n}$.

Lemma 13 If the last letter of w^{\prime} is not significant, then $\dot{\mathfrak{q}}_{n}=B_{n}$.

Proof. Assume that the last letter of ${\underset{\sim}{w}}^{\prime}$ is not significant. Then $D_{n-1}-d_{n-1} \geq 1$, and by assertion (iii) $)_{n-1}$ in Lemma 11, we get $\widetilde{Q}_{n-1}(0)=0$. Using assertion (ii) n_{n-1} in that lemma, we deduce that $Q_{n-1}\left(x_{2}\right) \in \stackrel{\circ}{\mathfrak{q}}_{n-1}$. Since the matrix $\left(\begin{array}{ll}P_{n-1}\left(x_{2}\right) & Q_{n-1}\left(x_{2}\right) \\ R_{n-1}\left(x_{2}\right) & S_{n-1}\left(x_{2}\right)\end{array}\right)$ has determinant 1, we see that $P_{n-1}\left(x_{2}\right)$ is invertible in the ring $B_{n-1} / \stackrel{\mathfrak{q}}{n-1}$. Then $b_{n}=\left(P_{n-1}+a_{n} Q_{n-1}\right)\left(x_{2}\right) \times f_{n}^{-1}$ is invertible in $B_{n} / \circ_{n-1} B_{n}$, and we conclude that $\stackrel{\circ}{\mathfrak{q}}_{n}=B_{n}$.

Lemma 13 asserts that if the last letter of w^{\prime} is not significant, then $U_{v} \cap \dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)=\varnothing$, and thus $U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)=\varnothing$. Since U_{v} contains a dense subset of $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$, this proves half of Proposition 9 (i).

For the rest of this section, we assume that the last letter of w^{\prime} is significant. We want to show that $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ is contained in $\mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$. It would be rather easy to prove the inclusion $\widetilde{\mathfrak{q}}_{n} \subset \mathfrak{p}$, but this would not be quite enough, since we do not know that $\tilde{\mathfrak{q}}_{n}=\mathfrak{q}$. (We believe that this equality is correct but we are not able to prove it.) Instead we will look explicitly at the zero set of $\widetilde{\mathfrak{q}}_{n}$ in the neighborhood of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{Y}\left(\mathbf{Z}_{v}\right)\right)$. This zero set is the algebraic subset of $\left(\phi_{v}\right)^{-1}\left(U_{v}\right)$ defined by the equations \widetilde{c}_{ℓ} for $\ell \in P(w)$.

Our analysis is pedestrian. We observe that there are two kinds of equations \widetilde{c}_{ℓ}. When $\ell \in P(v) \backslash S(v)$, the equation \widetilde{c}_{ℓ} reduces to the variable a_{ℓ}; this equation and variable can simply be discarded because a_{ℓ} is an equation for $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ as well. The other equations involve the other variables.

Set $D=D_{n}$. The map $\ell \mapsto d_{\ell}$ is an increasing bijection from $P(v) \cap S(v)$ onto $\{1, \ldots, D\}$. We define L as the largest element in $P(v) \cap S(v)$; then L is the smallest element in $\left\{\ell \mid d_{\ell}=D\right\}$. For $\ell \in\{1, \ldots, n\}$, we denote by ℓ^{-}the largest element in $\{1, \ldots, \ell\} \cap P(v) \cap S(v)$. In particular, $\ell^{-}=\ell$ if $\ell \in P(v) \cap S(v)$ and $\ell^{-}=L$ if $\ell \geq L$; also $d_{\ell^{-}}=D_{\ell}$.
Given $\ell \in\{1, \ldots, n\}$, let σ_{ℓ} be the sum of the variables a_{j} for $j \in\{2, \ldots, \ell\}$ such that $v(j)=-$ and $d_{j-1}=D$; thus $\sigma_{\ell}=0$ if $\ell \leq L$.

We define a grading on A_{n} by setting $\operatorname{deg} x=1$, $\operatorname{deg} a_{\ell}=D+1-d_{\ell}$ for $\ell \in P(v) \cap S(v)$, and $\operatorname{deg} a_{\ell}=0$ for the other variables. For $d \geq 1$, we denote by J_{d} the ideal of A_{n} spanned by monomials of degree at least d.

Lemma 14 Let $\ell \in\{1, \ldots, n-1\}$.
(i) $)_{\ell}$ If $\ell \leq L$, then $\widetilde{P}_{\ell}(\tilde{z}) \equiv \tilde{z}-x\left(\bmod J_{2}[\tilde{z}]\right)$; if $\ell \geq L$, then $\widetilde{P}_{\ell}(0) \equiv a_{L} \sigma_{\ell}-x\left(\bmod J_{2}\right)$.
$(i i)_{\ell} \widetilde{Q}_{\ell}(\tilde{z}) \equiv \tilde{z}^{D_{\ell}-d_{\ell}} a_{\ell^{-}}\left(\bmod J_{D+2-d_{\ell^{-}}}[\tilde{z}]\right)$.

Proof. The proof starts with a banal verification for $\ell=1$ and then proceeds by induction on ℓ. Suppose that $2 \leq \ell \leq n-1$ and that statements $(i)_{\ell-1}$ and $(i i)_{\ell-1}$ hold.

Assume first that $v(\ell)=w(\ell)=-$. Here (ii $)_{\ell}$ is an immediate consequence of (ii) $\mathcal{Z}_{\ell-1}$. If $\ell-1<L$, then $d_{(\ell-1)^{-}}<D$, so $\operatorname{deg} a_{(\ell-1)^{-}} \geq 2$, and $\widetilde{Q}_{\ell-1} \in J_{2}[\tilde{z}]$ by statement $(i i)_{\ell-1}$. As a result, $\widetilde{P}_{\ell} \equiv \widetilde{P}_{\ell-1}\left(\bmod J_{2}[\tilde{z}]\right)$, so $(\mathrm{i})_{\ell}$ follows from $(\mathrm{i})_{\ell-1}$. If $\ell-1 \geq L$, then either $d_{\ell-1}=D$, in which case $\widetilde{Q}_{\ell-1}(0) \equiv a_{L}\left(\bmod J_{2}\right)$ and $\sigma_{\ell}=\sigma_{\ell-1}+a_{\ell}$, or $d_{\ell-1}<D$, in which case $\widetilde{Q}_{\ell-1}(0) \equiv 0$ $\left(\bmod J_{2}\right)$ and $\sigma_{\ell}=\sigma_{\ell-1}$. In both cases, $\widetilde{P}_{\ell}(0)-\left(a_{L} \sigma_{\ell}\right) \equiv \widetilde{P}_{\ell-1}(0)-\left(a_{L} \sigma_{\ell-1}\right)\left(\bmod J_{2}\right)$, and again $(\mathrm{i})_{\ell}$ follows from $(\mathrm{i})_{\ell-1}$.

Assume now that $v(\ell)=w(\ell)=+$ and that $\ell \in S(v)$. Certainly then $(\mathrm{i})_{\ell}$ follows from $(\mathrm{i})_{\ell-1}$. Further, $d_{(\ell-1)^{-}}=d_{\ell^{-}}-1$, so $\operatorname{deg} a_{(\ell-1)^{-}}=D+2-d_{\ell^{-}}$, hence $\widetilde{Q}_{\ell_{-1}}$ is zero modulo $J_{D+2-d_{\ell^{-}}}[\tilde{z}]$ by $(\mathrm{ii})_{\ell-1}$. Using $(\mathrm{i})_{\ell-1}$, we conclude that $\widetilde{Q}_{\ell} \equiv a_{\ell}\left(\bmod J_{D+2-d_{\ell^{-}}}[\tilde{z}]\right)$, so (ii) $)_{\ell}$ holds.

The third situation, namely $v(\ell)=w(\ell)=+$ and $\ell \notin S(v)$, presents no difficulties.

Lemma 15

(i) For $\ell \in\{2, \ldots, n-1\} \cap P(v) \cap S(v)$, we have $\widetilde{c}_{\ell} \equiv-a_{\ell} x+a_{(\ell-1)^{-}}\left(\bmod J_{D+3-d_{\ell}}\right)$.
(ii) We have $\widetilde{c}_{n} \equiv a_{L} \sigma_{n}-x\left(\bmod J_{2}\right)$.

Proof. Let $\ell \in\{2, \ldots, n-1\} \cap P(v) \cap S(v)$. Then $D_{\ell-1}=d_{\ell-1}$ and $d_{(\ell-1)^{-}}=d_{\ell}-1$. By Lemma 14, $\widetilde{P}_{\ell-1}(0) \equiv-x\left(\bmod J_{2}\right)$ and $\widetilde{Q}_{\ell-1}(0) \equiv a_{(\ell-1)^{-}}\left(\bmod J_{D+3-d_{\ell}}\right)$. This gives (i).

Since the last letter of w^{\prime} is assumed to be significant, we have $d_{n-1}=D_{n-1}=D$, so $\sigma_{n}=$ $\sigma_{n-1}+a_{n}$. From Lemma 14, we get $\widetilde{P}_{n-1}(0) \equiv a_{L} \sigma_{n-1}-x\left(\bmod J_{2}\right)$ and $\widetilde{Q}_{n-1}(0) \equiv a_{L}$ $\left(\bmod J_{2}\right)$. This gives (ii).

Lemma 16 There exists an element $\widetilde{g} \in A_{n}$, which depends only on the variables x, a_{1}, and a_{j} with $v(j)=-$, such that

$$
\begin{array}{ll}
\widetilde{g} \equiv \widetilde{c}_{n} x^{D-1} \times \prod_{\substack{\ell \in P(v) \cap S(v) \\
\ell \geq 2}}\left(-\widetilde{P}_{\ell-1}(0)\right)^{p_{\ell}} & \left(\bmod \tilde{\mathfrak{q}}_{L}\right) \\
\widetilde{g} \equiv x^{q}\left(a_{1} \sigma_{n}-x^{D}\right) & \left(\bmod J_{q+D+1}\right) \tag{13}
\end{array}
$$

where each p_{ℓ} and q are nonnegative integers.

Proof. Consider

$$
\widetilde{g}_{L}=\widetilde{c}_{n} x^{D-1}+\sum_{\substack{\ell \in P(v) \cap S(v) \\ \ell \geq 2}} \widetilde{c}_{\ell} \sigma_{n} x^{d_{\ell}-2}
$$

An immediate calculation based on Lemma 15 yields

$$
\widetilde{g}_{L} \equiv a_{1} \sigma_{n}-x^{D} \quad\left(\bmod J_{D+1}\right)
$$

This \widetilde{g}_{L} meets the specifications for \widetilde{g} (with p_{ℓ} and q all equal to zero) except that it may involve other variables than those prescribed.

We are not bothered by the variables a_{j} for $j \in P(v) \backslash S(v)$ because \widetilde{g}_{L} do not depend on them (see Remark 10). The variables x and a_{j} with $v(j)=-$ are allowed. The only trouble comes then from the variables a_{j} with $j \in\{2, \ldots, n-1\} \cap P(v) \cap S(v)$. We will eliminate them in turn.

Assume that $L \geq 2$. Let $\ell \in\{2, \ldots, n-1\} \cap P(v) \cap S(v)$ and assume that we succeeded in constructing an element $\widetilde{g}_{\ell} \in \widetilde{\mathfrak{q}}_{n}$ which satisfies (12) and (13) and depends only on the variables x and a_{j} with $v(j)=-$ or $j \leq \ell$. Expand \tilde{g}_{ℓ} as a polynomial in a_{ℓ}

$$
\widetilde{g}_{\ell}=\sum_{s=0}^{r} h_{s} a_{\ell}^{s}
$$

where the coefficients h_{s} only depend on x and on the variables a_{j} such that $v(j)=-$ or $j<\ell$. Then define

$$
\widetilde{g}_{(\ell-1)^{-}}=\sum_{s=0}^{r} h_{s}\left(-\widetilde{P}_{\ell-1}(0)\right)^{r-s}\left(\widetilde{Q}_{\ell-1}(0)\right)^{s}
$$

This $\widetilde{g}_{(\ell-1)^{-}}$only involves the variables x and a_{j} with $v(j)=-$ or $j \leq \ell-1$. In fact, we can strengthen the latter inequality to $j \leq(\ell-1)^{-}$because $\widetilde{g}_{(\ell-1)^{-}}$does not depend on the variables a_{j} with $j \in P(v) \backslash S(v)$. Moreover, $\widetilde{g}_{(\ell-1)^{-}}$also satisfies (12) and (13), but for different integers than \widetilde{g}_{ℓ} : one has to increase p_{ℓ} and q by r. (To verify that $\widetilde{g}_{(\ell-1)^{-}}$satisfies (13) with $q+r$ instead of q, one observes that

$$
\begin{array}{ll}
h_{0} \equiv x^{q}\left(a_{1} \sigma_{n}-x^{D}\right) & \left(\bmod J_{q+D+1}\right) \\
h_{s} \in J_{q+D+1-s\left(D+1-d_{\ell}\right)} & \text { for each } s \in\{1, \ldots, r\}
\end{array}
$$

and uses Lemma 14.)
At the end of the process, we obtain an element $\widetilde{g}=\widetilde{g}_{1}$ which enjoys the desired properties.

Let us recall a few important points:

- $A_{n}=\mathbb{C}\left[x_{2}\right]\left[x, a_{1}, \ldots, a_{n}\right]$ is the coordinate ring of $\left(\phi_{v}\right)^{-1}\left(U_{v}\right)$. The variable x_{2} is dummy (no equations depend on it); we get rid of it by specializing it to an arbitrary value.
- The ring B_{1} is $\mathbb{C}\left[x_{2}\right]\left[x, a_{1}, f_{1}^{-1}\right]$ with $f_{1}=a_{1}$. For $\ell \geq 2$, we produce an explicit function $f_{\ell} \in B_{\ell-1}\left[a_{\ell}\right]$ and we set $B_{\ell}=B_{\ell-1}\left[a_{\ell}, f_{\ell}^{-1}\right]$. The ring B_{n} is the coordinate ring of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right)$.
- \mathscr{S}_{n} is a finitely generated multiplicative subset of A_{n} such that $B_{n}=\mathscr{S}_{n}^{-1} A_{n}$.
- Polynomials $\widetilde{c}_{\ell} \in A_{\ell}$ are defined for each $\ell \in P(w)$. The ideal of A_{n} generated by these elements is denoted by $\widetilde{\mathfrak{q}}_{n}$.
- The ideal $\mathfrak{p} \subset A_{n}$ of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{Y}\left(\mathbf{Z}_{v}\right)\right)$ is generated by the variables x and a_{ℓ} for $\ell \in P(v)$.
- The ideal $\mathfrak{q} \subset A_{n}$ of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)\right)$ is the saturation of $\tilde{\mathfrak{q}}_{n}$ with respect to \mathscr{S}_{n}.
- $\sigma_{1}, \ldots, \sigma_{n}$ are certain sums of variables a_{ℓ} with $v(\ell)=-$; these linear forms are not pairwise distinct, but σ_{n} differs from all the other ones, for only it involves a_{n}.

Lemma 17 Fix $\alpha_{\ell} \in \mathbb{C}$ for each $\ell \in\{1, \ldots, n\} \backslash P(v)$ such that, when a_{ℓ} is assigned the value α_{ℓ}, the linear form σ_{n} takes a value different from all the other σ_{j}. Consider these numbers α_{ℓ} as constant functions of the variable ξ. Set also $\alpha_{\ell}=0$ for $\ell \in P(v) \backslash S(v)$. Then there exists a neighborhood Ω of 0 in \mathbb{C} and analytic functions $\alpha_{\ell}: \Omega \rightarrow \mathbb{C}$ for $\ell \in P(v) \cap S(v)$ such that
(i) If $\ell \in P(v) \cap S(v)$, then $\alpha_{\ell}(\xi) \sim \xi^{D+1-d_{\ell}} / \sigma_{n}$.
(ii) The point $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$ belongs to the zero locus of $\widetilde{\mathfrak{q}}_{n}$ for each $\xi \in \Omega$.
(iii) The point $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$ belongs to $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap U_{w}\right)$ for each $\xi \neq 0$ in Ω.

Proof. Let \widetilde{g} be as in Lemma 16. We consider that the variables a_{ℓ} with $\ell>1$ occurring in \widetilde{g} are assigned the values α_{ℓ} fixed in the statement of the lemma. We can then regard \widetilde{g} as a polynomial in the indeterminates x and a_{1} with complex coefficients, or as a polynomial in the indeterminate a_{1} with coefficients in the valued field $\mathbb{C}((x))$. Equation (13) shows that the points $(0, D+q)$ and $(1, q)$ are vertices of the Newton polygon of \widetilde{g}. Therefore \widetilde{g} admits a unique root of valuation D in $\mathbb{C}((x))$, which we denote by α_{1}, and the power series α_{1} has a
positive radius of convergence. Proceeding by induction on $\ell \in\{2, \ldots, n-1\} \cap P(v) \cap S(v)$, and solving the equation $\widetilde{c}_{\ell}=0$, we define

$$
\begin{equation*}
\alpha_{\ell}(\xi)=-\widetilde{Q}_{\ell-1}(0) / \widetilde{P}_{\ell-1}(0) \tag{14}
\end{equation*}
$$

where the right-hand side is evaluated at $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{\ell-1}(\xi)\right)$; this is a well-defined process and $\alpha_{\ell}(\xi)$ satisfies the equivalent given in the statement, because Lemma 14 guarantees that after evaluation

$$
\widetilde{P}_{\ell-1}(0)=-\xi+O\left(\xi^{2}\right) \quad \text { and } \quad \widetilde{Q}_{\ell-1}(0)=\alpha_{(\ell-1)^{-}}(\xi)+O\left(\xi^{D+2-d_{(\ell-1)^{-}}}\right)
$$

so the denominator in (14) does not vanish if $\xi \neq 0$. Moreover, (12) ensures that the equation $\widetilde{c}_{n}=0$ is enforced too. Therefore this construction gives (i) and (ii).

We will prove (iii) by showing that none of the functions f_{ℓ} vanish when evaluated at the point $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$ with $\xi \neq 0$ in Ω. Further, to achieve this result, we have the latitude to shrink Ω as needed.

Since $f_{1}=a_{1}$, we have $f_{1}\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)=\alpha_{1}(\xi)$, and this quantity does not vanish for $\xi \neq 0$ small enough, because $\alpha_{1}(\xi) \sim \xi^{D} / \sigma_{n}$. Proceeding by induction, we assume known that $f_{1}, \ldots, f_{\ell-1}$ do not vanish at our point.

- In the case $(v(\ell), w(\ell))=(+,+)$, we have

$$
f_{\ell}=\left(a_{\ell} R_{\ell-1}+S_{\ell-1}\right)\left(x_{2}\right)
$$

The congruences in Lemma 11 allow to rewrite the equation $\widetilde{c}_{\ell}=0$ in the form

$$
\left(a_{\ell} P_{\ell-1}+Q_{\ell-1}\right)\left(x_{2}\right)=0
$$

this is satisfied after evaluation at the point $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$. Using then the relation $\left(P_{\ell-1} S_{\ell-1}-Q_{\ell-1} R_{\ell-1}\right)\left(x_{2}\right)=1$, we obtain

$$
P_{\ell-1}\left(x_{2}\right) \times f_{\ell}=P_{\ell-1}\left(x_{2}\right)\left(a_{\ell} R_{\ell-1}+S_{\ell-1}\right)\left(x_{2}\right)=1+R_{\ell-1}\left(x_{2}\right)\left(a_{\ell} P_{\ell-1}+Q_{\ell-1}\right)\left(x_{2}\right)=1
$$

Thus, f_{ℓ} does not vanish at $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$.

- The case $(v(\ell), w(\ell))=(-,+)$, that is $\ell=n$, is amenable to a similar treatment.
- The remaining case is $(v(\ell), w(\ell))=(-,-)$. Here by Lemma 11 we have after substitution

$$
f_{\ell}=\left(P_{\ell-1}+a_{\ell} Q_{\ell-1}\right)\left(x_{2}\right)=\left(\widetilde{P}_{\ell-1}+a_{\ell} \widetilde{Q}_{\ell-1}\right)(0)
$$

and by Lemma 14 and the equivalence in (i)

$$
\widetilde{P}_{\ell-1}(0)=\left(\sigma_{\ell-1} / \sigma_{n}-1\right) \xi+O\left(\xi^{2}\right) \text { and } \widetilde{Q}_{\ell-1}(0)= \begin{cases}\xi / \sigma_{n}+O\left(\xi^{2}\right) & \text { if } d_{\ell-1}=D_{\ell-1}=D \\ O\left(\xi^{2}\right) & \text { otherwise }\end{cases}
$$

Therefore $f_{\ell}\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$ is equivalent to $\left(\sigma_{\ell} / \sigma_{n}-1\right) \xi$, hence does not vanish if $\xi \neq 0$ is small enough.

This concludes the induction and establishes (iii).

To sum up, the lemma constructs a germ of a (parameterized) smooth algebraic curve $\xi \mapsto$ $\left(\xi, \alpha_{1}(\xi), \ldots, \alpha_{n}(\xi)\right)$ contained in the zero locus of $\widetilde{\mathfrak{q}}_{n}$. The ideal of this curve is a prime ideal of A_{n} which contains $\tilde{\mathfrak{q}}_{n}$ and is disjoint from \mathscr{S}_{n}, hence it contains \mathfrak{q}. As a result, our curve is contained in $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)\right)$. The point $\xi=0$ of this curve has for coordinates $x=0, a_{\ell}=0$ if $\ell \in P(v)$, and $a_{\ell}=\alpha_{\ell}$ if $\ell \in\{1, \ldots, n\} \backslash P(v)$. Now points of this form fill an open dense subset of $\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{Y}\left(\mathbf{Z}_{v}\right)\right)$, because the values α_{ℓ} were chosen arbitrarily, subject to the sole requirement that $\sigma_{n} \neq \sigma_{j}$ for $j \in\{1, \ldots, n-1\}$. We can then conclude that $\mathcal{Y}\left(\mathbf{Z}_{v}\right) \subset \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$. This proves the missing half of Proposition 9 (i) (the first half was obtained just after Lemma 13).

As a consequence, $\mathfrak{q} \subset \mathfrak{p}$. To ease the reading of the sequel, we will omit the subscripts n in the notation A_{n} and $\widetilde{\mathfrak{q}}_{n}$. For $\ell \in\{1, \ldots, n\}$, we set $R(\ell)=\left\{j \in\{2, \ldots, \ell\} \mid v(j)=-, d_{j-1}=\right.$ $\left.D_{j-1}\right\}$.

Lemma 18 (i) For each $\ell \in\{1, \ldots, n-1\}$, we have

$$
\begin{aligned}
& \widetilde{P}_{\ell} \equiv \tilde{z} \quad(\bmod \mathfrak{p}[\tilde{z}]), \quad \widetilde{Q}_{\ell} \equiv \tilde{z}^{D_{\ell}-d_{\ell}} a_{\ell^{-}} \quad\left(\bmod \mathfrak{p}^{2}[\tilde{z}]\right) \\
& \widetilde{P}_{\ell}(0) \equiv-x+\sum_{j \in R(\ell)} a_{(j-1)^{-}} a_{j} \quad\left(\bmod \mathfrak{p}^{2}\right)
\end{aligned}
$$

(ii) In the local ring $A_{\mathfrak{p}}$, we have $\mathfrak{p} A_{\mathfrak{p}}=x A_{\mathfrak{p}}+\mathfrak{q} A_{\mathfrak{p}}+\mathfrak{p}^{2} A_{\mathfrak{p}}$.

Proof. Statement (i) is proved by a banal induction. Let us tackle (ii).
If $\ell \in P(v) \backslash S(v)$, then $a_{\ell}=\widetilde{c}_{\ell}$ belongs to $\widetilde{\mathfrak{q}}$.
If $\ell \in(P(v) \cap S(v)) \backslash\{L\}$, then there exists $m \in P(v) \cap S(v)$ such that $d_{\ell}=d_{m}-1$. Then $\ell=(m-1)^{-}$and $D_{m-1}=d_{m-1}$, whence by statement (i)

$$
a_{\ell} \equiv \widetilde{Q}_{m-1}(0)=\widetilde{c}_{m}-a_{m} \widetilde{P}_{m-1}(0) \equiv \widetilde{c}_{m} \quad\left(\bmod \mathfrak{p}^{2}\right)
$$

and therefore $a_{\ell} \in \widetilde{\mathfrak{q}}+\mathfrak{p}^{2}$.
Surely $D_{n-1}=d_{n-1}=D$ and $L=(n-1)^{-}$, so again by statement (i), we have

$$
\widetilde{c}_{n}=\widetilde{P}_{n-1}(0)+a_{n} \widetilde{Q}_{n-1}(0) \equiv \widetilde{P}_{n-1}(0)+a_{L} a_{n} \equiv-x+\sum_{j \in R(n)} a_{(j-1)^{-}} a_{j} \quad\left(\bmod \mathfrak{p}^{2}\right)
$$

In the last sum, we gather the terms with the same value ℓ for $(j-1)^{-}$: denoting by τ_{ℓ} the sum of the variables a_{j} for $j \in\{2, \ldots, n\}$ such that $v(j)=-$ and $d_{j-1}=D_{j-1}=d_{\ell}$, we obtain

$$
\widetilde{c}_{n} \equiv-x+\sum_{\ell \in P(v) \cap S(v)} a_{\ell} \tau_{\ell} \quad\left(\bmod \mathfrak{p}^{2}\right)
$$

Noting that $a_{\ell} \in \tilde{\mathfrak{q}}+\mathfrak{p}^{2}$ for $\ell \in P(v) \cap S(v) \backslash\{L\}$ and that $\tau_{L}=\sigma_{n}$, we get $a_{L} \sigma_{n} \in(x)+\widetilde{\mathfrak{q}}+\mathfrak{p}^{2}$. Since σ_{n} is invertible in $A_{\mathfrak{p}}$, we conclude that $a_{L} \in x A_{\mathfrak{p}}+\widetilde{\mathfrak{q}} A_{\mathfrak{p}}+\mathfrak{p}^{2} A_{\mathfrak{p}}$.

Altogether the remarks above show the inclusion

$$
\mathfrak{p} A_{\mathfrak{p}} \subset x A_{\mathfrak{p}}+\widetilde{\mathfrak{q}} A_{\mathfrak{p}}+\mathfrak{p}^{2} A_{\mathfrak{p}}
$$

Joint with $\widetilde{\mathfrak{q}} \subset \mathfrak{q} \subset \mathfrak{p}$, this gives statement (ii).

The ideal in A of the subvarieties

$$
V=\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{Y}\left(\mathbf{Z}_{v}\right)\right) \quad \text { and } \quad X=\left(\phi_{v}\right)^{-1}\left(U_{v} \cap \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)\right)
$$

are \mathfrak{p} and \mathfrak{q}, respectively. The local ring $\mathscr{O}_{V, X}$ of X along V is the localization of $\bar{A}=A / \mathfrak{q}$ at the ideal $\overline{\mathfrak{p}}=\mathfrak{p} / \mathfrak{q}$. Lemma 18 (ii) combined with Nakayama's lemma shows that the image of $x=x_{1}-x_{2}$ in \bar{A} generates the ideal $\overline{\mathfrak{p}} \bar{A}_{\overline{\mathfrak{p}}}$. As a consequence, the order of vanishing of $x_{1}-x_{2}$ along V is equal to one, and by definition, this is the multiplicity of $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$ in the intersection product $\left.\mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right) \cdot \mathcal{G} r_{n}^{\boldsymbol{\lambda}}\right|_{\Delta}$. This proves Proposition 9 (ii).

4.6 Inclusion, II

In this section, we again consider words v and w such that $(v(1), w(1))=(+,-)$ and $\mathrm{wt}(v)=$ $\mathrm{wt}(w)$ and explore the situation where the path representing v lies strictly above the one representing w (except of course at the two endpoints) but does not stay parallel to it. We thus assume that there exists $k \in\{2, \ldots, n-1\}$ such that $(v(k), w(k))=(+,-)$.

Proposition 19 Under these assumptions, $\mathcal{Y}\left(\mathbf{Z}_{v}\right) \not \subset \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$.

The proof of Proposition 19 fills the remainder of this section. Our argument is similar to our proof in Proposition 9 (i).

For each $\ell \in\{1, \ldots, n\}$, we define $A_{\ell}=\mathbb{C}\left[x_{2}\right]\left[x, a_{1}, \ldots, a_{\ell}\right]$, where $x=x_{1}-x_{2}$. We introduce $\tilde{z}=z-x_{2}$.

In addition:

- let K be the largest integer $k \in\{2, \ldots, n-1\}$ such that $(v(k), w(k))=(+,-)$;
- for $\ell \in\{K, \ldots, n\}$, let d_{ℓ} be the weight of the word $v(K+1) v(K+2) \cdots v(\ell)$, with the convention $d_{K}=0$;
- let L be the smallest position $\ell>K$ such that $(v(\ell), w(\ell))=(-,+)$ or $d_{\ell}>0$.

Set $\widetilde{P}_{1}=\tilde{z}-x$ and $\widetilde{Q}_{1}=a_{1}$. For $\ell \in\{2, \ldots, L-1\}$, define by induction two polynomials \widetilde{P}_{ℓ}, \widetilde{Q}_{ℓ} in $A_{\ell}[z]$ as follows:

- If $(v(\ell), w(\ell))=(+,+)$, then

$$
\widetilde{P}_{\ell}=\widetilde{P}_{\ell-1} \quad \text { and } \quad \widetilde{Q}_{\ell}= \begin{cases}\frac{a_{\ell} \widetilde{P}_{\ell-1}+\widetilde{Q}_{\ell-1}-\left(a_{\ell} \widetilde{P}_{\ell-1}+\widetilde{Q}_{\ell-1}\right)(0)}{\tilde{z}} & \text { if } \ell<K \\ \frac{\widetilde{Q}_{\ell-1}-\widetilde{Q}_{\ell-1}(0)}{\tilde{z}} & \text { if } \ell>K\end{cases}
$$

- If $(v(\ell), w(\ell))=(-,+)$, then

$$
\widetilde{P}_{\ell}=\frac{\widetilde{P}_{\ell-1}+a_{\ell} \widetilde{Q}_{\ell-1}-\left(\widetilde{P}_{\ell-1}+a_{\ell} \widetilde{Q}_{\ell-1}\right)(0)}{\tilde{z}} \quad \text { and } \quad \widetilde{Q}_{\ell}=\widetilde{Q}_{\ell-1}
$$

- If $(v(\ell), w(\ell))=(+,-)$, then $\widetilde{P}_{\ell}=\tilde{z} \widetilde{P}_{\ell-1}$ and $\widetilde{Q}_{\ell}=a_{\ell} \widetilde{P}_{\ell-1}+\widetilde{Q}_{\ell-1}$.
- If $(v(\ell), w(\ell))=(-,-)$, then $\widetilde{P}_{\ell}=\widetilde{P}_{\ell-1}+a_{\ell} \widetilde{Q}_{\ell-1}$ and $\widetilde{Q}_{\ell}=\tilde{z} \widetilde{Q}_{\ell-1}$.

For $\ell \in\{1, \ldots, L\}$:

- let \mathfrak{q}_{ℓ} be the ideal of B_{ℓ} generated by $\left\{b_{j} \mid j \in P(w), j \leq \ell\right\}$;
- if $\ell \geq K$, let σ_{ℓ} be the sum of the a_{j} for $j \in\{K+1, \ldots, \ell\}$ such that $v(j)=-$ and $d_{j-1}=0$, with the convention $\sigma_{K}=0$.

Lemma 20 For $\ell \in\{1, \ldots, L-1\}$, we have
(i) $\widetilde{P}_{\ell}(\tilde{z}) \equiv P_{\ell}(z)\left(\bmod \dot{q}_{\ell}[z]\right)$ and $\widetilde{Q}_{\ell}(\tilde{z}) \equiv Q_{\ell}(z)\left(\bmod \dot{q}_{\ell}[z]\right)$,
(ii) $)_{\ell}$ if $\ell \geq K$, then $\widetilde{P}_{\ell}(0)=\widetilde{Q}_{K}(0) \sigma_{\ell}$ and $\widetilde{Q}_{\ell}=\tilde{z}^{-d_{\ell}} \widetilde{Q}_{K}$.

Proof. One again proceeds by induction. The details are straightforward, except in the case where $(v(\ell), w(\ell))=(+,+)$ and $\ell>K$, where one can follow the arguments offered in the proof of Lemma 11 to get $a_{\ell} \in \dot{q}_{\ell}$.

We now distinguish three cases:

- Assume that $d_{L-1}<0$. Then necessarily $(v(L), w(L))=(-,+)$. By assertion (ii) $)_{L-1}$ in Lemma 20, we get $\dot{\widetilde{Q}}_{L-1}(0)=0$. Using assertion $(\mathrm{i})_{L-1}$ in that lemma, we deduce that $Q_{L-1}\left(x_{2}\right) \in \dot{q}_{L-1}$. Then, by the identity $P_{L-1} S_{L-1}-Q_{L-1} R_{L-1}=1$, we see that $P_{L-1}\left(x_{2}\right)$ is invertible in the ring $B_{L-1} / \mathfrak{q}_{L-1}$. Thus, $b_{L}=\left(P_{L-1}+a_{L} Q_{L-1}\right)\left(x_{2}\right) \times f_{L}^{-1}$ is invertible in $B_{L} / \dot{\mathfrak{q}}_{L-1} B_{L}$. We conclude that $\dot{\mathfrak{q}}_{L}=B_{L}$, and therefore $\dot{\mathfrak{q}}_{n}=B_{n}$. Thus, $U_{v} \cap \dot{\mathcal{X}}\left(\mathbf{Z}_{w}\right)=\varnothing$, so $\mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$ does not meet U_{v} and cannot contain $\mathcal{Y}\left(\mathbf{Z}_{v}\right)$.
- Assume that $d_{L-1}=0$ and $(v(L), w(L))=(-,+)$. We note that $P_{K}\left(x_{2}\right)=0$ by construction. The identity $P_{K} S_{K}-Q_{K} R_{K}=\underset{\sim}{1}$ then implies that $Q_{K}\left(x_{2}\right)$ is invertible in B_{K}, and by assertion (i) K_{K} in Lemma 20, $\widetilde{Q}_{K}(0)$ is invertible in B_{K} / \mathfrak{q}_{K}. Moreover, $f_{L} b_{L}=\left(P_{L-1}+a_{L} Q_{L-1}\right)\left(x_{2}\right)$ belongs to \mathfrak{q}_{L}. Using assertion (ii) $)_{L-1}$ in Lemma 20, we deduce that

$$
\left(\widetilde{P}_{L-1}+a_{L} \widetilde{Q}_{L-1}\right)(0)=\widetilde{Q}_{K}(0)\left(\sigma_{L-1}+a_{L}\right)=\widetilde{Q}_{K}(0) \sigma_{L}
$$

belongs to $\dot{\mathfrak{q}}_{L}$ too. Therefore σ_{L} belongs to $\dot{\mathfrak{q}}_{L}$, hence to \mathfrak{q}. However $\sigma_{L} \notin \mathfrak{p}$, because a_{L} is a summand in the sum that defines σ_{L} whereas $L \notin P(v)$. We must then conclude that $\mathfrak{q} \not \subset \mathfrak{p}$, in other words that $\mathcal{Y}\left(\mathbf{Z}_{v}\right) \not \subset \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$.

- Assume that $d_{L-1}=0$ and $(v(L), w(L))=(+,+)$. As in the previous case, we note that $\widetilde{Q}_{K}(0)$ is invertible in B_{K} / \grave{q}_{K}. But now we have $f_{L} b_{L}=\left(a_{L} P_{L-1}+Q_{L-1}\right)\left(x_{2}\right)$, so we get

$$
\widetilde{Q}_{K}(0)\left(a_{L} \sigma_{L-1}+1\right) \in \dot{\mathfrak{q}}_{L}
$$

and then $a_{L} \sigma_{L-1}+1 \in \mathfrak{q}$. Here however $a_{L} \in \mathfrak{p}$, so $a_{L} \sigma_{L-1}+1 \notin \mathfrak{p}$. Again we must conclude that $\mathfrak{q} \not \subset \mathfrak{p}$ and $\mathcal{Y}\left(\mathbf{Z}_{v}\right) \not \subset \mathcal{X}\left(\mathbf{Z}_{w},(1, n-1)\right)$.

Proposition 19 is then proved.

4.7 Loose ends

We can now prove that the MV basis of $V(\varpi)^{\otimes n}$ satisfies the second formula in (1). We consider two words v and w in \mathscr{C}_{n} with $w(1)=-$ and $\operatorname{wt}(v)=\operatorname{wt}(w)$ and we look for the coefficient of y_{v} in the expansion of $x_{-} \otimes y_{w^{\prime}}$ in the MV basis, where w^{\prime} is the word w stripped from its first letter.

If $v(1)=-$, then this coefficient is zero except for $v=w$, in which case the coefficient is one. This follows from Theorem 5.13 in [1].

If $v(1)=+$, then the path representing v starts above the path representing w. We distinguish two cases.

In the case where v stays strictly above w until the very end, we can refer to Propositions 9 and 19: the coefficient of y_{v} is non-zero only if v stays parallel to w at distance two and the last letter of w^{\prime} is significant. If this condition is fulfilled, then the coefficient is one.

In the case where v and w rejoin before the end, after m letters, then we write v and w as concatenations $+v_{(2)} v_{(3)}$ and $-w_{(2)} w_{(3)}$, respectively, with $v_{(2)}$ and $w_{(2)}$ of length $m-1$ and $v_{(3)}$ and $w_{(3)}$ of length $n-m$. By assumption, $\operatorname{wt} v_{(3)}=\operatorname{wt} w_{(3)}$. We can then apply Proposition 7 with $n_{1}=1, n_{2}=m-1$ and $n_{3}=n-m$: if $v_{(3)} \neq w_{(3)}$, then the coefficient of y_{v} in the expansion of $x_{-} \otimes y_{w^{\prime}}$ is zero; otherwise, it is equal to the coefficient of $y_{+v(2)}$ in the expansion of $x_{-} \otimes y_{w(2)}$ in the MV basis of $V(\varpi)^{\otimes m}$.

Thus, Proposition 7 reduces the second case to the first one, but for words of length m. The coefficient is then non-zero only if $+v_{(2)}$ stays parallel to $-w_{(2)}$ at distance two and the last letter of $w_{(2)}$ is significant, in which case the coefficient is one.

To sum up: if $(v(1), w(1))=(+,-)$, then the coefficient of y_{v} in the expansion of $x_{-} \otimes y_{w^{\prime}}$ is either zero or one; it is one if and only if v is obtained by flipping the first letter - of w into $\mathrm{a}+$ and flipping a significant letter + in w^{\prime} into $\mathrm{a}-$. This shows that the MV basis satisfies the second formula in (1). We have proved:

Theorem $21\left(y_{w}\right)_{w \in \mathcal{C}_{n}}$ is the MV basis of $V(\varpi)^{\otimes n}$.

Putting Theorem 21 alongside Theorem 3, Proposition 6, and Theorem 1.11 in [7], we obtain the result stated in the introduction.

References

[1] P. Baumann, S. Gaussent, P. Littelmann, Bases of tensor products and geometric Satake correspondence, to appear in J. Eur. Math. Soc. (JEMS).
[2] P. Baumann, J. Kamnitzer, A. Knutson, The Mirković-Vilonen basis and DuistermaatHeckman measures, with an appendix by A. Dranowski, J. Kamnitzer and C. MortonFerguson, to appear in Acta Math.
[3] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, available at http://www.math.uchicago.edu/~ mitya/langlands.html.
[4] A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (2001), 561-575.
[5] A. Demarais, Correspondance de Satake géométrique, bases canoniques et involution de Schützenberger, PhD thesis, Université de Strasbourg, 2017, available at http://tel.archives-ouvertes.fr/tel-01652887.
[6] B. Fontaine, J. Kamnitzer, G. Kuperberg, Buildings, spiders, and geometric Satake, Compos. Math. 149 (2013), 1871-1912.
[7] I. Frenkel, M. Khovanov, Canonical bases in tensor products and graphical calculus for $U_{q}\left(\mathfrak{s l}_{2}\right)$, Duke Math. J. 87 (1997), 409-480.
[8] W. Fulton, Intersection theory, second edition, Springer, Berlin, 1998.
[9] S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (2005), 35-88.
[10] C. Geiss, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. 38 (2005), 193-253.
[11] C. Geiss, B. Leclerc, J. Schröer, Preprojective algebras and cluster algebras, in Trends in representation theory of algebras and related topics (ICRA XII) (Toruń, 2007), pp. 253283, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008.
[12] A. Goncharov, L. Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202 (2015), 487-633.
[13] T. Haines, Structure constants for Hecke and representation rings, Int. Math. Res. Not. 2003, no. 39, 2103-2119.
[14] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.
[15] G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, in Analyse et topologie sur les espaces singuliers, II, III (Luminy, 1981), pp. 208-229, Astérisque 101-102, Soc. Math. France, Paris, 1983.
[16] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
[17] G. Lusztig, Introduction to quantum groups, Progress in Mathematics vol. 110, Birkhäuser Boston, Boston, 1993.
[18] I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. 166 (2007), 95-143.

Pierre Baumann, Institut de Recherche Mathématique Avancée, Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France.
p.baumann@unistra.fr

Arnaud Demarais, 15 allée du puits, 01290 Crottet, France.
arnaud.demarais@ac-dijon.fr

[^0]: *In fact, here we use the opposite of the usual tensor product of crystals.

