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Abstract

Let U be a quasitriangular Hopf algebra. One may use the R-matrix of U in order to

construct scalar invariants of knots. Analogously, Reshetikhin wrote tangle invariants

which take their values in the center of U. Reshetikhin’s expressions thus define central

elements in U. We prove here an identity caracterizing some of these elements, when

U is a quantized enveloping algebra. As an application, we give a proof for a state-

ment of Faddeev, Reshetikhin and Takhtadzhyan concerning the center of a quantized

enveloping algebra.

Introduction

Let g be a finite dimensional simple Lie algebra, and Uqg be the associated quantized en-
veloping algebra, at a generic value q of the parameter. There are at least three descriptions
of the center Z(Uqg) of Uqg. Rosso [15] defined a quantum analogue of the Harish-Chandra
map in order to get an isomorphism between Z(Uqg) and the algebra of exponential invari-
ants. Joseph and Letzter [8] described all the finite dimensional submodules of the adjoint
module Uqg: the center appears here as the isotypical component of the trivial type. Fi-
nally, Drinfel′d [4] used the universal R-matrix of Uqg in order to get a morphism from the
representation ring of g to Z(Uqg). Each of these constructions has its own advantage, and
the links between them are known.

The construction of Drinfel′d uses only the universal R-matrix of Uqg and the quantum
traces in Uqg-modules: it is thus valid for the so-called “ribbon Hopf algebras”. For these
algebras, Reshetikhin [12] explained how invariants of certain tangles give rise to central
elements. In this article, we give a formula connecting, in the case of Uqg, some of these
elements to the previous descriptions.

Let us go back to general results about the center of Uqg. Faddeev, Reshetikhin and
Takhtadzhyan [6] have exhibited a system of generators for Z(Uqg), but did not publish the
proof of their theorem. Our result enables us to provide a proof for it, and even to give a
more precise statement.

We will spend the first six sections to recall known constructions and results. New results
appear in sections 2.4 and 3.
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1 Ribbons and central constructions

1.1 Ribbon Hopf algebras

Let U be a Hopf algebra over a field K. The coproduct of an element x ∈ U will be written
using Sweedler’s notation: ∆U(x) =

∑

x(1) ⊗x(2), the sum sign being generally omitted. We
shall denote by εU and SU the augmentation and the antipode of U. The context will make
clear what Hopf algebra U is considered, so we will simply write ∆, ε and S.

We suppose now that U is quasitriangular for an R-matrix R12 =
∑

αi ⊗ βi ∈ U ⊗ U
(see [4] for the definition), and we put R21 =

∑

βi ⊗αi ∈ U⊗U, u =
∑

S(βi)αi. It is known
that (S⊗ S)(R12) = R12, that u is invertible in U, that (U → U, x 7→ uxu−1) is the square of
the antipode in U, and that ∆(u) = (R21R12)

−1(u ⊗ u).
A ribbon Hopf algebra (cf. [12]) is a quasitriangular Hopf algebra (U, R12) given with a

central element v ∈ U such that v2 = u S(u), v = S(v), and uv−1 is group-like, so that:

∆(v) = (R21R12)
−1(v ⊗ v). (1)

When U is infinite dimensional and R12 is an infinite sum, all these constructions are
still valid in the framework of co-quasitriangular algebras (see [11, §10.2]). Let A be the
restricted (Hopf) dual of U: then R12 may be viewed as a pairing A × A → K, and u and v
may be viewed as linear forms on A. The fact that R12 intertwines the coproduct with its
opposite is then written:

∀f, g ∈ A, 〈f(1) ⊗ g(1), R12〉f(2)g(2) = g(1)f(1)〈f(2) ⊗ g(2), R12〉.

It is not necessary for A to be the whole dual of U, but we will require that the canonical
duality 〈·, ·〉 between U and A is non-degenerate. In the following, we will use this set-up
and these notations in order to deal with ribbon Hopf algebras.

1.2 Drinfel′d’s construction of central elements

Let (U,A, R12, v) be a ribbon Hopf algebra. We endow U with the structure of a right U-
module by the adjoint action: x · y = S(y(1))xy(2). We endow A with the structure of a right
U-module by the coadjoint action: ϕ · y = ϕ(y(1) S(y(2))) = 〈y, ϕ(1)S(ϕ(3))〉ϕ(2). We define
the following pairing: (A × A → K, (ϕ, ψ) 7→ 〈〈ϕ, ψ〉〉 = 〈ϕ ⊗ ψ,R21R12〉), and we will write
〈〈ϕ, ψ〉〉 = 〈J(ψ), ϕ〉, for some map J : A → U.

The following assertion is (in spirit) contained in [13]:

Proposition 1 J is a morphism of right U-modules.
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Proof Let ψ ∈ A and y ∈ U. We have:

J(ψ · y) = J(〈ψ, y(1) S(y(2))〉)

= 〈id ⊗ ψ, (1 ⊗ y(1))R21R12(1 ⊗ S(y(2)))〉

= 〈id ⊗ ψ, (S(y(1)) ⊗ 1)(y(2) ⊗ y(3))R21R12(1 ⊗ S(y(4)))〉

= 〈id ⊗ ψ, (S(y(1)) ⊗ 1)R21R12(y(2) ⊗ y(3))(1 ⊗ S(y(4)))〉

= 〈id ⊗ ψ, (S(y(1)) ⊗ 1)R21R12(y(2) ⊗ 1)〉

= S(y(1)) J(ψ) y(2)

= J(ψ) · y.

¤

Let Z(U) be the center of U: this is the set of invariant elements of the (adjoint) U-module
U. Images under J of invariant elements of the U-module A thus give elements of Z(U). One
can do better. A trace on U is a linear form t ∈ A such that ∀x, y ∈ U, t(xy) = t(yx); this
can be written ∆(t) = t(1) ⊗ t(2) = t(2) ⊗ t(1).

Lemma Let t ∈ A be a trace on U. Then 〈uv−1, t(1)〉t(2) is an invariant element of the

U-module A, and 〈uv−1, t(1)〉J(t(2)) is an element of U which commutes with any element of

A∗ ⊇ U.

Proof Consider first the element 〈uv−1, t(1)〉t(2) of A. The action of x ∈ U on this element
is given by:

t(uv−1 ) · x = t(uv−1x(1) S(x(2)))

= t(S(x(2))uv−1x(1) )

= t(S(x(2))S
2(x(1))uv−1 )

= ε(x)t(uv−1 ).

So it is an invariant element of the U-module A.
Let now ϕ ∈ A∗ and f ∈ A. One has:

〈uv−1, t(1)〉〈J(t(2))ϕ, f〉 = 〈uv−1, t(1)〉〈f(1) ⊗ t(2), R21R12〉〈ϕ, f(2)〉

= 〈uv−1, t(1)〉〈f(1) ⊗ t(2), R21〉〈f(2) ⊗ t(3), R12〉〈ϕ, f(3)t(4)S(t(5))〉

= 〈uv−1, t(1)〉〈f(1) ⊗ t(2), R21〉〈f(3) ⊗ t(4), R12〉〈ϕ, t(3)f(2)S(t(5))〉

= 〈uv−1, t(1)〉〈f(2) ⊗ t(3), R21〉〈f(3) ⊗ t(4), R12〉〈ϕ, f(1)t(2)S(t(5))〉

= 〈uv−1, t(1)〉〈f(2) ⊗ t(3), R21R12〉〈ϕ, f(1)t(2)S(t(4))〉

= 〈uv−1ϕ(f(1) S(t(3))), t(1)〉〈f(2) ⊗ t(2), R21R12〉

= 〈ϕ(f(1)S
2( )S(t(3)))uv−1, t(1)〉〈f(2) ⊗ t(2), R21R12〉

= 〈ϕ, f(1)S
2(t(1))S(t(4))〉〈uv−1, t(2)〉〈f(2) ⊗ t(3), R21R12〉

= 〈ϕ, f(1)S
2(t(2))S(t(1))〉〈uv−1, t(3)〉〈f(2) ⊗ t(4), R21R12〉

= 〈ϕ, f(1)〉〈uv−1, t(1)〉〈f(2) ⊗ t(2), R21R12〉

= 〈uv−1, t(1)〉〈ϕJ(t(2)), f〉.
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Thus 〈uv−1, t(1)〉J(t(2))ϕ = 〈uv−1, t(1)〉ϕJ(t(2)) in A∗ (for all ϕ ∈ A∗). ¤

An example of such a trace t is given by the trace TrM : (U → K, x 7→ Tr(xM)) in a f.d.
U-module M. The corresponding element 〈uv−1, (TrM)(1)〉(TrM)(2) is named quantum trace
and will be denoted by Trq,M. We put zM = J(Trq,M). Let R(U) be the representation ring
of U. If M is a f.d. U-module, TrM and zM only depend of the class [M] of M in R(U).

Proposition 2 [4]: The map (R(U) → Z(U), [M] 7→ zM) is a well-defined ring morphism.

The map (R(U) → R(U), [M] 7→ [M∗]) is well-defined and involutive, because the element
u gives an U-isomorphism between a module M and its bidual M∗∗ (cf. [4, §2, remark 1]).
The map (Z(U) → Z(U), z 7→ S(z)) is an involutive algebra morphism (at least when we
restrict it to the centralizer of A∗ in U), because S2 is the inner automorphism of A∗ given
by u. We will show that zM∗ = S(zM).

We also recall that the number TrM(uv−1) = Trq,M(1) is called the quantum dimension of
M and is denoted by dimq M. We finally define the pairing (R(U)×R(U) → K, ([M], [N]) 7→
〈[M], [N]〉1 = 〈〈Trq,M, Trq,N〉〉). (This pairing gives the S-matrix considered for instance in [14,
§3.1].)

Proposition 3 1. For all U-module M, dimq M = dimq M∗.

2. The pairing 〈 , 〉1 on R(U) is symmetric.

3. For all M ∈ R(U), S(zM) = zM∗.

Proof 1. This statement appears in [14, §5.2], but the proof given there is slightly incor-
rect. The figure 1 presents a pictorial proof of this result. We give also an algebraic
proof:

dimq M = 〈TrM, uv−1〉

=
∑

〈TrM, S(βk)αkv
−1〉

=
∑

〈TrM, αkS(βk)v
−1〉

=
∑

〈TrM, S(S(βk)αkv
−1)〉

= 〈TrM, S(uv−1)〉 = 〈TrM∗ , uv−1〉 = dimq M∗.

We have used the fact that (S ⊗ S)(R12) = R12 and the cyclicity of the trace.

2. Let M and N be two f.d. U-modules, and let TrM, TrN be the traces. We have:

〈[M], [N]〉1 = 〈TrM ⊗TrN, (uv−1 ⊗ uv−1)(R21R12)〉

=
∑

〈TrM ⊗TrN, uv−1βiαj ⊗ uv−1αiβj〉

=
∑

〈TrM ⊗TrN, S2(βi)uv−1αj ⊗ S2(αi)uv−1βj〉

=
∑

〈TrM ⊗TrN, βiuv−1αj ⊗ αiuv−1βj〉

=
∑

〈TrM ⊗TrN, uv−1αjβi ⊗ uv−1βjαi〉

= 〈TrM ⊗TrN, (uv−1 ⊗ uv−1)(R12R21)〉

= 〈[N], [M]〉1.
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3. Let M be a f.d. U-modules. We compute:

zM∗ = 〈id ⊗ TrM∗ , (1 ⊗ uv−1)(R21R12)〉

=
∑

〈TrM ◦S, αiβjS(βk)αkv
−1〉 βiαj

=
∑

〈TrM, αkS(βk)βjαiv
−1〉 S−1(βi) S−1(αj)

=
∑

〈TrM, αiαkS(βk)βjv
−1〉 S−1(αjβi)

=
∑

〈TrM, αkαiβjS(βk)v
−1〉 S−1(βiαj)

=
∑

〈TrM, αiβjS(βk)αkv
−1〉 S−1(βiαj)

= S−1(〈id ⊗ TrM, (R21R12)(1 ⊗ uv−1)〉)

= S−1(zM) = S(zM).

Here, we have used the Yang–Baxter identity, in the form: (S−1⊗id⊗id)(R13R23R
−1
12 ) =

(S−1⊗id⊗id)(R−1
12 R23R13), writing:

∑

αiαk⊗αjβi⊗S(βk)βj =
∑

αkαi⊗βiαj⊗βjS(βk).
¤

Figure 1

1.3 Reshetikhin’s construction of central elements

We can reinterpret Reshetikhin’s scheme as a generalization of the preceding construction.
We still consider a ribbon Hopf algebra (U,A, R12, v).

We first recall that, given a coalgebra C and an algebra D, the vector space
HomK(C, D) is an algebra for the convolution product: if f, g ∈ HomK(C, D), one puts
f ∗ g : (C → D, x 7→ f(x(1))g(x(2))). In our case, since the coproduct A → A ⊗ A and the
product U ⊗ U → U are morphisms of U-modules, we can see that the space of morphisms
of U-modules is a subring of the convolution algebra HomK(A, U).

We consider the maps J∗p = J∗ · · · ∗J (p times), for any non-negative integer p. It is easy
to verify that J∗p is given by (A → U, ψ 7→ 〈id ⊗ ψ, (R21R12)

p〉). The map (A → U, ψ 7→
〈id⊗ψ, (R21R12)

−1〉) is an inverse for J in HomK(A, U), therefore we may consider the maps
J∗p for p ∈ Z. These are morphisms of U-modules. If M is a f.d. U-module, we can thus
define the central elements z

(p)
M = J∗p(Trq,M); the z

(1)
M are just our previous zM.

Proposition 4 1. z
(0)
M = dimq M.

2. z
(−1)
M = S(z

(1)
M ).
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3. For all M ∈ R(U), S(z
(p)
M ) = z

(p)
M∗.

Proof The proofs are analogous to those of the proposition 3. Let us show for instance the
third assertion. Let m23 : U ⊗ U ⊗ U → U ⊗ U be the multiplication of the two last factors.
Using the Yang–Baxter equations: R21R23R13 = R13R23R21 and R23R21R31 = R31R21R23,
we compute first:

(R21R12)
p(1 ⊗ uv−1) =

∑

R21(1 ⊗ αaS(u)βa)R12(R21R12)
p−1(1 ⊗ uv−1)

= m23

(

R21R23(S(u))2R13(R31R13)
p−1(uv−1)3

)

= m23

(

R13(R31R13)
p−1R23R21(S(u))2(uv−1)3

)

=
∑

(1 ⊗ αaαbS(u))R12(R21R12)
p−1(βb ⊗ βauv−1).

Then for any f.d. U-module M:

S(z
(p)
M ) = S−1(z

(p)
M ) = 〈S−1 ⊗ TrM, (R21R12)

p(1 ⊗ uv−1)〉

=
∑

〈S−1 ⊗ TrM, (1 ⊗ αaαbS(u))R12(R21R12)
p−1(βb ⊗ βauv−1)〉

=
∑

〈S−1 ⊗ TrM, R12(R21R12)
p−1(βb ⊗ βauαaαbS(u)v−1)〉

=
∑

〈S−1 ⊗ TrM, R12(R21R12)
p−1(βb ⊗ αbS(u)v−1)〉

= 〈S−1 ⊗ TrM, (R12R21)
p(1 ⊗ S(u)v−1)〉

= 〈id ⊗ TrM∗ , (S−1 ⊗ S−1)((R12R21)
p(1 ⊗ S(u)v−1))〉

= 〈id ⊗ TrM∗ , (1 ⊗ uv−1)(R21R12)
p〉

= z
(p)
M∗ .

¤

We will study in more details these elements z
(p)
M in the case of a quantized enveloping

algebra. Let us just point out that Reshetikhin discovered them in a graphical way. In his
language, z

(2)
M is the tangle invariant corresponding to the colored (ribbon) tangle pictured

in figure 2, and Trq,N(z
(−1)
M ) is (for any f.d. U-module N) the invariant of the (ribbon) tangle

shown in the figure 3.

Figure 2

M
N

Figure 3

M
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2 The center of Uqg

2.1 Joseph and Letzter’s construction

Let g be a finite-dimensional complex simple Lie algebra, h a Cartan subalgebra, Q ⊆ P ⊆ h∗

the root and the weight lattices, W the Weyl group, (·|·) : P × P → Z a Z-valued W-
invariant non-degenerate bilinear form. We choose a set {α1, . . . , αℓ} of simple roots and put

di = ‖αi‖
2

2
. Let P++ be the set of dominant weights, R+ be the set of positive roots, ρ ∈ P++

be half the sum of the positive roots, w0 be the longest element of W, and ε : W → {±1}
be the signature function.

Let q be an indeterminate. Uqg is defined to be the C(q)-algebra generated by elements
Kλ (λ ∈ P), Ei and Fi (i ∈ {1, . . . , ℓ}) with some well-known relations, among which:

KλEi = q(λ|αi)EiKλ, KλFi = q−(λ|αi)FiKλ, EiFj − FjEi = δij
Kαi

−K−αi

qdi−q−di
. Uqg is a Hopf

algebra, the coproduct being given by ∆(Kλ) = Kλ ⊗ Kλ, ∆(Ei) = Ei ⊗ 1 + Kαi
⊗ Ei,

∆(Fi) = Fi ⊗ K−αi
+ 1 ⊗ Fi. Let Z(Uqg) be the center of Uqg.

Joseph and Letzter have studied the adjoint module Uqg. We state a consequence of
their results for the right adjoint action introduced in section 1.2. The set of all ad-finite
elements in Uqg is a subalgebra F(Uqg) of Uqg. There is a natural decomposition in blocks:
F(Uqg) =

⊕

λ∈P++
(K2λ) ·Uqg, and each block (K2λ) ·Uqg contains a unique line defining the

trivial Uqg-module (see [8, § 4.13]). We denote by Zλ+ρ the corresponding central element
of Uqg. Hence the center of Uqg has the family (Zλ+ρ)λ∈P++ for C(q)-basis.

2.2 The Harish-Chandra map

Let U+, U0 and U− be the subalgebras of Uqg generated by the (Ei)1≤i≤ℓ, (Kλ)λ∈P and
(Fi)1≤i≤ℓ respectively. The multiplication induces an isomorphism of vector spaces Uqg ≃
U+ ⊗ U0 ⊗ U−. Let Ψ : (Uqg → U0) be the Harish-Chandra map given by (E Kλ F 7→
q(λ|ρ)ε(E)ε(F )Kw0λ) in this triangular decomposition of Uqg. There is a natural isomorphism
from the algebra of the weight group onto a subalgebra of U0, given by τ : (C(q)[P] →
U0, eλ 7→ K2λ); there is thus a natural action of W on (im τ). Rosso [15] (see also [16, §2.8])
has shown that Ψ defines an isomorphism from the center of Uqg to the set of W-invariant
elements in (im τ), and thus that τ−1 ◦ Ψ defines an isomorphism from Z(Uqg) to the set of
exponential invariants (C(q)[P])W.

We will consider only Uqg-modules which are f.d. and of type 1 (following the terminology
of Chari and Pressley [2, p. 314]), that is, modules M such that M =

⊕

λ∈P{x ∈ M | ∀µ ∈
P, Kµ·x = q(λ|µ)x}. The f.d. modules of type 1 are completely reducible and the simple ones
are classified by their highest weight λ ∈ P++. These will be denoted by L(λ). The dual
of L(λ) will be identified with L(λ∗), where λ∗ = −w0(λ). The Grothendieck ring R of the
category of f.d. type 1 modules is naturally isomorphic to the representation ring of g, and
the formal character ch gives an isomorphism from R to the algebra of exponential invariants
Z[P]W. Finally each module L(λ) is absolutely simple, so has a central character χλ+ρ. If
evλ denotes the algebra morphism (U0 → C(q), Kµ 7→ q(λ|µ)), one has χλ(z) = evλ ◦Ψ(z) for
all z ∈ Z(Uqg).
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2.3 Expression of the z
(1)
M

The most important thing for us is that Uqg is a quasitriangular Hopf algebra [3]. There
exist two possible R-matrices [7]: we choose the one with the structure R12 =

∑

(diagonal
part)(polynomial in F ) ⊗ (polynomial in E), and the other one is R−1

21 . The element u is
such that u S(u)−1 = K−4ρ; there is a natural square root of this group-like element, and
we define the ribbon element v by the equation uv−1 = K−2ρ. Finally, R12 acts only in f.d.
type 1 Uqg-modules, and we define consequently AqG as the C(q)-linear span of the matrix
coefficients of these representations. Then AqG separates the points of Uqg, and one gets a
ribbon Hopf algebra (Uqg,AqG, R12, v). The constructions of section 1.3 allow us to consider

the central elements z
(p)
M for any type 1 f.d. Uqg-module M.

Proposition 5 [8, § 6.10][5]: Up to a scalar, one has Zλ+ρ = z
(1)
L(λ). And one has Ψ(z

(1)
L(λ)) =

τ(ch L(λ)).

Proof Note first that for any µ ∈ P++, one has dimq L(µ) = dimq L(µ∗) = TrL(µ)(K2ρ) =

TrL(µ)(K−2ρ) =
∏

α∈R+

q(α|µ+ρ)−q−(α|µ+ρ)

q(α|ρ)−q−(α|ρ) is different from 0.

Let λ ∈ P++; we can write Zλ+ρ = S(x(1))K2λx(2) for some x ∈ Uqg, by the definition of
Zλ+ρ. We then compute, for any µ ∈ P++:

dimq L(µ) χµ+ρ(Zλ+ρ) = TrL(µ)(K2ρZλ+ρ)

= TrL(µ)(K2ρS(x(1))K2λx(2))

= TrL(µ)(x(2)S
−1(x(1))K2ρK2λ)

= ε(x) TrL(µ)(K2(λ+ρ)).

Using the weight decomposition of L(µ) and the Weyl character formula, we find that:

dimq L(µ) χµ+ρ(Zλ+ρ) = ε(x)

∑

w∈W ε(w)q2(λ+ρ|w(µ+ρ))

∑

w∈W ε(w)q2(λ+ρ|wρ)

=
ε(x)

dimq L(λ)

∑

w∈W ε(w)q2(λ+ρ|w(µ+ρ))

∑

w∈W ε(w)q2(ρ|wρ) .

According to [18, lemma 3.5.1], we thus have:

dimq L(µ) χµ+ρ(Zλ+ρ) =
ε(x)

dimq L(λ)
〈〈Trq,L(µ), Trq,L(λ)〉〉 =

ε(x)

dimq L(λ)
〈Trq,L(µ), z

(1)
L(λ)〉.

Zλ+ρ and ε(x)
dimq L(λ)

z
(1)
L(λ) act therefore by the same scalar in any simple f.d. type 1 Uqg-module,

thus are equal.
On the other hand:

χµ+ρ(z
(1)
L(λ)) = 1

dimq L(µ)
〈Trq,L(µ), z

(1)
L(λ)〉

=
1

dimq L(µ)

∑

w∈W ε(w)q2(λ+ρ|w(µ+ρ))

∑

w∈W ε(w)q2(ρ|wρ)
(2)

=

∑

w∈W ε(w)q2(λ+ρ|w(µ+ρ))

∑

w∈W ε(w)q2(µ+ρ|wρ) = evµ+ρ(τ(ch L(λ))),

8



so that Ψ(z
(1)
L(λ)) = τ(ch L(λ)). ¤

2.4 Expression of the z
(p)
M

Now, we can prove the main result of this article. Because of the preceding description,
it is natural to put Z

(p)
λ+ρ = z

(p)
L(λ), where the z

(p)
M were defined (in section 1.3) as 〈id ⊗

Trq,M, (R21R12)
p〉. This defines Z

(p)
λ+ρ if λ + ρ is a regular dominant weight; we define Z

(p)
µ for

any weight µ by the requirement Z
(p)
wµ = ε(w)Z

(p)
µ for any w ∈ W; in particular, Z

(p)
µ = 0 if µ

belongs to a wall, and Z
(p)
0 = 0, Z

(p)
ρ = 1.

Theorem 1 For any λ ∈ P,
∑

w∈W ε(w)q2p(λ|wρ)Z
(p)
λ+wρ =

∑

w∈W ε(w)q2(λ|wρ)Z
(1)
pλ+wρ. These

relations caracterize the elements Z
(p)
λ .

Proof We will check that any central character χµ+ρ takes the same value on both sides
of this equation. For λ ∈ ρ + P++ and w ∈ W, we set (in the Grothendieck ring R):
L(wλ − ρ) = ε(w)L(λ − ρ); it is just a convenient convention allowing to write the formula
for the tensor product multiplicities in R:

L(λ) ⊗ L(µ) =
∑

ν∈P++

(
∑

w∈W ε(w) dim L(λ)w(ν+ρ)−µ−ρ

)

L(ν)

(where L(λ)τ is the subspace of L(λ) of weight τ) in the following simple form:

L(λ) ⊗ L(µ) =
∑

ν∈P (dim L(λ)ν−µ) L(ν) =
∑

ν∈P (dim L(λ)ν) L(µ + ν).

We similarly set Trq,L(wλ−ρ) = ε(w) Trq,L(λ−ρ), so that (R → AqG, L(λ) 7→ Trq,L(λ)) is a
well-defined ring homomorphism. We also need the ribbon element v = uK2ρ. It acts in
the module L(λ) as the scalar q−(λ|λ+2ρ). The formula (1) (in the section 1.1) shows that
(R21R12) acts as the scalar q(ν|ν+2ρ)−(λ|λ+2ρ)−(µ|µ+2ρ) in the isotypical component of type L(ν)
of the tensor product L(λ) ⊗ L(µ).

Then we compute:

dimqL(µ)χµ+ρ(l.h.s.) = Trq,L(µ)(l.h.s.)

=
∑

w∈W ε(w)q2p(λ|wρ)〈Trq,L(µ) ⊗Trq,L(λ+wρ−ρ), (R21R12)
p〉

=
∑

w∈W ε(w)q2p(λ|wρ)
(

∑

ν∈P dim L(λ + wρ − ρ)ν

〈Trq,L(µ+ν), q
p((µ+ν|µ+ν+2ρ)−(λ+wρ−ρ|λ+wρ+ρ)−(µ|µ+2ρ))〉

)

=
∑

ν∈P

(
∑

w∈W ε(w) dim L(λ + wρ − ρ)ν

)

dimq L(µ + ν) qp((ν|ν+2µ+2ρ)−‖λ‖2)

=
∑

w′∈W dimq L(w′λ + µ) q2p(w′λ|µ+ρ),

since
∑

w∈W ε(w) ch L(λ + wρ − ρ) =
∑

w′∈W ew′λ, a consequence of the Weyl character
formula.
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Setting D =
∑

w∈W ε(w)q2(ρ|wρ), we compute, using formula (2):

dimq L(µ) χµ+ρ(r.h.s.) =
∑

w∈W ε(w)q2(λ|wρ) dimq L(µ)χµ+ρ(Z
(1)
pλ+wρ)

= 1
D

∑

w∈W ε(w)q2(λ|wρ)
(
∑

w′∈W ε(w′)q2(µ+ρ|w′(pλ+wρ))
)

= 1
D

∑

w,w′∈W ε(w)q2(µ+ρ|w′pλ)q2(w′λ+µ+ρ|wρ)

=
∑

w′∈W q2p(w′λ|µ+ρ) dimq L(w′λ + µ).

Hence our formula holds. The remainder of this section will prove that it fully caracterizes
the elements Z

(p)
λ . ¤

To conclude the proof of the theorem, we use the following proposition, formulated in an
abstract setting. Let V be a Q-vector space. The set of functions P → V is in bijection with
HomZ(Z[P], V). By the action of W on Z[P], HomZ(Z[P], V) becomes a W-module, and we
note H1 and Hε the isotypical components corresponding to the characters 1 and ε of W.

Proposition 6 If v ∈ AutQ(V), then the map (Hε → H1, f 7→ (λ 7→
∑

w∈W ε(w)v(λ|wρ)f(λ+
wρ))) is injective.

Proof Let f ∈ Hε belonging to the kernel of the map, and suppose that f is non-zero. Since
f ∈ Hε, f(0) = 0. Let λ ∈ P++ be a dominant weight such that f(λ + ρ) 6= 0 with ‖λ + ρ‖
minimal for this property. By hypothesis,

∑

w∈W ε(w)v(λ|wρ)f(λ + wρ) = 0. We rewrite this
sum

∑

w∈W v(wλ|ρ)f(wλ + ρ) = |Wλ|
∑

w∈W/Wλ
v(wλ|ρ)f(wλ + ρ) where Wλ is the stabilizer

of λ in W. Thus
∑

w∈W/Wλ
v(wλ|ρ)f(wλ + ρ) = 0. The weights occurring in this sum verify

‖wλ + ρ‖ < ‖λ + ρ‖ if w 6= Wλ. (To see this, write a reduced decomposition of (the shortest
representative of) w: w = si1 · · · sik , with sik(λ) 6= λ. Then {β ∈ R+ | w(β) ∈ −R+} =
{αik , sik(αik−1

), . . . , siksik−1
· · · si2(αi1)}, so ρ−w−1(ρ) ∈ αik + Q+, where Q+ is the Z+-span

of R+. So (λ | ρ) > (λ | w−1ρ), hence ‖wλ + ρ‖ < ‖λ + ρ‖.) This contradicts the choice of
λ. ¤

An application of this proposition proves the last assertion in our theorem 1.

Remarks 1. Drinfel′d’s result (proposition 2) implies that the Z
(1)
µ+ρ (µ ∈ P++) span a

Z-form in Z(Uqg). We then have that the Z
(p)
λ belong to

∑

µ∈P++
Z[q, q−1]Z

(1)
µ+ρ. We

take now the image of our formula in Z[q, q−1][P]W by the map τ−1◦Ψ, and we compose

by the evaluation at q = 1: Z[q, q−1][P] → Z[P]. We know that Z
(1)
λ+ρ is sent to ch L(λ),

and the Weyl character formula then tells that Z
(p)
λ+ρ is sent to ψp(ch L(λ)) [17]. Here

ψp is the Adams operator in the algebra Z[P]: it is the algebra morphism eλ 7→ epλ;
it may be viewed as the convolution product id ∗ · · · ∗ id (p times), Z[P] being a Hopf
algebra (over Z).

2. The scalar products on R given by 〈L(λ), L(µ)〉p = 〈Trq,L(λ), z
(p)
L(µ)〉 satisfy

〈L(λ), L(µ)〉p = 〈L(µ), L(λ)〉p = 〈L(λ∗), L(µ∗)〉p. They are similar to Macdonald’s
scalar products (cf. [10]), but the combinatorics is considerably much easier in our
case.
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3 An application to a theorem of Faddeev, Reshetikhin

and Takhtadzhyan

Besides being funny for itself, our formula (theorem 1) has two consequences. First, it gives
relations between invariants of knots that one constructs with the quantum groups. It can
also be applied to prove a theorem stated in [6].

Let us suppose that g is of classical type A, B, C or D and of rank ℓ. We adopt Bourbaki’s
conventions for the root systems [1]. For instance, L(̟1) is the natural representation of g.
We will keep track of the normalization of the invariant bilinear form on h∗ by letting d be
half of the square of the length of a short root.

We now recall the formalism of [6]. We choose a basis (vi) of L(̟1), consisting of
vectors of weights (λi), we let (v∗

i ) be the dual basis, and we consider the matrix T = (tij)
of the coefficients of this representation: for x ∈ Uqg, 〈tij, x〉 = 〈v∗

i , x · vj〉. Faddeev,
Reshetikhin and Takhtadzhyan define the matrices with coefficients in Uqg: L± = (l±ij), with
l+ij = 〈id ⊗ tij, R12〉 ∈ U0U− and S(l−ij) = 〈tij ⊗ id, R12〉 ∈ U+U0. They consider the elements
of Uqg:

Tr(q2ρ(L+S(L−))k) =
∑

i1,... ,ik
j1,... ,jk

q(2ρ|λi1
)l+i1j1

S(l−j1i2
) · · · l+ikjk

S(l−jki1
)

=
∑

i1,... ,ik
j1,... ,jk

q(2ρ|λi1
)〈id ⊗ ti1j1 , R12〉〈tj1i2 ⊗ id, R12〉 · · ·

〈id ⊗ tikjk
, R12〉〈tjki1 ⊗ id, R12〉

=
∑

i1

q(2ρ|λi1
)〈ti1i1 ⊗ id, (R21R12)

k〉

= 〈TrL(̟1) ⊗id, (R21R12)
k(K2ρ ⊗ 1)〉

= 〈TrL(̟1)∗ ⊗S, (S−1 ⊗ S−1)((R21R12)
k(K2ρ ⊗ 1))〉

= 〈S ⊗ TrL(̟1)∗ , (1 ⊗ K−2ρ)(R21R12)
k〉

= S(J∗k(Trq,L(̟1)∗))

= S(z
(k)
L(̟1)∗

)

= z
(k)
L(̟1).

They state ([6, theorem 14]) that these elements belong to and generate the center of Uqg.
We will indeed prove a more precise theorem:

Theorem 2 Let Y be the subalgebra of Z(Uqg) generated by the elements z
(1)
L(̟1), . . . , z

(ℓ)
L(̟1).

Then:

• in case Aℓ or Cℓ, Y is the whole algebra Z(Uqg).

• in case Bℓ, we use the Harish-Chandra map τ−1 ◦ Ψ : Z(Uqg)
∼
→(C(q)[P])W to describe

Z(Uqg). Y corresponds to the subalgebra spanned by the characters ch M ∈ Z[P]W of

vectorial representations of g. It is the subalgebra of (C(q)[P])W fixed by the involution

s : (ch L(̟i) 7→ ch L(̟i) (i ≤ ℓ − 1), ch L(̟ℓ) 7→ − ch L(̟ℓ)).
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• in case Dℓ, Y corresponds to the subalgebra of (C(q)[P])W fixed by the involutions

s : (ch L(̟i) 7→ ch L(̟i) (i ≤ ℓ − 2), ch L(̟ℓ−1) ↔ ch L(̟ℓ)) and t : (ch L(̟i) 7→
ch L(̟i) (i ≤ ℓ − 2), ch L(̟ℓ−1) ↔ − ch L(̟ℓ)).

Proof We rewrite our formula in the form:

∑

w∈W ε(w) q2p(λ|w−1ρ) Z
(p)

λ+w−1ρ =
∑

w∈W ε(w) q2(λ|w−1ρ) Z
(1)

pλ+w−1ρ,

in which we can replace the sums over W by sums over W/Wλ. We will only consider the
cases Aℓ and Bℓ (the cases Cℓ and Dℓ being similar).

• Case Aℓ: the shortest representatives of elements in W/W̟1 are given by
{1, s1, s2s1, . . . , sℓ · · · s1}. Let 1 ≤ p ≤ ℓ. For 1 ≤ k ≤ ℓ + 1 and w = sk−1 · · · s1,
one has:

– ̟1 + w−1ρ belongs to a wall iff k > 1, and it is ̟1 + ρ otherwise;

– p̟1 + w−1ρ belongs to a wall iff k > p, and it is (p − k)̟1 + ̟k + ρ if k ≤ p;

– (̟1 | w−1ρ) = d( ℓ
2
− k + 1) (d = 1 in Bourbaki’s normalization).

Then our formula implies that :

qd·2p ℓ
2 Z

(p)
̟1+ρ =

∑p
k=1(−1)k+1 qd·2( ℓ

2
−k+1) Z

(1)
(p−k)̟1+̟k+ρ.

The rule for tensor product multiplicities [9] and the proposition 2 show that, for
1 ≤ n ≤ ℓ − 1 and 1 ≤ m:

Z
(1)
m̟1+ρ · Z

(1)
̟n+ρ = Z

(1)
m̟1+̟n+ρ + Z

(1)
(m−1)̟1+̟n+1+ρ.

Let Yp ⊆ Z(Uqg) be the C(q) subalgebra generated by the (Z
(s)
̟1+ρ)1≤s≤p. By in-

duction on p, we show that for 1 ≤ p ≤ ℓ, one has Z
(1)
̟1+ρ, . . . ,Z

(1)
̟p+ρ ∈ Yp and

Z
(1)
̟1+ρ, . . . ,Z

(1)
p̟1+ρ ∈ Yp. It is clear for p = 1. If it is true for p − 1, then Yp contains

the following sums:

Z
(1)
(p−1)̟1+ρ · Z

(1)
̟1+ρ = Z

(1)
p̟1+ρ + Z

(1)
(p−2)̟1+̟2+ρ

Z
(1)
(p−2)̟1+ρ · Z

(1)
̟2+ρ = Z

(1)
(p−2)̟1+̟2+ρ + Z

(1)
(p−3)̟1+̟3+ρ

Z
(1)
̟1+ρ · Z

(1)
̟p−1+ρ = Z

(1)
̟1+̟p−1+ρ + Z

(1)
̟p+ρ

qd·2p ℓ
2 Z

(p)
̟1+ρ =

∑p
k=1(−1)k+1 qd·2( ℓ

2
−k+1) Z

(1)
(p−k)̟1+̟k+ρ.

The elements Z
(1)
p̟1+ρ,Z

(1)
(p−2)̟1+̟2+ρ, . . . ,Z

(1)
̟p+ρ are combinations of these, because the

determinant of the system is (−1)p+1qd·(ℓ−p) qd·p−q−d·p

qd−q−d 6= 0.

• Case Bℓ (ℓ ≥ 2): the shortest representatives of elements in W/W̟1 are given by
{1, s1, s2s1, . . . , sℓ · · · s1, sℓ−1sℓsℓ−1 · · · s1, sℓ−2sℓ−1sℓsℓ−1 · · · s1, . . . , s1 · · · sℓ · · · s1}. Let
1 ≤ p ≤ ℓ. For 1 ≤ k ≤ ℓ and w = sk−1 · · · s1, one has:
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– p̟1 + w−1ρ belongs to a wall iff k > p, it is (p − k)̟1 + ̟k + ρ if k ≤ p and
k ≤ ℓ − 1, and 2̟ℓ + ρ if k = p = ℓ;

– (̟1 | w−1ρ) = d(2ℓ − 2k + 1) (d = 1
2

in Bourbaki’s normalization).

For 1 ≤ k ≤ ℓ − 1 and w = sksk+1 · · · sℓsℓ−1 · · · s1, or k = ℓ and w = sℓsℓ−1 · · · s1, one
has:

– p̟1 + w−1ρ belongs to a wall except if p is odd and k = 2ℓ−p+1
2

, in which case
p̟1 + w−1ρ = (sk−1sk−2 · · · s1)

−1ρ;

– (̟1 | w−1ρ) = d(2k − 2ℓ − 1).

We thus have for 1 ≤ p ≤ ℓ − 1, p odd:

qd·2p(2ℓ−1) Z
(p)
̟1+ρ =

∑p
k=1(−1)k+1 qd·2(2ℓ−2k+1) Z

(1)
(p−k)̟1+̟k+ρ

and for 1 ≤ p ≤ ℓ − 1, p even:

qd·2p(2ℓ−1) Z
(p)
̟1+ρ =

∑p
k=1(−1)k+1 qd·2(2ℓ−2k+1) Z

(1)
(p−k)̟1+̟k+ρ + q−d·2p Z

(1)
ρ

and similar relations for p = ℓ, but with the term (−1)ℓ+1qd·2 Z
(1)
2̟ℓ+ρ in the sum for k =

ℓ. An induction similar to the case Aℓ shows that Y is the C(q)-subalgebra generated

by the Z
(1)
̟1+ρ,Z

(1)
̟2+ρ, . . . ,Z

(1)
2̟l+ρ. One has to use the tensor product decomposition

rules:

– L(m̟1)⊗L(̟n) = L(m̟1 + ̟n)⊕L((m− 1)̟1 + ̟n+1)⊕Z (for 1 ≤ n ≤ ℓ− 2,
1 ≤ m), where the summands in Z are some L(j̟1 + ̟k) with k ≤ n, j + k ≤
m + n − 2;

– L(m̟1) ⊗ L(̟ℓ−1) = L(m̟1 + ̟ℓ−1) ⊕ L((m − 1)̟1 + 2̟ℓ) ⊕ Z (for 1 ≤ m),
where the summands in Z are some L(j̟1 +̟k) with k ≤ ℓ−1, j +k ≤ m+ℓ−3;

– L(̟ℓ)
⊗2 belongs to the subring generated in R by L(̟1), . . . , L(̟ℓ−1), L(2̟ℓ).

¤
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