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Abstract

Let G be a complex connected reductive group and let G∨ be its Langlands dual.

Let us choose a triangular decomposition n−,∨ ⊕ h∨ ⊕ n+,∨ of the Lie algebra of G∨.

Braverman, Finkelberg and Gaitsgory show that the set of all Mirković-Vilonen cycles

in the affine Grassmannian G
(
C((t))

)
/G

(
C[[t]]

)
is a crystal isomorphic to the crystal of

the canonical basis of U(n+,∨). Starting from the string parameter of an element of the

canonical basis, we give an explicit description of a dense subset of the associated MV

cycle. As a corollary, we show that the varieties involved in Lusztig’s algebraic-geometric

parametrization of the canonical basis are closely related to MV cycles. In addition, we

prove that the bijection between LS paths and MV cycles constructed by Gaussent and

Littelmann is an isomorphism of crystals.

1 Introduction

Let G be a complex connected reductive group, G∨ be its Langlands dual, and G be its
affine Grassmannian. The geometric Satake correspondence of Lusztig [22], Beilinson and
Drinfeld [3] and Ginzburg [12] relates rational representations of G∨ to the geometry of G .
More precisely, let us fix a pair of opposite Borel subgroups in G, to enable us to speak of
weights and dominance. Each dominant weight λ for G∨ determines a G(C[[t]])-orbit Gλ in G .
Then the geometric Satake correspondence identifies the underlying space of the irreducible
rational G∨-module L(λ) with highest weight λ with the intersection cohomology of Gλ.

In [27], Mirković and Vilonen present a proof of the geometric Satake correspondence valid
in any characteristic. Their main tool is a class Z (λ) of subvarieties of Gλ, the so-called MV
cycles, which affords a basis of the intersection cohomology of Gλ. It is tempting to try to
compare this construction with standard bases in L(λ), for instance with the canonical basis
of Lusztig [23] (also known as the global crystal basis of Kashiwara [15]).

Several works achieve such a comparison on a combinatorial level. More precisely, let us
recall that the combinatorial object that indexes naturally the canonical basis of L(λ) is the
crystal B(λ). In [9], Braverman and Gaitsgory endow the set Z (λ) with the structure of a
crystal and show the existence of an isomorphism of crystals Ξ(λ) : B(λ)

≃
−→ Z (λ). In [11],

Gaussent and Littelmann introduce a set Γ+
LS(γλ) of “LS galleries”. They endow it with the

structure of a crystal and they associate an MV cycle Z(δ) ∈ Z (λ) to each LS gallery δ ∈

Γ+
LS(γλ). Finally they show the existence of an isomorphism of crystals χ : B(λ)

≃
−→ Γ+

LS(γλ)
and they prove that the map Z : Γ+

LS(γλ) → Z (λ) is a bijection. One of the results of the

∗Both authors are members of the European Research Training Network “LieGrits”, contract no. MRTN-

CT 2003-505078.

MSC: Primary 20G05, Secondary 05E15 14M15 17B10 22E67.
Keywords: affine Grassmannian, Mirković-Vilonen cycle, crystal.

1



present paper (Theorem 25) says that Gaussent and Littelmann’s map Z is the composition
Ξ(λ) ◦ χ−1; in particular Z is an isomorphism of crystals.

Let Λ be the lattice of weights of G∨, let n−,∨ ⊕ h⊕ n+,∨ be the triangular decomposition
of the Lie algebra of G∨ afforded by the pinning of G, and let B(−∞) be the crystal of
the canonical basis of U(n+,∨). Then for each dominant weight λ, the crystal B(λ) can be
embedded into a shifted version Tw0λ ⊗B(−∞) of B(−∞), where w0λ is the smallest weight

of B(λ). It is thus natural to consider a big crystal B̃(−∞) =
⊕

λ∈Λ Tλ ⊗ B(−∞) in order

to deal with all the B(λ) simultaneously. The isomorphisms Ξ(λ) : B(λ)
≃

−→ Z (λ) then

assemble in a big bijection Ξ : B̃(−∞)
≃

−→ Z . The set Z here collects subvarieties of G that
have been introduced by Anderson in [1]. These varieties are a slight generalization of the
usual MV cycles; indeed Z ⊇ Z (λ) for each dominant weight λ. Kamnitzer [13] calls the
elements of Z “stable MV cycles”, but we will simply call them MV cycles. The existence of
Ξ and of a crystal structure on Z , and the fact that Ξ is an isomorphism of crystals are due
to Braverman, Finkelberg and Gaitsgory [8].

The crystal B(−∞) can be parametrized in several ways. Two families of parametrizations,
usually called the Lusztig parametrizations and the string parametrizations (see [6]), depend
on the choice of a reduced decomposition of the longest element in the Weyl group of G;
they establish a bijection between B(−∞) and tuples of natural integers. On the contrary,
Lusztig’s algebraic-geometric parametrization [25] is intrinsic and describes B(−∞) in terms
of closed subvarieties in U−

(
C[[t]]

)
, where U− is the unipotent radical of the negative Borel

subgroup of G.
One of the main results of the present paper is Theorem 15, which describes very explicitly

the MV cycle Ξ(t0 ⊗ b) starting from the string parameter of b ∈ B(−∞). In the course of
his work on MV polytopes [13], Kamnitzer obtains a similar result, this time starting from
the Lusztig parameter of b. Though both results are related (see Section 4.5), our approach is
foreign to Kamnitzer’s methods. Our main ingredient indeed is a concrete algebraic formula
for Braverman, Finkelberg and Gaitsgory’s crystal operations on Z that translates the original
geometric definition (Proposition 14). Moreover, our result implies that Lusztig’s algebraic-
geometric parametrization is closely related to MV cycles (Proposition 18).

The paper consists of four sections (plus the introduction). Section 2 fixes some notation
and gathers facts and terminology from the theory of crystals bases. Section 3 recalls several
standard constructions in the affine Grassmannian and presents the known results concerning
MV cycles. Section 4 defines Braverman, Finkelberg and Gaitsgory’s crystal operations on
Z and presents our results concerning string parametrizations. Section 5 establishes that
Gaussent and Littelmann’s bijection Z : Γ+

LS(γλ) → Z (λ) is a crystal isomorphism. Each
section opens with a short summary which gives a more detailed account of its contents.

We wish to thank M. Ehrig, J. Kamnitzer, P. Littelmann, I. Mirković, S. Morier-Genoud
and G. Rousseau for fruitful conversations, vital information and/or useful indications. We
are also grateful to the referee for his attentive reading and his skilful suggestions.

2 Preliminaries

The task devoted to Section 2.1 is to fix the notation concerning the pinned group G. In
Section 2.2, we fix the notation concerning crystal bases for G∨-modules.
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2.1 Notations for pinned groups

In the entire paper, G will be a complex connected reductive algebraic group. We assume
that a Borel subgroup B+ and a maximal torus T ⊆ B+ are fixed. We let B− be the opposite
Borel subgroup to B+ relatively to T . We denote the unipotent radical of B± by U±.

We denote the character group of T by X = X∗(T ); we denote the lattice of all one-
parameter subgroups of T by Λ = X∗(T ). A point λ ∈ Λ is a morphism of algebraic groups
C× → T, a 7→ aλ. We denote the root system and the coroot system of (G, T ) by Φ and
Φ∨ = {α∨ | α ∈ Φ}, respectively. The datum of B+ splits Φ into the subset Φ+ of positive
roots and the subset Φ− of negative roots. We set Φ∨

+ = {α∨ | α ∈ Φ+}. We denote by
X++ = {η ∈ X | ∀α∨ ∈ Φ∨

+, 〈η, α∨〉 > 0} and Λ++ = {λ ∈ Λ | ∀α ∈ Φ+, 〈α, λ〉 > 0}
the cones of dominant weights and coweights. We index the simple roots as (αi)i∈I . The
coroot lattice is the subgroup ZΦ∨ generated by the coroots in Λ; the height of an element
λ =

∑
i∈I niα

∨
i in ZΦ∨ is defined as ht(λ) =

∑
i∈I ni. The dominance order on X is the

partial order 6 defined by
η > θ ⇐⇒ η − θ ∈ NΦ+.

The dominance order on Λ is the partial order 6 defined by

λ > µ ⇐⇒ λ − µ ∈ NΦ∨
+.

For each simple root αi, we choose a non-trivial additive subgroup xi of U+ such that
aλxi(b)a

−λ = xi

(
a〈αi,λ〉b

)
holds for all λ ∈ Λ, a ∈ C×, b ∈ C. Then there is a unique

morphism ϕi : SL2 → G such that

ϕi

(
1 b
0 1

)
= xi(b) and ϕi

(
a 0
0 a−1

)
= aα∨

i

for all a ∈ C×, b ∈ C. We set

yi(b) = ϕi

(
1 0
b 1

)
and si = ϕi

(
0 1
−1 0

)
.

Let NG(T ) be the normalizer of T in G and let W = NG(T )/T be the Weyl group of
(G, T ). Each element si normalizes T ; its class si modulo T is called a simple reflection.
Endowed with the set of simple reflections, the Weyl group becomes a Coxeter system. Since
the elements si satisfy the braid relations, we may lift each element w ∈ W to an element
w ∈ G so that w = si1 · · · sil for any reduced decomposition si1 · · · sil of w. For any two
elements w and w′ in W , there exists an element λ ∈ ZΦ∨ such that ww′ = (−1)λ w w′. We
denote the longest element of W by w0.

Let α be a positive root. We make the choice of a simple root αi and of an element w ∈ W
such that α = wαi. Then we define the one-parameter additive subgroups

xα : b 7→ w xi(b)w−1 and x−α : b 7→ w yi(b)w−1 (1)

and the element sα = w si w
−1.

Products in G may then be computed using several commutation rules:

• For any λ ∈ Λ, any root α, any a ∈ C× and any b ∈ C,

aλxα(b) = xα

(
a〈α,λ〉b

)
aλ. (2)
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• For any root α and any a, b ∈ C such that 1 + ab 6= 0,

xα(a)x−α(b) = x−α

(
b/(1 + ab)

)(
1 + ab

)α∨

xα

(
a/(1 + ab)

)
. (3)

• For any positive root α and any a ∈ C×,

xα(a)x−α(−a−1)xα(a) = x−α(−a−1)xα(a)x−α(−a−1) = aα∨

sα = sα a−α∨

. (4)

• (Chevalley’s commutator formula) If α and β are two linearly independent roots, then there
are numbers Ci,j,α,β ∈ {±1,±2,±3} such that

xβ(b)−1xα(a)−1xβ(b)xα(a) =
∏

i,j>0

xiα+jβ

(
Ci,j,α,β(−a)ibj

)
(5)

for all a and b in C. The product in the right-hand side is taken over all pairs of positive
integers i, j for which iα + jβ is a root, in order of increasing i + j.

2.2 Crystals

Let G∨ be the Langlands dual of G. This connected reductive group is equipped with a Borel
subgroup B+,∨ and a maximal torus T∨ ⊆ B+,∨ so that Λ is the weight lattice of T∨ and Φ∨

is the root system of (G∨, T∨), the set of positive roots being Φ∨
+. The Lie algebra g∨ of G∨

has a triangular decomposition g∨ = n−,∨ ⊕ h∨ ⊕ n+,∨.
A crystal for G∨ (in the sense of Kashiwara [18]) is a set B endowed with maps

ẽi, f̃i : B → B ⊔ {0}, εi, ϕi : B → Z ⊔ {−∞}, and wt : B → Λ,

where 0 is a ghost element added to B in order that ẽi and f̃i may be everywhere defined.
These maps are required to satisfy certain axioms, which the reader may find in Section 7.2
of [18]. The map wt is called the weight.

A morphism from a crystal B to a crystal B′ is a map ψ : B ⊔ {0} → B′ ⊔ {0} satisfying
ψ(0) = 0 and compatible with the structure maps ẽi, f̃i, εi, ϕi and wt. The conditions are
written in full detail in [18].

Given a crystal B, one defines a crystal B∨ whose elements are written b∨, where b ∈ B,
and whose structure maps are given by

εi(b
∨) = ϕi(b), ẽi(b

∨) = (f̃ib)
∨,

ϕi(b
∨) = εi(b), f̃i(b

∨) = (ẽib)
∨,

wt(b∨) = −wt(b),

where one sets 0∨ = 0. The correspondence B Ã B∨ is a covariant functor. (Caution: Usually
in this paper, the symbol ∨ is used to adorn coroots or objects related to the Langlands dual.
Here and in Section 4.4 however, it will also be used to denote contragredient duality for
crystals.)

The most important crystals for our work are the crystal B(∞) of the canonical basis of
U(n−,∨) and the crystal B(−∞) of the canonical basis of U(n+,∨). The crystal B(∞) is a
highest weight crystal; this means that it has an element annihilated by all operators ẽi and
from which any other element of B(∞) can be obtained by applying the operators f̃i. This
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element is unique and its weight is 0; we denote it by 1. Likewise the crystal B(−∞) is a
lowest weight crystal; its lowest weight element has weight 0 and is also denoted by 1.

The antiautomorphism of the algebra U(n−,∨) that fixes the Chevalley generators leaves
stable its canonical basis; it therefore induces an involution b 7→ b∗ of the set B(∞). This
involution ∗ preserves the weight. The operators f̃i and b 7→ (f̃ib

∗)∗ correspond roughly to
the left and right multiplication in U(n−,∨) by the Chevalley generator with index i (see
Proposition 5.3.1 in [16] for a more precise statement). One can therefore expect that f̃i and
b 7→ (f̃jb

∗)∗ commute for all i, j ∈ I. This actually holds only if i 6= j; and when i = j,
one can analyze precisely the mutual behavior of these operators. In return, one obtains a
characterization of B(∞) as the unique highest weight crystal generated by a highest weight
element of weight 0 and endowed with an involution ∗ with specific properties (see Section 2
in [17], Proposition 3.2.3 in [19], and Section 12 in [8] for more details).

For any weight λ ∈ Λ, we consider the crystal Tλ with unique element tλ, whose structure
maps are given by

wt(tλ) = λ, ẽitλ = f̃itλ = 0 and εi(tλ) = ϕi(tλ) = −∞

(see Example 7.3 in [18]). There are two operations ⊕ and ⊗ on crystals (see Section 7.3

in [18]). We set B̃(−∞) =
⊕

λ∈Λ Tλ ⊗ B(−∞). Thus for any b ∈ B(−∞), any λ ∈ Λ and
any i ∈ I,

εi(tλ ⊗ b) = εi(b) − 〈αi, λ〉, ẽi(tλ ⊗ b) = tλ ⊗ ẽi(b),

ϕi(tλ ⊗ b) = ϕi(b), f̃i(tλ ⊗ b) = tλ ⊗ f̃i(b),

wt(tλ ⊗ b) = wt(b) + λ.

We transport the involution ∗ from B(∞) to B(−∞) by using the isomorphism B(−∞) ∼=

B(∞)∨ and by setting (b∨)∗ = (b∗)∨ for each b ∈ B(∞). Then we extend it to B̃(−∞) by
setting

(tλ ⊗ b)∗ = t−λ−wt(b) ⊗ b∗.

For λ ∈ Λ, we denote by L(λ) the irreducible rational representation of G∨ whose highest
weight is the unique dominant weight in the orbit Wλ. We denote the crystal of the canonical
basis of L(λ) by B(λ). It has a unique highest weight element bhigh and a unique lowest weight
element blow, which satisfy ẽibhigh = f̃iblow = 0 for any i ∈ I. If λ is dominant, there is a
unique embedding of crystals κλ : B(λ) →֒ B(∞) ⊗ Tλ; it maps the element bhigh to 1 ⊗ tλ
and its image is

{b ⊗ tλ | b ∈ B(∞) such that ∀i ∈ I, εi(b
∗) 6 〈αi, λ〉}

(see Proposition 8.2 in [18]). If λ is antidominant, then the sequence

B(λ) ∼= B(−λ)∨
(κ−λ)∨

−−−−→
(
B(∞) ⊗ T−λ

)∨ ∼= Tλ ⊗ B(−∞)

defines an embedding of crystals ιλ : B(λ) →֒ Tλ ⊗B(−∞); it maps the element blow to tλ ⊗1
and its image is

{tλ ⊗ b | b ∈ B(−∞) such that ∀i ∈ I, ϕi(b
∗) 6 −〈αi, λ〉}.
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3 The affine Grassmannian

In Section 3.1, we recall the definition of an affine Grassmannian. In Section 3.2, we present
several properties of orbits in the affine Grassmannian of G under the action of the groups
G

(
C[[t]]

)
and U±

(
C((t))

)
. Section 3.3 recalls the notion of MV cycle, in the original version of

Mirković and Vilonen and in the somewhat generalized version of Anderson. Finally Section
3.4 introduces a map from the affine Grassmannian of G to the affine Grassmannian of a Levi
subgroup of G.

An easy but possibly new result in this section is Proposition 5 (iii). Joint with Mirković
and Vilonen’s work, it implies the expected Proposition 7, which provides the dimension
estimates that Anderson needs for his generalization of MV cycles.

3.1 Definitions

We denote the ring of formal power series by O = C[[t]] and we denote its field of fractions
by K = C((t)). We denote the valuation of a non-zero Laurent series f ∈ K × by val(f).
Given a complex linear algebraic group H, we define the affine Grassmannian of H as the
space H = H(K )/H(O). The class in H of an element h ∈ H(K ) will be denoted by [h].

Example. If H is the multiplicative group Gm, then the valuation map yields a bijection from
H = K ×/O× onto Z. More generally, if H is a torus, then the map λ 7→ [tλ] is a bijection
from the lattice X∗(H) of one-parameter subgroups in H onto the affine Grassmannian H .

The affine Grassmannian H is the set of C-points of an ind-scheme defined over C (see
[2] for H = GLn or SLn and Chapter 13 of [20] for H simple). This means in particular that
H is the direct limit of a system

H0 →֒ H1 →֒ H2 →֒ · · ·

of complex algebraic varieties and of closed embeddings. We endow H with the direct limit
of the Zariski topologies on the varieties Hn. A noetherian subspace Z of H thus enjoys the
specific topological properties of a subset of a complex algebraic variety; for instance if Z is
locally closed, then dimZ = dimZ.

The affine Grassmannian of the groups G and T considered in Section 2.1 will be denoted
by G and T , respectively. The inclusion T ⊆ G gives rise to a closed embedding T →֒ G .

3.2 Orbits

We first look at the action of the group G(O) on G by left multiplication. The orbit G(O)[tλ]
depends only on the W -orbit of λ in Λ, and the Cartan decomposition of G(K ) says that

G =
⊔

Wλ∈Λ/W

G(O)[tλ].

For each coweight λ ∈ Λ, the orbit Gλ = G(O)[tλ] is a noetherian subspace of G . If λ is
dominant, then the dimension of Gλ is ht(λ − w0λ) and its closure is

Gλ =
⊔

µ∈Λ++

λ>µ

Gµ. (6)
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From this, one can quickly deduce that it is often possible to truncate power series when
dealing with the action of G(O) on G . Given an positive integer s, let G(s) denote the s-th
congruence subgroup of G(O), that is, the kernel of the reduction map G(O) → G(O/tsO).

Proposition 1 For each noetherian subset Z of G , there exists a level s such that G(s) fixes
Z pointwise.

Proof. Let
(
Λ

(n)
++

)
n∈N

be an increasing sequence of finite subsets of Λ++ such that

{
ν ∈ Λ++

∣∣ ν 6 µ
}
⊆ Λ

(n)
++ for each µ ∈ Λ

(n)
++ and that

⋃

n∈N

Λ
(n)
++ = Λ++.

Set Gn =
⊔

µ∈Λ
(n)
++

Gµ. The Cartan decomposition shows that (Gn)n>0 is an increasing and

exhaustive filtration of G , and Equation (6) shows that each Gn is closed. Therefore each
noetherian subset Z of G is contained in Gn for n sufficiently large. To prove the proposition,
it is thus enough to show that for each integer n, there is an s > 1 such that G(s) fixes Gn

pointwise.
Let λ ∈ Λ, and choose s > 1 larger than 〈α, λ〉 for all α ∈ Φ. Using that G(s) is generated

by elements (1 + tsp)λ and xα(tsp) with λ ∈ Λ, α ∈ Φ and p ∈ O, one readily checks that
G(s) fixes the point [tλ]. Since G(s) is normal in G(O), it pointwise fixes the orbit Gλ. The
proposition then follows from the fact that each Gn is a finite union of G(O)-orbits. ¤

We now look at the action of the unipotent group U±(K ) on G . It can be described by
the Iwasawa decomposition

G =
⊔

λ∈Λ

U±(K )[tλ].

We will denote the orbit U±(K )[tλ] by S±
λ . Proposition 3.1 (a) in [27] asserts that the closure

of a stratum S±
λ is the union

S±
λ =

⊔

µ∈Λ

±(λ−µ)>0

S±
µ . (7)

This equation implies in particular

S±
λ = S±

λ \

(
⋃

i∈I

S±
λ∓α∨

i

)
,

which shows that each stratum S±
λ is locally closed.

As pointed out by Mirković and Vilonen (Equation (3.5) in [27]), these strata S±
λ can be

understood in terms of a Białynicki-Birula decomposition: indeed the choice of a dominant
and regular coweight ξ ∈ Λ defines an action of C× on G , and

S±
λ = {x ∈ G | lim

a→0
a∈C×

a±ξ · x = [tλ]}

for each λ ∈ Λ. We will generalize this result in Remark 9. For now, we record the following
two (known and obvious) consequences:

• The set of points in G fixed by the action of T is G T =
{
[tλ]

∣∣ λ ∈ Λ
}
; in other words, G T

is the image of the embedding T →֒ G .
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• If Z is a closed and T -invariant subset of G , then Z meets a stratum S±
λ if and only if

[tλ] ∈ Z.

The following proposition is in essence due to Kamnitzer (see Section 3.3 in [13]).

Proposition 2 Let Z be an irreducible and noetherian subset of G .

(i) The set {λ ∈ Λ | Z ∩ S+
λ 6= ∅} is finite and has a largest element. Denoting the latter by

µ+, the intersection Z ∩ S+
µ+

is open and dense in Z.

(ii) The set {λ ∈ Λ | Z ∩ S−
λ 6= ∅} is finite and has a smallest element. Denoting the latter

by µ−, the intersection Z ∩ S−
µ−

is open and dense in Z.

Given an irreducible and noetherian subset Z in G , we indicate the coweights µ± exhibited in
Proposition 2 by the notation µ±(Z).

Proof of Proposition 2. The Cartan decomposition and the equality G T = {[tλ] | λ ∈ Λ} imply
that the obvious inclusion (Gν)

T ⊇ {[twν ] | w ∈ W} is indeed an equality for each coweight
ν ∈ Λ. Therefore XT is finite for each subset X ⊆ G that is a finite union of G(O)-orbits.
This is in particular the case for each of the subsets Gn used in the proof of Proposition 1.
Since Gn is moreover closed and T -invariant, this means that it meets only finitely many strata
S+

λ . Thus a noetherian subset of G meets only finitely many strata S+
λ , for it is contained in

Gn for n large enough.
Assume now that Z is an irreducible and noetherian subset of G . Each intersection Z∩S+

λ

is locally closed in Z and Z is covered by finitely many such intersections, so there exists a
coweight µ+ for which the intersection Z ∩ S+

µ+
is dense in Z. Then Z ⊆ S+

µ+ ; by Equation
(7), this means that µ+ is the largest element in {λ ∈ Λ | Z ∩ S+

λ 6= ∅}. Moreover Z ∩ S+
µ+

is
locally closed in Z; it is therefore open in its closure in Z, which is Z.

The arguments above prove Assertion (i). The proof of Assertion (ii) is entirely similar.
¤

Examples 3. (i) If Z is an irreducible and noetherian subset of G , then Z ∩ S+
µ+(Z) ∩ S−

µ−(Z)

is dense in Z. Thus Z and Z are contained in S+
µ+(Z) ∩ S−

µ−(Z). One deduces from this the

equality µ±(Z) = µ±(Z).

(ii) For any coweight λ ∈ Λ, µ+(Gλ) = µ+

(
Gλ

)
and µ−(Gλ) = µ−

(
Gλ

)
are the largest and the

smallest element in the orbit Wλ, respectively.

We now present a method that allows to find the parameter λ of an orbit Gλ or S±
λ to

which a given point of G belongs. Given a C-vector space V , we may form the K -vector
space V ⊗C K by extending the base field and regard V as a subspace of it. In this situation,
we define the valuation val(v) of a non-zero vector v ∈ V ⊗C K as the largest n ∈ Z such
that v ∈ V ⊗ tnO; thus the valuation of a non-zero element v ∈ V is zero. We define the
valuation val(f) of a non-zero endomorphism f ∈ EndK (V ⊗C K ) as the largest n ∈ Z such
that f(V ⊗C O) ⊆ V ⊗ tnO; equivalently, val(f) is the valuation of f viewed as an element in
EndC(V ) ⊗C K .

For each weight η ∈ X, we denote by V (η) the simple rational representation of G whose
highest weight is the dominant weight in the orbit Wη, and we choose an extremal weight
vector vη ∈ V (η) of weight η. The structure map g 7→ gV (η) from G to EndC(V (η)) of this
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representation extends to a map from G(K ) to EndK (V (η)⊗C K ); we denote this latter also
by g 7→ gV (η), or simply by g 7→ g·? if there is no risk of confusion.

Proposition 4 Let g ∈ G (K ).

(i) The antidominant coweight λ ∈ Λ such that [g] ∈ Gλ is characterized by the equations

∀η ∈ X++, 〈η, λ〉 = val
(
gV (η)

)
.

(ii) The coweight λ ∈ Λ such that [g] ∈ S±
λ is characterized by the equations

∀η ∈ X++, ±〈η, λ〉 = − val(g−1 · v±η).

Proof. Assertion (ii) is due to Kamnitzer (this is Lemma 2.4 in [13]), so we only have to prove
Assertion (i). Let λ ∈ Λ be antidominant and let η ∈ X++. Then for each weight θ of V (η),
the element tλ acts by t〈λ,θ〉 on the θ-weight subspace of V (η), with here 〈λ, θ〉 > 〈λ, η〉 since
θ 6 η. It follows that val

(
(tλ)V (η)

)
= 〈λ, η〉. Thus the proposed formula holds for g = tλ.

To conclude the proof, it suffices to observe that val
(
gV (η)

)
depends only of the double coset

G(O)gG(O), for the action of G(O) leaves V (η) ⊗C O invariant. ¤

We end this section with a proposition that provides some information concerning inter-
sections of orbits. We agree to say that an assertion A(λ) depending on a coweight λ ∈ Λ
holds when λ is enough antidominant if

(∃N ∈ Z) (∀λ ∈ Λ) (∀i ∈ I, 〈αi, λ〉 6 N) =⇒ A(λ).

Proposition 5 (i) Let λ, ν ∈ Λ. If S+
λ ∩ S−

ν 6= ∅, then λ > ν.

(ii) Let λ ∈ Λ. Then S+
λ ∩ S−

λ =
{
[tλ]

}
.

(iii) Let ν ∈ Λ such that ν > 0. If λ ∈ Λ is enough antidominant, then S+
λ+ν∩S−

λ = S+
λ+ν∩Gλ.

The proof of this proposition requires a lemma.

Lemma 6 Let ν ∈ Λ such that ν > 0. If λ ∈ Λ is enough antidominant, then S+
λ+ν∩S−

λ ⊆ Gλ.

Proof. For the whole proof, we fix ν ∈ Λ such that ν > 0.
For each η ∈ X++, we make the following construction. We form the list (θ1, θ2, . . . , θN )

of all the weights of V (η), repeated according to their multiplicities and ordered in such a way
that (θi > θj =⇒ i < j) for all indices i, j. Thus N = dim V (η), θ1 = η > θi for all i > 1,
and θ1 + θ2 + · · ·+ θN is W -invariant hence orthogonal to ZΦ∨. We say then that a coweight
λ ∈ Λ satisfies Condition Aη(λ) if

∀j ∈ {1, . . . , N}, 〈θ1 − θj , λ〉 6 〈θj + θj+1 + · · · + θN , ν〉.

Certainly Condition Aη(λ) holds if λ is enough antidominant.
Now we choose a finite subset Y ⊆ X++ that spans the lattice X up to torsion. To

prove the lemma, it is enough to show that S+
λ+ν ∩ S−

λ ⊆ Gλ for all antidominant λ satisfying
Condition Aη(λ) for each η ∈ Y .
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Suppose that λ satisfies these requirements and let g ∈ U−(K )tλ be such that [g] ∈ S+
λ+ν .

We use Proposition 4 (i) to show that [g] ∈ Gλ. Let η ∈ Y . Let (v1, v2, . . . , vN ) be a basis of
V (η) such that for each i, vi is a vector of weight θi. We denote the dual basis in V (η)∗ by
(v∗1, v

∗
2, . . . , v

∗
N ); thus v∗i is of weight −θi. Then

val
(
gV (η)

)
= min

{
val(〈v∗j , g · vi〉)

∣∣ 1 6 i, j 6 N
}
.

The choice g ∈ U−(K )tλ implies that the matrix of gV (η) in the basis (vi)16i6N is lower
triangular, with diagonal entries

(
t〈θi,λ〉

)
16i6N

. Let i 6 j be two indices. Then

g · (vi ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN ) = t〈θj+1+θj+2+···+θN ,λ〉(g · vi) ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN .

Therefore

val(〈v∗j , g · vi〉) + 〈θj+1 + θj+2 + · · · + θN , λ〉

= val(〈v∗j ∧ v∗j+1 ∧ v∗j+2 ∧ · · · v∗N , g · (vi ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN )〉)

= val(〈g−1 · (v∗j ∧ v∗j+1 ∧ v∗j+2 ∧ · · · v∗N ), vi ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN 〉)

> val(g−1 · (v∗j ∧ v∗j+1 ∧ · · · ∧ v∗N ))

= 〈θj + θj+1 + · · · + θN , λ + ν〉;

the last equality here comes from Proposition 4 (ii), taking into account that [g] ∈ S+
λ+ν and

that v∗j ∧ v∗j+1 ∧ · · · ∧ v∗N is a highest weight vector of weight −(θj + θj+1 + · · · + θN ) in
∧N−j+1 V (η)∗. By Condition Aη(λ), this implies

val(〈v∗j , g · vi〉) > 〈θj , λ〉 + 〈θj + θj+1 + · · · + θN , ν〉 > 〈η, λ〉.

Therefore val
(
gV (η)

)
> 〈η, λ〉. On the other hand, val

(
gV (η)

)
6 val(〈v∗1, g · v1〉) = 〈η, λ〉. Thus

the equality val(gV (η)) = 〈η, λ〉 holds for each η ∈ Y , and we conclude by Proposition 4 (i)
that [g] ∈ Gλ. ¤

Proof of Proposition 5. We first prove Assertion (i). We let C× act on G through a dominant
and regular coweight ξ ∈ Λ. Let λ, ν ∈ Λ and assume there exists an element x ∈ S+

λ ∩ S−
ν .

Then
[tν ] = lim

a→0
a−ξ · x belongs to S+

λ =
⋃

µ∈Λ
λ>µ

S+
µ .

This shows that λ > ν.
If µ ∈ Λ is enough antidominant, then

S+
µ ∩ S−

µ ⊆ S+
µ ∩ Gµ =

{
[tµ]

}

by Lemma 6 and Formula (3.6) in [27]. Thus S+
µ ∩ S−

µ =
{
[tµ]

}
if µ is enough antidominant.

It follows that for each λ ∈ Λ,

S+
λ ∩ S−

λ = tλ−µ ·
(
S+

µ ∩ S−
µ

)
= tλ−µ ·

{
[tµ]

}
=

{
[tλ]

}
.

Assertion (ii) is proved.
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Now let ν ∈ Λ such that ν > 0. By Lemma 6, the property

∀σ, τ ∈ Λ, (0 6 τ 6 ν and λ 6 σ 6 λ + ν) =⇒ (S+
σ+τ ∩ S−

σ ⊆ Gσ) (8)

holds if λ is enough antidominant. We assume that this is the case and that moreover

Wλ ∩ {σ ∈ Λ | σ 6 λ + ν} = {λ}.

We now show the equality S+
λ+ν ∩ S−

λ = S+
λ+ν ∩ Gλ. Let us take x ∈ S+

λ+ν ∩ Gλ. Calling σ the
coweight such that x ∈ S−

σ , we necessarily have λ 6 σ 6 λ + ν (using Example 3 (ii) for the
first inequality). Setting τ = λ+ν −σ, we have 0 6 τ 6 ν and x ∈ S+

σ+τ ∩S−
σ , whence x ∈ Gσ

by our assumption (8). This entails σ ∈ Wλ, then σ = λ, and thus x ∈ S−
λ . This reasoning

shows S+
λ+ν ∩Gλ ⊆ S+

λ+ν ∩S−
λ . The converse inclusion also holds (set τ = ν and σ = λ in (8)).

Assertion (iii) is proved. ¤

Remark. Assertion (ii) of Proposition 5 can also be proved in the following way. Let K be
the maximal compact subgroup of the torus T . The Lie algebra of K is k = i(Λ ⊗Z R). The
affine Grassmannian G is a Kähler manifold and the action of K on G is hamiltonian. Let
µ : G → k∗ be the moment map. Fix a dominant and regular coweight ξ ∈ Λ. Then R×

+

acts on G through the map R×
+ →֒ C× ξ

−→ T . The map 〈µ, iξ〉 from G to R strictly increases
along any non-constant orbit for this R×

+-action. Now take λ ∈ Λ and x ∈ S+
λ ∩ S−

λ . Then
lima→0 aξ · x = lima→∞ aξ · x = [tλ]. Thus 〈µ, iξ〉 cannot increases strictly along the orbit
R×

+ · x. This implies that this orbit is constant; in other words, x = [tλ].

3.3 Mirković-Vilonen cycles

Let λ, ν ∈ Λ. In order that S+
ν ∩Gλ 6= ∅, it is necessary that [tν ] ∈ Gλ

T
, hence that ν−λ ∈ ZΦ∨

and that ν belongs to the convex hull of Wλ in Λ ⊗Z R.
Assume that λ is antidominant and denote by L(w0λ) the irreducible rational representa-

tion of G∨ with lowest weight λ. Mirković and Vilonen proved that the intersection S+
ν ∩ Gλ

is of pure dimension ht(ν − λ) and has as many irreducible components as the dimension of
the ν-weight subspace of L(w0λ) (Theorem 3.2 and Corollary 7.4 in [27]). From this result
and from Proposition 5 (iii), one readily deduces the following fact.

Proposition 7 Let λ, ν ∈ Λ with ν > 0. Then the intersection S+
λ+ν ∩ S−

λ (viewed as a
topological subspace of G ) is noetherian of pure dimension ht(ν) and has as many irreducible
components as the dimension of the ν-weight subspace of U(n+,∨).

Proof. As an abstract topological space, S+
λ+ν ∩S−

λ does not depend on λ, because the action
of tµ on G maps S+

λ+ν ∩ S−
λ onto S+

λ+µ+ν ∩ S−
λ+µ, for any µ ∈ Λ. We may therefore assume

that λ is enough antidominant so that the conclusion of Proposition 5 (iii) holds and that the
(λ + ν)-weight space of L(w0λ) has the same dimension as the ν-weight subspace of U(n+,∨).
The proposition then follows from Mirković and Vilonen results. ¤

If X is a topological space, we denote the set of irreducible components of X by Irr(X).
For λ, ν ∈ Λ, we set

Z (λ)ν = Irr
(

S+
ν ∩ Gλ

)
.
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An element Z in a set Z (λ)ν is called an MV cycle. Such a Z is necessarily a closed, irreducible
and noetherian subset of G . It is also T -invariant, for the action of the connected group T

on S+
ν ∩ Gλ does not permute the irreducible components of this intersection closure. The

coweight ν can be recovered from Z by the rule µ+(Z) = ν; indeed Z is the closure of an
irreducible component Y of S+

ν ∩ Gλ, so that µ+(Z) = µ+(Y ) = ν. The union

Z (λ) =
⊔

ν∈Λ

Z (λ)ν

is therefore disjoint.
We finally set

Z =
⊔

λ,ν∈Λ
λ>ν

Irr
(

S+
λ ∩ S−

ν

)
.

Arguing as above, one sees that if Z is an irreducible component of S+
λ ∩ S−

ν , then λ and ν
are determined by Z through the equations µ+(Z) = λ and µ−(Z) = ν. Using Example 3 (i),
one checks without difficulty that for any irreducible and noetherian subset Z of G ,

Z ∈ Z ⇐⇒ Z is an irreducible component of S+
µ+(Z) ∩ S−

µ−(Z)

⇐⇒ dim Z = ht(µ+(Z) − µ−(Z)). (9)

A result of Anderson (Proposition 3 in [1]) asserts that for any λ, ν ∈ Λ with λ antidomi-
nant,

Z (λ)ν =
{
Z ∈ Z

∣∣µ+(Z) = ν, µ−(Z) = λ and Z ⊆ Gλ

}
.

This fact implies that if λ and µ are two antidominant coweights such that µ − λ ∈ Λ++ and
if Z ∈ Z (µ), then tλ−µ ·Z ∈ Z (λ). The set Z appears thus as the right way to stabilize the
situation, namely

Z =

{
tν · Z

∣∣∣∣∣ ν ∈ Λ, Z ∈
⊔

λ∈Λ++

Z (λ)

}
.

It seems therefore legitimate to call MV cycles the elements of Z .
From now on, our main aim will be to describe MV cycles as precisely as possible. We

treat here the case where G has semisimple rank 1. We set C[t−1]+0 = C[t−1]∗0 = {0}. For each
positive integer n, we consider the subsets

C[t−1]+n =
{
a−nt−n + · · · + a−1t

−1
∣∣ (a−n, . . . , a−1) ∈ Cn

}

and
C[t−1]∗n =

{
a−nt−n + · · · + a−1t

−1
∣∣ (a−n, . . . , a−1) ∈ Cn, a−n 6= 0

}

of K ; these are affine complex varieties. Finally we set C[t−1]+ = t−1C[t−1] =
⋃

n∈N
C[t−1]+n

and endow it with the inductive limit of the Zariski topologies on the subspaces C[t−1]+n .

Proposition 8 Assume that G has semisimple rank 1. Let ν ∈ Λ and denote the unique
simple root by α. Then the map f : p 7→ x−α

(
pt−〈α,ν〉

)
[tν ] from C[t−1]+ onto S−

ν is a homeo-
morphism. Moreover for each n ∈ N, the map f induces homeomorphisms

C[t−1]+n
≃

−→ S+
ν+nα∨ ∩ S−

ν and C[t−1]∗n
≃

−→ S+
ν+nα∨ ∩ S−

ν .
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This proposition implies that if G has semisimple rank 1, then each intersection S+
λ ∩ S−

ν is
either empty or irreducible. In this case thus, the map Z 7→ (µ+(Z), µ−(Z)) is a bijection

from Z onto {(λ, ν) | λ > ν}, with inverse bijection (λ, ν) 7→ S+
λ ∩ S−

ν .

Proof of Proposition 8. Let G, α, ν and f be as in the statement of the proposition. The
additive group K acts transitively on S−

ν through the map (p, z) 7→ x−α

(
pt−〈α,ν〉

)
z, where

p ∈ K and z ∈ S−
ν . The stabilizer in K of [tν ] is O. Since K /O ∼= C[t−1]+, the map f is

bijective. It is also continuous.
Now let n ∈ N. Set λ = ν + nα∨; then n = 〈α, λ − ν〉/2. Specializing the equality

x−α(−a−1) = xα(−a) aα∨

sα xα(−a)

to the value a = −qtn, where q ∈ O×, multiplying it on the left by tν and noticing that
(−q)α∨

sα xα(qtn) ∈ G(O), we get

[
x−α

(
q−1t−〈α,λ+ν〉/2

)
tν

]
=

[
xα

(
qt〈α,λ+ν〉/2

)
tλ

]
.

This equality immediately implies that f
(
C[t−1]∗n

)
⊆ S+

ν+nα∨ ∩ S−
ν . Since

C[t−1]+ =
⊔

n∈N

C[t−1]∗n and S−
ν =

⊔

n∈N

(
S+

ν+nα∨ ∩ S−
ν

)
,

we deduce that f
(
C[t−1]∗n

)
= S+

ν+nα∨ ∩ S−
ν , and then, using (7), that f

(
C[t−1]+n

)
= S+

ν+nα∨ ∩

S−
ν . The map f yields thus a continuous bijection from C[t−1]+n onto S+

ν+nα∨ ∩ S−
ν .

It remains to show the continuity of f−1. We may assume without loss of generality that
ν = 0. We first look at the particular case G = SL2 with its usual pinning. Given an element
p ∈ K , we write p = {p}<0 + {p}>0 according to the decomposition K = C[t−1]+ ⊕ O, and
we denote by p0 the coefficient of t0 in p. We consider the subsets

Ω′ =

{(
a b
c d

) ∣∣∣∣ a0 6= 0

}
and Ω′′ =

{(
a b
c d

) ∣∣∣∣ b0 6= 0

}

of G(K ), and we define maps

h′ :

(
a b
c d

)
7→

{
c/{a}>0

}
<0

and h′′ :

(
a b
c d

)
7→

{
d/{b}>0

}
<0

from Ω′ and Ω′′, respectively, to C[t−1]+. Certainly, Ω′ and Ω′′ are open subsets of G(K ),
and h′ and h′′ are continuous (see Proposition 1.2 in [2] for details on the inductive system
that defines the topology on G(K )). We now observe that U−(K )G(O) ⊆ Ω′ ∪ Ω′′ and that
the map h : g 7→ f−1([g]) from U−(K )G(O) to C[t−1]+ is given on Ω′ ∩ U−(K )G(O) by
the restriction of h′, and on Ω′′ ∩ U−(K )G(O) by the restriction of h′′. This map h is thus
continuous, and we conclude that f−1 is continuous in our particular case G = SL2.

The continuity of f−1 is then guaranteed whenever G is the product of SL2 with a torus.
Now any connected reductive group of semisimple rank 1 is isogenous to such a product; the
general case follows, because an isogeny between two connected reductive groups induces a
homeomorphism between the neutral connected components of their respective Grassmannians
(see for instance Section 2 of [11]). ¤
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3.4 Parabolic retractions

In Section (5.3.28) of [3], Beilinson and Drinfeld describe a way to relate G with the affine
Grassmannians of Levi subgroups of G. We rephrase their construction in a slightly less
general context.

Let P be a parabolic subgroup of G which contains T , let M be the Levi factor of P
that contains T , and let P and M be the affine Grassmannians of P and M . The diagram

G ←֓ P ։ M yields similar diagrams G(K ) ←֓ P (K ) ։ M(K ) and G
i
←− P

π
−→ M . The

continuous map i is bijective but is not a homeomorphism in general (P has usually more
connected components than G ). We may however define the (non-continuous) map rP = π◦i−1

from G to M .
The group P (K ) acts on M via the projection P (K ) ։ M(K ) and acts on G via the

embedding P (K ) →֒ G(K ). The map rP can then be characterized as the unique P (K )-
equivariant section of the embedding M →֒ G that arises from the inclusion M ⊆ G.

For instance, consider the case where P is the Borel subgroup B±; then the Levi factor
M is the torus T and the group P (K ) contains the group U±(K ). The map rB± : G → T ,
being a U±(K )-equivariant section of the embedding T →֒ G , sends the whole stratum S±

λ

to the point [tλ], for each λ ∈ Λ.

Remark 9. The map rP can also be understood in terms of a Białynicki-Birula decomposition.
Indeed let g, p and t be the Lie algebras of G, P and T . We write g = t ⊕

⊕
α∈Φ gα for the

root decomposition of g and put ΦP = {α ∈ Φ | gα ⊆ p}. Choosing now ξ ∈ Λ such that

∀α ∈ ΦP , 〈α, λ〉 > 0 and ∀α ∈ Φ \ ΦP , 〈α, λ〉 < 0,

one may check that rP (x) = lim a→0
a∈C×

aξ · x for each x ∈ G . This construction justifies the

name of parabolic retraction we give to the map rP .

As noted by Beilinson and Drinfeld (see the proof of Proposition 5.3.29 in [3]), parabolic
retractions enjoy a transitivity property. Namely considering a pair (P, M) inside G as above

and a pair (Q, N) inside M , we get maps G
rP−→ M

rQ
−→ N . The preimage R of Q by the

quotient map P ։ M is a parabolic subgroup of G, and N is the Levi factor of R that contains
T . The composition rQ ◦ rP is a R(K )-equivariant section of the embedding N →֒ G ; it thus
coincides with rR.

We will mainly apply these constructions to the case of standard parabolic subgroups. Let
us fix the relevant terminology. For each subset J ⊆ I, we denote by U±

J the subgroup of G
generated by the images of the morphisms x±αj

for j ∈ J . We denote the subgroup generated
by T ∪U+

J ∪U−
J by MJ and we denote the subgroup generated by B+ ∪MJ by PJ . Thus MJ

is the Levi factor of PJ that contains T . We shorten the notation and denote the parabolic
retraction rPJ

simply by rJ . The Weyl group of MJ can be identified with the parabolic
subgroup WJ of W generated by the simple reflections sj with j ∈ J ; we denote the longest
element of WJ by w0,J .

The Iwasawa decomposition for MJ gives

MJ =
⊔

λ∈Λ

U±
J (K )[tλ].

For λ ∈ Λ, we denote the U±
J (K )-orbit of [tλ] by S±

λ,J .
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Lemma 10 For each λ ∈ Λ, S+
λ = (rJ)−1

(
S+

λ,J

)
and w0,JS+

w−1
0,J

λ
= (rJ)−1

(
S−

λ,J

)
.

Proof. Consider the transitivity property rR = rQ ◦ rP of parabolic retractions written above
for P = PJ , M = MJ and N = T . For the first formula, one chooses moreover Q = TU+

J , so
that R = B+. Recalling the equality (rB+)−1

(
[tλ]

)
= S+

λ and its analogue (rQ)−1
(
[tλ]

)
= S+

λ,J

for MJ , we see that the desired formula simply computes the preimage of [tλ] by the map
rR = rQ ◦ rP .

For the second formula, one chooses Q = TU−
J , whence R = w0,J B+ w0,J

−1. Here we
have

(rR)−1
([

tλ
])

= w0,J (rB+)−1
([

tw
−1
0,J

λ])
= w0,J S+

w−1
0,J

λ

and (rQ)−1
(
[tλ]

)
= S−

λ,J . Again the desired formula simply computes the preimage of [tλ] by
the map rR = rQ ◦ rP . ¤

To conclude this section, we note that for any K -point h of the unipotent radical of PJ ,
any g ∈ PJ(K ) and any x ∈ G ,

rJ(gh · x) = (ghg−1) · rJ(gx) = rJ(gx), (10)

because ghg−1 is a K -point of the unipotent radical of PJ and thus acts trivially on MJ .

4 Crystal structure and string parametrizations

For each dominant coweight λ, the set Z (λ) yields a basis of the rational G∨-module L(λ).
One may therefore expect that Z (λ) can be turned in a natural way into a crystal isomorphic
to B(λ). Braverman and Gaitsgory made this idea precise in [9]. Later in [8], these two
authors and Finkelberg extended this result by endowing Z with the structure of a crystal

isomorphic to B̃(−∞). We recall this crucial result in Section 4.1 and characterize the crystal
operations on Z in a suitable way for comparisons (Proposition 12).

We begin Section 4.2 by translating the geometric definition of Braverman, Finkelberg
and Gaitsgory’s crystal structure on Z in more algebraic terms (Proposition 14). From there,
we deduce a quite explicit description of MV cycles. More precisely, let b ∈ B(−∞) and

let Ξ(t0 ⊗ b) be the MV cycle that corresponds to t0 ⊗ b ∈ B̃(−∞). Theorem 15 exhibits a
parametrization of an open and dense subset of Ξ(t0⊗b) by a variety of the form (C×)m×Cn;
this parametrization generalizes the description in semisimple rank 1 given in Proposition 8.

The next Section 4.3 introduces subsets Ỹi,c of the affine Grassmannian G , where i ∈ I l and
c ∈ Zl. When c is the string parameter in direction i of an element b ∈ B(−∞), the definition

of Ỹi,c reflects the construction in the statement of Theorem 15, so that Ξ(t0 ⊗ b) = Ỹi,c. It

turns out that the closure Ỹi,c is always an MV cycle, even when c does not belong to the

string cone in direction i. Proposition 16 presents a necessary and sufficient condition on Ỹi,c

in order that c may belong to the string cone; its proof relies on Berenstein and Zelevinsky’s
characterization of the string cone in terms of i-trails [6].

The introduction of the subsets Ỹi,c finds its justification in Section 4.4. Here we use them
to explain how the algebraic-geometric parametrization of B(−∞) devised by Lusztig in [25]
is related to MV cycles.
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In the course of his work on MV polytopes [13, 14], Kamnitzer was led to a description of

MV cycles similar to the equality Ξ(t0 ⊗ b) = Ỹi,c, but starting from the Lusztig parameter of
b instead of the string parameter. In Section 4.5, we show that the equality and Kamnitzer’s
description are in fact equivalent results.

4.1 Braverman, Finkelberg and Gaitsgory’s crystal structure

In Section 13 of [8], Braverman, Finkelberg and Gaitsgory endow Z with the structure of a
crystal with an involution ∗. The main step of their construction is an analysis of the behavior
of MV cycles with respect to the standard parabolic retractions. For a subset J ⊆ I, we denote
the analogues of the maps µ± for the affine Grassmannian MJ by µ±,J . The following theorem
is due to Braverman, Finkelberg and Gaitsgory; we nevertheless recall quickly its proof since
we ground the proof of the forthcoming Propositions 12 and 14 on it.

Theorem 11 Let J be a subset of I and let Z ∈ Z be an MV cycle. Set

ZJ = rJ

(
Z ∩ S−

ν

)
∩ S−

ρ,J and ZJ = Z ∩ S−
ν ∩ (rJ)−1([tρ]),

where ν = µ−(Z) and ρ = w0,J µ+(w0,J
−1Z). Then the map Z 7→ (ZJ , ZJ) is a bijection from

Z onto the set of all pairs (Z ′, Z ′′), where Z ′ is an MV cycle in MJ and Z ′′ is an MV cycle
in G which satisfy

µ−,J(Z ′) = µ+(Z ′′) = w0,J µ+(w0,J
−1Z ′′). (11)

Under this correspondence, one has

µ+(Z) = µ+,J(ZJ),

µ−(Z) = µ−(ZJ),

w0,J µ+(w0,J
−1Z) = µ−,J(ZJ) = µ+(ZJ) = w0,J µ+(w0,J

−1ZJ).

Proof. Let us consider three coweights λ, ν, ρ ∈ Λ, in the same coset modulo ZΦ∨, and unre-
lated to the MV cycle Z for the moment. The group H = U−

J (K ) acts on G , leaving S−
ν stable.

On the other hand, S−
ρ,J is the H-orbit of [tρ]; we denote by K the stabilizer of [tρ] in H, so

that S−
ρ,J

∼= H/K. Since the map rJ is H-equivariant, the action of H leaves stable the inter-

section S−
ν ∩(rJ)−1

(
S−

ρ,J

)
, the action of K leaves stable the intersection F = S−

ν ∩(rJ)−1([tρ]),
and we have a commutative diagram

F
Â Ä // H ×K F

²²

≃ // S−
ν ∩ (rJ)−1

(
S−

ρ,J

)

rJ

²²

H/K
≃ // S−

ρ,J .

In this diagram, the two leftmost arrows define a fiber bundle.
By Lemma 10, F ⊆ S+

ρ ∩S−
ν ; therefore the dimension of F is at most ht(ρ−ν). The group

K is connected — indeed K = U−
J (K ) ∩ tρG(O)t−ρ, so it leaves invariant each irreducible

component of F . We thus have a canonical bijection C 7→ C̃ = H ×K C from Irr(F ) onto
Irr(H ×K F ). If moreover X is a subspace of H/K = S−

ρ,J , then the assignment (C, D) 7→

C̃ ∩ (rJ)−1(D) is a bijection from Irr(F ) × Irr(X) onto Irr(S−
ν ∩ (rJ)−1(X)). We will apply
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this fact to X = S−
ρ,J ∩ S+

λ,J ; using (7) and Proposition 7, one sees easily that X has then

dimension at most ht(λ− ρ). Since C̃ ∩ (rJ)−1(D) is a fiber bundle with fiber C and base D,
its dimension is

dimC + dimD 6 ht(ρ − ν) + ht(λ − ρ) = ht(λ − ν).

Now let Z be an MV cycle and set λ = µ+(Z), ν = µ−(Z) and ρ = w0,J µ+(w0,J
−1Z) in

the previous setting. By Proposition 2 and Lemma 10,

Z ∩ S−
ν and w0,J

(
w0,J

−1Z ∩ S+

w−1
0,J

ρ

)
= Z ∩ (rJ)−1

(
S−

ρ,J

)

are open and dense subsets in Z. Thus Ż = Z∩S−
ν ∩(rJ)−1

(
S−

ρ,J

)
is a closed irreducible subset

of S−
ν ∩ (rJ)−1

(
S−

ρ,J

)
of dimension dimZ = ht(λ − ν); this subset Ż is actually contained in

S−
ν ∩(rJ)−1(X), because Ż ⊆ Z ⊆ S+

λ . It is therefore an irreducible component C̃∩(rJ)−1(D),
with moreover dimC = ht(ρ − ν) and dimD = ht(λ − ρ).

One observes then that [tρ] ∈ D, because D is a closed and T -invariant subset of S−
ρ,J .

Then
C = C̃ ∩ (rJ)−1([tρ]) = Ż ∩ (rJ)−1([tρ]) = Z ∩ S−

ν ∩ (rJ)−1([tρ]),

and thus, by Lemma 10, C ⊆ S−
ν ∩ S+

ρ ∩ w0,J S+

w−1
0,J

ρ
. Therefore µ−(C) = ν and µ+(C) =

w0,J µ+(w0,J
−1C) = ρ; Equivalence (9) and the estimate dimC = ht(ρ − ν) imply then

that C is an MV cycle. On the other hand, the relations µ+,J(D) 6 λ, µ−,J(D) = ρ and
dimD = ht(λ − ρ) imply altogether that D is an MV cycle in MJ and that µ+,J(D) = λ.
Moreover

D = rJ(Ż) = rJ

(
Z ∩ S−

ν

)
∩ S−

ρ,J .

Thus ZJ = D and ZJ = C satisfy the conditions stated in the theorem.
Conversely, given Z ′ and Z ′′ as in the statement of the theorem, we take λ = µ+,J(Z ′),

ν = µ−(Z ′′) and ρ = µ−,J(Z ′) in the construction above, and we set C = Z ′′∩F , D = Z ′∩S−
ρ,J

and Ż = C̃ ∩ (rJ)−1(D). Then C is an open and dense subset in Z ′′; it is therefore irreducible
with the same dimension as Z ′′, namely ht(ρ − ν). Since it is a closed subset of F , C is
an irreducible component of F . Likewise D has dimension ht(λ − ρ) and is an irreducible

component of X = S−
ρ,J ∩ S+

λ,J . The first part of the reasoning above implies thus that Ż is

irreducible of dimension dimC + dim D = ht(λ − ν). Since µ+(Ż) = λ and µ−(Ż) = ν, it

follows from Equivalence (9) that Z = Ż is an MV cycle.
It is then routine to check that the two maps Z 7→ (ZJ , ZJ) and (Z ′, Z ′′) 7→ Z are mutually

inverse bijections. ¤

We are now ready to define Braverman, Finkelberg and Gaitsgory’s crystal structure on
Z . Let Z be an MV cycle. We set

wt(Z) = µ+(Z).

Given i ∈ I, we apply Theorem 11 to Z and J = {i}. We set ρ = si µ+(si
−1Z) and get a

decomposition
(
Z{i}, Z

{i}
)

of Z. Then we set

εi(Z) =

〈
αi,

−µ+(Z) − ρ

2

〉
and ϕi(Z) =

〈
αi,

µ+(Z) − ρ

2

〉
.
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Since µ+(Z) − ρ = µ+,{i}

(
Z{i}

)
− µ−,{i}

(
Z{i}

)
belongs to Nα∨

i , the definition for ϕi(Z) is
equivalent to the equation

µ+(Z) − ρ = ϕi(Z)α∨
i . (12)

The MV cycles ẽiZ and f̃iZ are defined by the following requirements:

µ+(ẽiZ) = µ+(Z) + α∨
i ,

µ+(f̃iZ) = µ+(Z) − α∨
i ,

(ẽiZ){i} = (f̃iZ){i} = Z{i};

if µ+(Z) = ρ, that is, if ϕi(Z) = 0, then we set f̃iZ = 0.
These conditions do define the MV cycles ẽiZ and f̃iZ. Indeed they prescribe the compo-

nents (ẽiZ){i} and (f̃iZ){i} and require

µ+,{i}

(
(ẽiZ){i}

)
= µ+(ẽiZ) = µ+(Z) + α∨

i = µ+,{i}

(
Z{i}

)
+ α∨

i

µ−,{i}

(
(ẽiZ){i}

)
= µ+

(
(ẽiZ){i}

)
= µ+

(
Z{i}

)
= µ−,{i}

(
Z{i}

)

and

µ+,{i}

(
(f̃iZ){i}

)
= µ+(f̃iZ) = µ+(Z) − α∨

i = µ+,{i}

(
Z{i}

)
− α∨

i

µ−,{i}

(
(f̃iZ){i}

)
= µ+

(
(f̃iZ){i}

)
= µ+

(
Z{i}

)
= µ−,{i}

(
Z{i}

)
.

These latter equations fully determine the components (ẽiZ){i} and (f̃iZ){i} because M{i} has
semisimple rank 1 (see the comment after the statement of Proposition 8).

One checks without difficulty that Z , endowed with these maps wt, εi, ϕi, ẽi and f̃i, satis-
fies Kashiwara’s axioms of a crystal. On the other hand, let g 7→ gt be the antiautomorphism
of G that fixes T pointwise and that maps x±α(a) to x∓α(a) for each simple root α and each
a ∈ C. Then the involutive automorphism g 7→ (gt)−1 of G extends to G(K ) and induces
an involution on G , which we denote by x 7→ x∗. The image of an MV cycle Z under this
involution is an MV cycle Z∗. The properties of this involution Z 7→ Z∗ with respect to the
crystal operations allow Braverman, Finkelberg and Gaitsgory [8] to establish the existence of

an isomorphism of crystals Ξ : B̃(−∞)
≃

−→ Z . This isomorphism is unique and is compatible

with the involutions ∗ on B̃(−∞) and Z . One checks that

Ξ(tλ ⊗ 1) =
{
[tλ]

}
, µ−

(
Ξ(tλ ⊗ b)

)
= λ, (13)

Ξ(tλ ⊗ b) = tλ · Ξ(t0 ⊗ b), dim Ξ(tλ ⊗ b) = ht(wt(b)),

for all λ ∈ Λ and b ∈ B(−∞).
The following proposition gives a useful criterion which says when two MV cycles are

related by an operator ẽi.

Proposition 12 Let Z and Z ′ be two MV cycles in G and let i ∈ I. Then Z ′ = ẽiZ if and
only if the four following conditions hold:

µ−(Z ′) = µ−(Z),

si µ+(si
−1Z ′) = si µ+(si

−1Z),

µ+(Z ′) = µ+(Z) + α∨
i ,

Z ′ ⊇ Z.

18



Proof. We first prove that the conditions in the statement of the proposition are sufficient to
ensure that Z ′ = ẽiZ. We assume that the two MV cycles Z and Z ′ enjoy the conditions
above and we set

ρ = si µ+(si
−1Z) = si µ+(si

−1Z ′),

ν = µ−(Z) = µ−(Z ′),

F = S−
ν ∩ (r{i})

−1([tρ]).

The proof of Theorem 11 tells us that C = Z ∩ F and C ′ = Z ′ ∩ F are two irreducible
components of F . The condition Z ′ ⊇ Z entails then C ′ ⊇ C, and thus C ′ = C. It follows
that

Z{i} = C = C ′ = Z ′{i}.

This being known, the assumption µ+(Z ′) = µ+(Z) + α∨
i implies Z ′ = ẽiZ.

Conversely, assume that Z ′ = ẽiZ. Routine arguments show then that the three first
conditions in the statement of the proposition hold. Setting ρ, ν, F , C and C ′ as in the first
part of the proof, we get

C = C ∩ F = Z{i} ∩ F = Z ′{i} ∩ F = C ′ ∩ F = C ′.

On the other hand, set D = Z{i} ∩ S−
ρ,{i} and D′ = Z ′

{i} ∩ S−
ρ,{i}. Using Proposition 8, we see

that
D = S+

µ+(Z),{i} ∩ S−
ρ,{i} ∩ S−

ρ,{i} = S+
µ+(Z),{i} ∩ S−

ρ,{i}

is contained in
D′ = S+

µ+(Z′),{i} ∩ S−
ρ,{i} ∩ S−

ρ,{i} = S+
µ+(Z′),{i} ∩ S−

ρ,{i}.

Adopting the notation C̃ from the proof of Theorem 11, we deduce that C̃ ∩ (r{i})
−1(D) is

contained in C̃ ∩ (r{i})
−1(D′). The closure Z of the first set is thus contained in the closure

Z ′ of the second set. ¤

For each dominant coweight λ ∈ Λ++, the two sets B(λ) and Z (λ) have the same car-
dinality; indeed they both index bases of two isomorphic vector spaces, namely the rational
irreducible G∨-module with highest weight λ and the intersection cohomology of Gλ, respec-
tively. More is true: in [9], Braverman and Gaitsgory endow Z (λ) with the structure of a
crystal and show the existence of an isomorphism of crystals Ξ(λ) : B(λ)

≃
−→ Z (λ) (see [9],

p. 569).

Proposition 13 The following diagram commutes:

B(λ)
_Ä

ιw0λ

²²

Ξ(λ)
// Z (λ)

_Ä

²²

Tw0λ ⊗ B(−∞)
Ξ

// Z .

Proof. Let Z, Z ′ ∈ Z (λ) and assume that Z ′ is the image of Z by the crystal operator defined
in Section 3.3 of [9]. The definition of this operator is so similar to the definition of our (in
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fact, Braverman, Finkelberg and Gaitsgory’s) crystal operator ẽi that a slight modification of
the proof of Proposition 12 yields

µ−(Z ′) = µ−(Z),

si µ+(si
−1Z ′) = si µ+(si

−1Z),

µ+(Z ′) = µ+(Z) + α∨
i ,

Z ′ ⊇ Z.

By Proposition 12, this implies that Z ′ is the image of Z by our crystal operator ẽi. In other
words, the inclusion Z (λ) →֒ Z is an embedding of crystals when Z (λ) is endowed with the
crystal structure from [9].

Thus both maps Ξ◦ιw0λ and Ξ(λ) are crystal embeddings of B(λ) into Z . Also both maps
send the lowest weight element blow of B(λ) onto the MV cycle

{
[tw0λ]

}
. The proposition then

follows from the fact that each element of B(λ) can be obtained by applying a sequence of
crystal operators to blow. ¤

Remark. One can establish the equality Ξ◦ ιw0λ(B(λ)) = Z (λ) without using Braverman and
Gaitsgory’s isomorphism Ξ(λ) by the following direct argument. Let Z ∈ Z (λ). Certainly
µ−(Z) = w0λ, so by Equation (13), Ξ−1(Z) may be written tw0λ ⊗ b with b ∈ B(−∞). Take

i ∈ I and set ρ = si µ−(si
−1Z). Then si

−1Z meets S−

s−1
i ρ

, and thus
[
ts

−1
i ρ

]
belongs to si

−1Z,

for si
−1Z is closed and T -stable. From the inclusion Z ⊆ Gλ, we then deduce that [tρ] ∈ Gλ.

Using Equation (6) and the description (Gµ)T =
{
[twµ]

∣∣ w ∈ W
}

(see the proof of Proposition
2), this yields

ρ ∈
{
wµ

∣∣ w ∈ W, µ ∈ Λ++ such that λ > µ
}
.

On the other side,

ρ − w0λ = si µ−

(
si

−1Z
)
− µ−(Z) = µ+(Z∗) − si µ+

(
si

−1Z∗
)

= ϕi(Z
∗)α∨

i .

These two facts together entail ϕi(Z
∗) 6 〈αi,−w0λ〉. Since

ϕi(Z
∗) = ϕi(Ξ

−1(Z∗)) = ϕi(Ξ
−1(Z)∗) = ϕi((tw0λ ⊗ b)∗) = ϕi(t−w0λ−wt(b) ⊗ b∗) = ϕi(b

∗),

we obtain ϕi(b
∗) 6 〈αi,−w0λ〉. This inequality holds for each i ∈ I, therefore the ele-

ment tw0λ ⊗ b belongs to ιw0λ(B(λ)). We have thus established the inclusion Ξ−1(Z (λ)) ⊆
ιw0λ(B(λ)). Since B(λ) and Z (λ) have the same cardinality, this inclusion is an equality.

4.2 Description of an MV cycle from the string parameter

We begin this section with a proposition that translates Braverman, Finkelberg and Gaits-
gory’s geometrical definition for the crystal operation ẽi into a more algebraic language. This
proposition comes in to flavors: Statement (i) is terse, whereas Statement (ii) is verbose but
yields more refined information. We recall that the notations C[t−1]+k and C[t−1]∗k have been
defined in Section 3.3.

Proposition 14 Let Z be an MV cycle, let i ∈ I, let k ∈ N, and set Z ′ = ẽk
i (Z).

(i) For each p ∈ O, the action of yi

(
ptεi(Z)

)
stabilizes Z. The MV cycle Z ′ is the closure of

{
yi(p) z

∣∣ z ∈ Z and p ∈ K
× such that val(p) = −k + εi(Z)

}
.
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(ii) Set ν = µ−(Z), ρ = siµ+(si
−1Z), Ż = Z∩S−

ν ∩
(
si S

+

s−1
i ρ

)
and Ż ′ = Z ′∩S−

ν ∩
(
si S

+

s−1
i ρ

)
.

Then the map f : (p, z) 7→ yi

(
ptεi(Z)

)
z is a homeomorphism from C[t−1]+k × Ż onto Ż ′. If

moreover ρ = µ+(Z), then Ż = Z ∩ S−
ν ∩ S+

µ+(Z) and f induces a homeomorphism from

C[t−1]∗k × Ż onto an open and dense subset of Z ′ ∩ S−
ν ∩ S+

µ+(Z′).

Proof. We begin with the proof of Statement (ii). Let Z be an MV cycle and let i ∈ I. We
adopt the notation used in the proof of Theorem 11, with here J = {i}. We set λ = µ+(Z),
ν = µ−(Z), ρ = siµ+(si

−1Z), n = ϕi(Z) = 〈αi, λ − ρ〉/2, F = S−
ν ∩ (r{i})

−1([tρ]) and

X = S−
ρ,{i} ∩ S+

λ,{i}. Then

C = Z ∩ S−
ν ∩ (r{i})

−1([tρ]) and D = r{i}
(
Z ∩ S−

ν

)
∩ S−

ρ,{i}

are irreducible components of F and X, respectively. Proposition 8 implies then that D = X
and that the map h : p 7→ yi

(
pt−〈αi,ρ〉

)
[tρ] from K to M{i} induces a homeomorphism from

C[t−1]+n onto D.

Let k ∈ N and set D′ = S−
ρ,{i} ∩ S+

λ+kα∨
i ,{i}

. Then h induces a homeomorphism from

C[t−1]+n+k onto D′. Since −〈αi, ρ〉 = εi(Z)+n, it follows that the map g : (p, x) 7→ yi

(
ptεi(Z)

)
x

from K × M{i} to M{i} induces a homeomorphism from C[t−1]+k × D onto D′. Now set

Z ′ = ẽk
i (Z), Ż = Z ∩ S−

ν ∩
(
si S

+

s−1
i ρ

)
and Ż ′ = Z ′ ∩ S−

ν ∩
(
si S

+

s−1
i ρ

)
.

The proof of Theorem 11 gives us Ż = C̃ ∩ (r{i})
−1(D) and Ż ′ = C̃ ∩ (r{i})

−1(D′). Consider
the map f : (p, z) 7→ yi

(
ptεi(Z)

)
z from K ×G to G . Using that the action of the group yi(K )

stabilizes C̃ and commutes with the parabolic retraction r{i}, we conclude that f induces a

homeomorphism from C[t−1]+k ×Ż onto Ż ′. The first assertion in Statement (ii) is thus shown.
Suppose now that λ = ρ, and denote by N the connected component of M{i} that

contains [tρ]. By Lemma 10, r{i}(Z)∩N is contained in both S+
λ,{i} and S−

ρ,{i}, hence in their

intersection
{
[tρ]

}
. This shows that r{i}(Z)∩ S+

λ,{i} =
{
[tρ]

}
= r{i}(Z)∩ S−

ρ,{i}, and thus that

Z ∩ S+
λ = Z ∩

(
si S

+

s−1
i ρ,{i}

)
, again by Lemma 10. Therefore Ż = Z ∩ S−

ν ∩ S+
λ . Now if k = 0,

then
f
(
C[t−1]∗k × Ż

)
= Ż = Z ∩ S−

ν ∩ S+
λ = Z ′ ∩ S−

ν ∩ S+
µ+(Z′).

And if k > 0, then by Proposition 8

g(C[t−1]∗k × D) = h(C[t−1]∗n+k) = S−
ρ,{i} ∩ S+

λ+kα∨
i ,{i}

= D′ ∩ S+
λ+kα∨

i ,{i}
,

and thus by Lemma 10
f(C[t−1]∗k × Ż) = Ż ′ ∩ S+

µ+(Z′),

which is an open subset of Z ′ ∩ S−
ν ∩ S+

µ+(Z′). This concludes the proof of Statement (ii).

We now turn to the proof of Statement (i). We first observe that h(O) =
{
[tρ]

}
. Let p ∈ O

and write pt−n = q + r, with q ∈ C[t−1]+n and r ∈ O. For each x ∈ D, we can find s ∈ C[t−1]+n
such that x = h(s), and then

yi

(
ptεi(Z)

)
· x = yi

(
(q + r)t−〈αi,ρ〉

)
· h(s) = h(q + r + s) = h(q + s) · h(r) = h(q + s)
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belongs to D. The action of yi

(
ptεi(Z)

)
therefore stabilizes D. Since it stabilizes also C̃ and

commutes with r{i}, it stabilizes Ż. We conclude that it stabilizes Ż = Z.
Using this, we see that

{
yi(p) z

∣∣ z ∈ Z and p ∈ K
× such that val(p) = −k + εi(Z)

}
= f

(
C[t−1]∗k × Z

)
.

This set has the same closure as f(C[t−1]∗k × Ż), namely Z ′. This completes the proof of
Statement (i). ¤

We now recall the definition of the string parameter of an element in B(−∞). To each
sequence i = (i1, . . . , il) of elements of I, we associate an injective map Ψi from B(−∞) to
Nl × B(−∞) by the following recursive definition:

• If l = 0, then Ψ() : B(−∞) → B(−∞) is the identity map.

• If l > 1 and b ∈ B(−∞), then Ψi(b) =
(
c1, Ψj(f̃

c1
i1

b)
)
, where c1 = ϕi1(b) and j = (i2, . . . , il).

To the sequence i, one also associates recursively an element wi ∈ W by setting w() = 1 and
asking that wi is the longest of the two elements wj and si1wj, where j = (i2, . . . , il) as above.
Finally, one defines the subset

B(−∞)i =
{
b ∈ B(−∞)

∣∣ ∃(k1, . . . , kl) ∈ Nl, b = ẽk1
i1
· · · ẽkl

il
1
}
.

From Kashiwara’s work on Demazure modules [17] (see also Section 12.4 in [18]), one deduces
that:

• B(−∞)i depends only on wi and not on i.

• If i is a reduced decomposition of the longest element w0 of W , then B(−∞)i = B(−∞).

• B(−∞)i is the set of all b ∈ B(−∞) such that Ψi(b) has the form
(
ci(b), 1

)
for a certain

ci(b) ∈ Nl.

The map ci : B(−∞)i → Nl implicitly defined in the third item above is called the string
parametrization in the direction i. Its image is called the string cone and is denoted by Ci.

The next theorem affords an explicit description of the MV cycle Ξ(t0 ⊗ b) from the string
parameter of b. It shows in particular that MV cycles are rational varieties, a fact already
known from Gaussent and Littelmann’s work (see for instance Theorem 4 in [11]).

Theorem 15 Let i ∈ I l and b ∈ B(−∞)i. Write ci(b) = (c1, . . . , cl), set

ej = −
l∑

k=j+1

ck〈αij , α
∨
ik
〉

for each j ∈ {1, . . . , l}, and set Z = Ξ(t0 ⊗ b). Then the map

(p1, . . . , pl) 7→
[
yi1(p1t

e1) · · · yil(plt
el)

]

is an embedding of C[t−1]∗c1 ×· · ·×C[t−1]∗cl
as an open and dense subset of Z∩S+

µ+(Z)∩S−
µ−(Z).
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Proof. We use induction on the length l of the sequence i. The assertion certainly holds when
l = 0, for in this case b = 1 and thus Ỹi,c =

{
[t0]

}
.

Now let i ∈ I l and b ∈ B(−∞)i. We write i = (i1, . . . , il) and ci(b) = (c1, . . . , cl). We set
i′ = (i2, . . . , il) and b′ = f̃ c1

i1
b. We will apply the induction hypothesis to i′ and b′.

We note that ϕi1(b
′) = 0 and that ci′(b

′) = (c2, . . . , cl). For j ∈ {1, . . . , l}, we set ej =

−
∑l

k=j+1 ck〈αij , α
∨
ik
〉. We set Z = Ξ(t0 ⊗ b) and Z ′ = Ξ(t0 ⊗ b′); then Z = ẽc1

i1
(Z ′), for Ξ is

an isomorphism of crystals. The equality ϕi1(b
′) = 0 implies that

εi1(Z
′) = εi1(t0 ⊗ b′) = εi1(b

′) = −〈αi1 , wt(b′)〉 = e1.

Thanks to (12), the equality ϕi1(b
′) = 0 also leads to

µ+(Z ′) = siµ+

(
si

−1Z ′
)
.

Proposition 14 (ii) thus asserts that the map (p, z) 7→ yi1(pte1)z is a homeomorphism from
C[t−1]∗c1 ×

(
Z ′ ∩ S+

µ+(Z′) ∩ S−
µ−(Z′)

)
onto an open and dense subset of Z ∩ S+

µ+(Z) ∩ S−
µ−(Z).

Theorem 15 then follows immediately by induction. ¤

4.3 The subsets Ỹi,c

Given a sequence i = (i1, . . . , il) of elements of I and a sequence p = (p1, . . . , pl) of elements
of K , we form the element

yi(p) = yi1(p1) · · · yil(pl).

Given the sequence i as above and a sequence c = (c1, . . . , cl) of integers, we set

Ỹi,c =
{
[yi(p)]

∣∣ p ∈ (K ×)l such that val(pj) = c̃j

}
,

where c̃j = −cj −
∑l

k=j+1 ck〈αij , α
∨
ik
〉.

Proposition 16 (i) Let i ∈ I l, let b ∈ B(−∞)i and set c = ci(b). Then the MV cycle
Ξ(t0 ⊗ b) is the closure of Ỹi,c.

(ii) Let i = (i1, . . . , iN ) be a reduced decomposition of w0 and let c = (c1, . . . , cN ) be an
element in ZN . Let Z be the closure of Ỹi,c and let λ be the coweight c1α

∨
i1

+ · · · + cNα∨
iN

.
Then Z is an MV cycle, µ−(Z) = 0 and µ+(Z) > λ. Moreover µ+(Z) = λ if and only if
c ∈ Ci.

Many assertions of this proposition follow easily from Proposition 14 and Theorem 15.
The truly new points are the inequality µ+(Z) > λ in Statement (ii) and the fact that the
equality µ+(Z) = λ holds only if c ∈ Ci. We will ground our proof on the notion of i-trail in
Berenstein and Zelevinsky’s work [6]. We first recall what it is about.

We denote the differential at 0 of the one-parameter subgroups xαi
and x−αi

by Ei and
Fi, respectively; they are elements of the Lie algebra of G. Let i = (i1, . . . , iN ) be a reduced
decomposition of w0, let γ and δ two weights in X, let V be a rational G-module, and write
V =

⊕
η∈X Vη for its decomposition in weight subspaces. According to Definition 2.1 in [6],

an i-trail from γ to δ in V is a sequence of weights π = (γ = γ0, γ1, . . . , γN = δ) such that
each difference γj−1 − γj has the form njαij for some non-negative integer nj , and such that
En1

i1
· · ·EnN

iN
defines a non-zero map from Vδ to Vγ . To such an i-trail π, Berenstein and

Zelevinsky associate the sequence of integers dj(π) = 〈γj−1 + γj , α
∨
ij
〉/2.
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Assume moreover that G is semisimple and simply connected. In that case, X is the free
Z-module with basis the set {ωi | i ∈ I} of fundamental weights. For each i ∈ I, we can thus
speak of the simple rational G-module with highest weight ωi, which we denote by V (ωi).
Then by Theorem 3.10 in [6], the string cone Ci is the set of all (c1, . . . , cN ) ∈ ZN such that∑

j dj(π)cj > 0 for any i ∈ I and any i-trail π from ωi to w0siωi in V (ωi).
The following lemma explains why i-trails are relevant to our problem.

Lemma 17 Let i, c, Z and λ be as in the statement of Proposition 16 (ii), let i ∈ I, and
assume that G is semisimple and simply connected. Then 〈ωi, λ − µ+(Z)〉 is the minimum of
the numbers

∑
j dj(π)cj for all weights δ ∈ X and all i-trails π from ωi to δ in V (ωi).

Proof. Let us consider an i-trail π = (γ0, γ1, . . . , γN ) in V (ωi) which starts from γ0 = ωi.
Introducing the integers nj such that γj−1 − γj = njαij , we obtain γj = ωi −

∑j
k=1 nkαik for

each j ∈ {1, . . . , N} and so

dj(π) = 〈ωi, α
∨
ij 〉 −

j−1∑

k=1

nk〈αik , α∨
ij 〉 − nj .

We then compute

N∑

j=1

dj(π)cj − 〈ωi, λ〉 =
N∑

j=1

(
−nj −

j−1∑

k=1

〈αik , α∨
ij 〉nk

)
cj = n1c̃1 + · · · + nN c̃N ,

where we set as usual c̃j = −cj −
∑N

k=j+1 ck〈αij , α
∨
ik
〉 for each j ∈ {1, . . . , N}.

We adopt the notational conventions set up before Proposition 4. In particular, we embed
V (ωi) inside V (ωi)⊗C K and we view this latter as a representation of the group G(K ). We
also consider a non-degenerate contravariant bilinear form (?, ?) on V (ωi); it is compatible
with the decomposition of V (ωi) as the sum of its weight subspaces and it satisfies (v, Eiv

′) =
(Fiv, v′) for any i ∈ I and any vectors v and v′ in V (ωi). We extend the contravariant bilinear
form to V (ωi) ⊗C K by multilinearity.

By Proposition 2, 〈ωi, µ+(Z)〉 is the maximum of 〈ωi, ν〉 for those ν ∈ Λ such that S+
ν

meets Ỹc,i. Using Proposition 4 (ii), we deduce that

〈ωi, µ+(Z)〉 = max
{
− val

(
g−1 · vωi

) ∣∣∣ g ∈ G(K ) such that [g] ∈ Ỹc,i

}

= max

{
− val

((
v, yi(p)−1 · vωi

))
∣∣∣∣∣

v ∈ V (ωi), p ∈ (K ×)N

such that val(pj) = c̃j

}
,

where we wrote p = (p1, . . . , pN ) as usual. Moreover we may ask that the vector v in the last
maximum is a weight vector.

Let us denote by M the minimum of the numbers
∑

j dj(π)cj for all i-trails π in V (ωi)
which start from ωi. We expand the product

yi(p)−1 = exp(−pNFiN ) · · · exp(−p1Fi1) =
∑

n1,...,nN>0

(−1)n1+···+nN pn1
1 · · · pnN

N

n1! · · ·nN !
FnN

iN
· · ·Fn1

i1

and we substitute in
(
v, yi(p)−1 · vωi

)
: we get a sum of terms of the form

(−1)n1+···+nN pn1
1 · · · pnN

N

n1! · · ·nN !

(
v, FnN

iN
· · ·Fn1

i1
· vωi

)
.
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If such a term is not zero, then the sequence

π = (ωi, ωi − n1αi1 , ωi − n1αi1 − n2αi2 , . . . , ωi − n1αi1 − · · · − nNαiN )

is an i-trail and the term has valuation

n1c̃1 + · · · + nN c̃N =
N∑

j=1

dj(π)cj − 〈ωi, λ〉 > M − 〈ωi, λ〉.

Therefore the valuation of (v, yi(p)−1 ·vωi
) is greater or equal to M−〈ωi, λ〉 for any v ∈ V (ωi);

we conclude that 〈ωi, µ+(Z)〉 6 〈ωi, λ〉 − M .
Conversely, let π be an i-trail in V (ωi) which starts from ωi and which is such that∑

j dj(π)cj = M . With this i-trail come the numbers n1, . . . , nN as before. By definition of
an i-trail, there is then a weight vector v ∈ V (ωi) such that

(
v, FnN

iN
· · ·Fn1

i1
· vωi

)
6= 0.

Given (a1, . . . , aN ) ∈ (C×)N , we set p = (a1t
c̃1 , . . . , aN tc̃N ) and look at the coefficient f

of tM−〈ωi,λ〉 in
(
v, yi(p)−1 · vωi

)
. The computation above shows that f is a polynomial in

(a1, . . . , aN ); it is not zero since the coefficient of an1
1 · · · anN

N in f is

(−1)n1+···+nN

n1! · · ·nN !

(
v, FnN

iN
· · ·Fn1

i1
· vωi

)
6= 0.

Therefore there exists p ∈ (K ×)N with val(pj) = c̃j such that
(
v, yi(p)−1 · vωi

)
has valuation

6 M − 〈ωi, λ〉. It follows that 〈ωi, µ+(Z)〉 > 〈ωi, λ〉 − M , which completes the proof. ¤

Proof of Proposition 16. Statement (i) is established in the same fashion as Theorem 15, using
Proposition 14 (i) instead of Proposition 14 (ii).

Now let i, c, Z and λ as in the statement of Statement (ii). Applying repeatedly Propo-
sition 14 (i), one shows easily that Z is an MV cycle. Furthermore by its very definition, Ỹi,c

is contained in S−
0 ; this entails that µ−(Z) = 0.

If c is the string in direction i of an element b ∈ B(−∞), then Z = Ξ(t0 ⊗ b), and thus

µ+(Z) = wt(Z) = wt(t0 ⊗ b) = wt(b) = wt
(
ẽc1
i1
· · · ẽcN

iN
1
)

= λ.

The equality µ+(Z) = λ holds therefore for each c ∈ Ci.
It remains to show that µ+(Z) > λ with equality only if c ∈ Ci. Let us first consider the

case where G is semisimple and simply connected. Then Λ = ZΦ∨ and we can speak of the
fundamental weights ωi and of the G-modules V (ωi).

Let i ∈ I. The sequence

π = (ωi, si1ωi, si2si1ωi, . . . , w0ωi)

is an i-trail in V (ωi) for which dj(π) = 0 for each j. By Lemma 17, we deduce

〈ωi, λ − µ+(Z)〉 6
∑

j

dj(π)cj = 0.

This is enough to guarantee that µ+(Z) > λ.
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Suppose now that µ+(Z) = λ. Lemma 17 implies then that
∑

j dj(π)cj > 0 for all i ∈ I,
all weights δ ∈ X, and all i-trails π from ωi to δ in V (ωi). In particular, this holds for all i ∈ I
and all i-trails π from ωi to w0siωi in V (ωi). By Theorem 3.10 in [6], this implies c ∈ Ci. The
proof is thus complete in the case where G is semisimple and simply connected.

In the general case, we note that the inclusion ZΦ∨ →֒ Λ defines an epimorphism from
a semisimple simply connected group Ġ onto G, such that ZΦ∨ is the cocharacter group of
a maximal torus Ṫ of Ġ and Φ is the root system of (Ġ, Ṫ ). The morphism from Ġ to G
then induces a homeomorphism from Ġ onto the neutral connected component of G . The
subsets Ỹi,c of Ġ and G match under this homeomorphism, as do the functions µ±. Since
Proposition 16 holds for Ġ, it holds for G as well. ¤

4.4 Lusztig’s algebraic-geometric parametrization of B

As we have seen in Section 4.2, the choice of a reduced decomposition i of w0 determines a
bijection ci : B(−∞) → Ci, called the “string parametrization”. The decomposition i also
determines a bijection bi : NN → B(−∞), called the “Lusztig parametrization”, which reflects
Lusztig’s original construction [23] of the canonical basis on a combinatorial level. We refer
the reader to [24], [29] and Section 3.1 in [6] for additional information on the map bi and its
construction.

The Lusztig parametrizations bi are convenient because they permit a study of B(−∞)
by way of numerical data in a fixed domain NN , but they are not intrinsic, for they depend
on the choice of i. To avoid this drawback, Lusztig introduces in [25] a parametrization of
B(−∞) in terms of closed subvarieties in arc spaces on U−. We will first recall briefly his
construction and then we will explain a relationship with MV cycles. For simplicity, Lusztig
restricts himself to the case where G is simply laced, but he explains in the introduction of
[25] that his results hold in the general case as well.

Lusztig starts by recalling a general construction. To a complex algebraic variety X and
a non-negative integer s, one can associate the space Xs of all jets of curves drawn on X, of
order s. In formulas, one looks at the algebra Cs = C[[t]]/(ts+1) and defines Xs as the set of
morphisms from Spec Cs to X. If X is smooth of dimension n, then Xs is smooth of dimension
(s + 1)n. There exist morphisms of truncation

· · · → Xs+1 → Xs → · · · → X1 → X0 = X;

the projective limit of this inverse system of maps is the space X(O). Finally the assignment
X Ã Xs is functorial, hence Xs is a group as soon as X is one.

Now let i be a reduced decomposition of w0. The morphism

yi : (a1, . . . , aN ) 7→ yi1(a1) · · · yiN (aN )

from (C)N to U− gives by functoriality a morphism (yi)s : (Cs)
N → (U−)s. Given an element

d = (d1, . . . , dN ) in NN , we may look at the image of the subset

(td1Cs) × · · · × (tdN Cs) ⊆ (Cs)
N

by (yi)s. This is a constructible, irreducible subset of (U−)s. If s is big enough, then the
closure of this subset depends only on b = bi(d) and not on i and d individually. (This
is Lemma 5.2 of [25]; the precise condition is that s must be strictly larger than ht(wt b).)
One may therefore denote this closure by Vb,s; it is a closed irreducible subset of (U−)s of
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codimension ht(wt b). Proposition 7.5 in [25] asserts that moreover the assignment b 7→ Vb,s is
injective for s big enough: there is a constant M depending only on the root system Φ such
that (

Vb,s = Vb′,s and s > M ht(wt b)
)

=⇒ b = b′

for any b, b′ ∈ B(−∞). Thus b 7→ Vb,s may be seen as a parametrization of B(−∞) by closed
irreducible subvarieties of (U−)s.

Our next result shows that Lusztig’s construction is related to MV cycles and to Braver-
man, Finkelberg and Gaitsgory’s theorem. We fix a dominant coweight λ ∈ Λ++. By Proposi-
tion 1, the map x 7→ x·[tw0λ] from G(O) to G factorizes through the reduction map G(O) → Gs

when s is big enough, defining thus a map

Υs : Gs → G , x 7→ x · [tw0λ].

On the other hand, we may consider the two embeddings of crystals κλ : B(λ) →֒ B(∞)⊗Tλ

and ιw0λ : B(λ) →֒ Tw0λ ⊗ B(−∞), as in Section 2.2. Finally, the isomorphism B(∞)∨ ∼=
B(−∞) yields a bijection b 7→ b∨ from B(∞) onto B(−∞).

Proposition 18 We adopt the notations above and assume that s is big enough so that the
map Υs exists and that the closed subsets Vb∨,s are defined for each b⊗ tλ in the image of κλ.
Then the diagram

B(λ)
_Ä

ιw0λ

²²

Â Ä κλ // im(κλ)

b⊗tλ 7→Υs(Vb∨,s)

²²

Tw0λ ⊗ B(−∞)
Ξ

// Z

commutes.

Proof. This is a consequence of Proposition 16 (i), combined with a result of Morier-Genoud
[28]. We first look at the commutative diagram that defines the embedding ιw0λ, namely

B(λ)
K k

κλ

xxrrrrrrrrrr

≃ //

t·

ιw0λ
''NNNNNNNNNNN

B(−w0λ)∨
_Ä

²²

B(−w0λ)oo_ _ _ _ _ _

_Ä

κ−w0λ

²²

B(∞) ⊗ Tλ Tw0λ ⊗ B(−∞) B(∞) ⊗ T−w0λ.oo_ _ _

The two arrows in broken line on this diagram are the maps b 7→ b∨; they are not morphisms
of crystals. The map from B(−w0λ) to B(λ) obtained by composing the two arrows on the
top line intertwines the raising operators ẽi with their lowering counterparts f̃i and sends the
highest weight element of B(−w0λ) to the lowest weight element of B(λ); it therefore coincides
with the map denoted by Φ−w0λ in [28].

Now let b ∈ B(λ). We write κλ(b) = b′ ⊗ tλ and κ−w0λ(Φ−1
−w0λ(b)) = b′′ ⊗ t−w0λ;

thus ιw0λ(b) = tw0λ ⊗ (b′′)∨. We choose a reduced decomposition i of w0 and we set c =
(c1, . . . , cN ) = ci((b

′′)∨) and (d1, . . . , dN ) = b−1
i ((b′)∨). We additionally set c̃j = −cj −∑l

k=j+1 ck〈αij , α
∨
ik
〉 for each j ∈ {1, . . . , N}. Corollary 3.5 in [28] then asserts that dj =

〈αij ,−w0λ〉 + c̃j for all j. Now comparing the definition of Lusztig’s subset V(b′)∨,s with the

definition of Ỹi,c and using Proposition 16 (i), we compute

V(b′)∨,s · [tw0λ] = tw0λ · Ỹi,c = tw0λ · Ξ
(
t0 ⊗ (b′′)∨

)
= Ξ

(
tw0λ ⊗ (b′′)∨

)
= (Ξ ◦ ιw0λ)(b).

¤
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4.5 Link with Kamnitzer’s construction

Let b ∈ B(−∞) and let i be a reduced decomposition of w0. Theorem 15 explains how to
construct an open and dense subset in the MV cycle Ξ(t0 ⊗ b) when one knows the string
parameter ci(b). In his work on MV polytopes, Kamnitzer [13] presents a similar result,
which provides a dense subset of Ξ(t0 ⊗ b) from the datum of the Lusztig parameter b−1

i (b).
These two results are twin; indeed Kamnitzer’s result and Proposition 16 (i) can be quickly
derived one from the other. This section, which does not contain any formalized statement,
aims at explaining how.

Our main tool here is Berenstein, Fomin and Zelevinsky’s work. In a series of papers
(among which [4, 5, 6]), these three authors devise an elegant method that yields all transition
maps between the different parametrizations of B(−∞) we have met, namely the maps

b−1
j ◦ bi : NN → NN , cj ◦ bi : NN → Cj, b−1

j ◦ c−1
i : Ci → NN , cj ◦ c−1

i : Ci → Cj,

where i and j are two reduced decomposition of w0. In recalling their results hereafter, we
will slightly modify their notation; our modifications simplify the presentation, perhaps at the
price of the loss of positivity results.

We first alter the string parameter ci by defining a map c̃i from B(−∞) to ZN as follows:
an element b ∈ B(−∞) with string parameter ci(b) = (c1, . . . , cN ) in direction i is sent to the
N -tuple (c̃1, . . . , c̃N ), where c̃j = −cj −

∑N
k=j+1 ck〈αij , α

∨
ik
〉. We denote the image of this map

c̃i by C̃i.
Let i = (i1, . . . , il) be a sequence of elements of I and let a = (a1, . . . , al) be a sequence

of elements of C×. Assuming that the product si1 · · · sil is a reduced decomposition of an
element w ∈ W , Theorem 1.2 in [5] implies there is a unique element in U− ∩ B+yi(a)w−1;
we denote it by zi(a). Theorem 1.2 in [5] also asserts that if i is a reduced decomposition
of w0, then the map zi is a birational morphism from (C×)N to U−. Now under the same
assumption, the map yi is a birational morphism from CN to U−. If i and j are both reduced
decompositions of w0, we therefore get birational maps

z−1
j ◦ zi, y−1

j ◦ zi, z−1
j ◦ yi and y−1

j ◦ yi (14)

from CN to itself. After extension of the base field, we may view them as birational maps
from K N to itself.

We need now to define the process of tropicalization. Here we depart from Berenstein,
Fomin and Zelevinsky’s purely algebraic method based on total positivity and semifields and
adopt a more pedestrian approach.

Let k and l be two positive integers and let f : K k → K l be a rational map, represented
as a sequence (f1, . . . , fl) of rational functions in k indeterminates. These indeterminates
are collectively denoted as a sequence p = (p1, . . . , pk). We suppose that no component fj

vanishes identically. Now choose j ∈ {1, . . . , l} and m = (m1, . . . , mk) ∈ Zk. There exists a
non-empty (Zariski) open subset Ω ⊆ (C×)k such that the valuation of fj(a1t

m1 , . . . , akt
mk)

is a constant f̂j , independent on the point a = (a1, . . . , ak) in Ω. (It is here implicitely
understood that if a ∈ Ω, then neither the numerator nor the denominator of the rational
function fj vanishes after substitution.) The term of lowest degree in fj(a1t

m1 , . . . , akt
mk)

may then be written f̄j(a)tf̂j , where f̄j is a rational function with complex coefficients in the
indeterminates a1, . . . , ak. Of course, f̂j and f̄j depend on the choice of m ∈ Zk, but the
open subset Ω may be chosen to meet the demand simultaneously for all m. Indeed, as we
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make the substitution pi = ait
mi , each monomial in the indeterminates p1, . . . , pk in the

numerator or in the denominator of fj becomes a non-zero element of K . To find the term

f̄j(a)tf̂j of lowest degree in fj(a1t
m1 , . . . , akt

mk), we collect the monomials in the numerator
of fj that get minimal valuation, and likewise in the denominator. The rôle of the condition
a ∈ Ω is to ensure that no accidental cancellation occurs when we make the sum of these
monomials, in the numerator as well as in the denominator. Since there are only finitely many
monomials, there are only finitely many possibilities for accidental cancellations, hence finitely
many conditions on a to be prescribed by Ω. Moreover monomials in the numerator or in the
denominator of fj are selected or discarded according to their valuation, and we can divide
Rk into finitely many regions, say Rk = D(1)⊔· · ·⊔D(t), so that the set of selected monomials
depends only on the domain D(r) to which m belongs. Since the valuation of each monomial
depends affinely on m, the regions D(1), . . . , D(t) are indeed intersections of affine hyperplanes
and open affine half-spaces, hence are locally closed, convex and polyhedral. For the same
reason, f̂j depends affinely on m in each region D(r); for its part, f̄j remains constant when
m varies inside a region D(r). Finally we note that the choice of the domain Ω ⊆ (C×)k, the
decomposition Rk = D(1) ⊔ · · · ⊔ D(t) and the reduction fj 7→ (f̂j , f̄j) may be carried out for
all j ∈ {1, . . . , l} at the same time. In particular each m ∈ Zk yields a tuple f̂ = (f̂1, . . . , f̂l) of
integers and a rational map f̄ = (f̄1, . . . , f̄l) from Ck to Cl. We summarize these observations
in a formalized statement:

Let f : K k → K l be a rational map, without identically vanishing component. Then there
exists a partition Rk = D(1) ⊔ · · · ⊔ D(t) of Rk into finitely many locally closed polyhedral
convex subsets, there exist affine maps f̂ (1), . . . , f̂ (t) : Rk → Rl, there exist rational maps
f̄ (1), . . . , f̄ (t) : Ck → Cl, and there exists an open subset Ω ⊆ (C×)k with the following property:
for each r ∈ {1, . . . , t}, each lattice point m in D(r) ∩Zk, each point a ∈ Ω, and each sequence
p ∈ (K ×)k such that the lower degree term of pi is ait

mi , the map f has a well-defined value
in (K ×)l at p, the map f̄ (r) has a well-defined value in (C×)l at a, and the term of lower

degree of fj(p) has valuation f̂
(r)
j (m) and coefficient f̄

(r)
j (a).

We define the tropicalization of f as the map f trop : Rk → Rl whose restriction to each
D(r) coincides with the restriction of the corresponding f̂ (r); this is a continuous piecewise
affine map. If the rational map f we started with has complex coefficients (that is, if it comes
from a rational map from Ck to Cl by extension of the base field), then the convex subsets
D(r) are cones and the affine maps f̂ (r) are linear.

With this notation and this terminology, Theorems 5.2 and 5.7 in [6] implies that the maps

b−1
j ◦ bi : NN → NN , c̃j ◦ bi : NN → C̃j, b−1

j ◦ c̃−1
i : C̃i → NN , c̃j ◦ c̃−1

i : C̃i → C̃j

are restrictions of the tropicalizations of the maps in (14).
One may here observe a hidden symmetry. Using the equality w0

2 = (−1)2ρ∨ , where 2ρ∨ is
the sum of all positive coroots in Φ∨

+, one checks that the birational maps y−1
j ◦ zi and z−1

j ◦ yi

are equal. These maps have therefore the same tropicalization. In other words, c̃j ◦ bi and

b−1
j ◦ c̃−1

i are given by the same piecewise affine formulas. The sentence following Theorem 3.8
in [6] seems to indicate that this fact has escaped observation up to now.

In [13], Kamnitzer introduces subsets Ai(n•) in G , where i is a reduced decomposition of
w0 and n• ∈ NN . Combining Theorem 4.7 in [14] with the proof of Theorem 3.1 in [13], one
can see that Ξ(t0 ⊗ bi(n•)) is the closure of Ai(n•). On the other hand, Theorem 4.5 in [13]
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says that

Ai(n•) =
{
[zi(q)]

∣∣ q = (q1, . . . , qN ) ∈ (K ×)N such that val(qj) = nj

}
.

Now fix b ∈ B(−∞) and a reduced decomposition i of w0. Call c̃ = (c̃1, . . . , c̃N ) the
modified string parameter c̃i(b) of b in direction i and call n• = (n1, . . . , nN ) the Lusztig
parameter b−1

i (b) of b with respect to i. The rational maps f = z−1
i ◦ yi and g = y−1

i ◦ zi

are mutually inverse birational maps from K N to itself, and by Berenstein and Zelevinsky’s
theorem,

f trop(c̃) = n• and gtrop(n•) = c̃.

The analysis that we made to define the tropicalization of f and g shows the existence of open
subsets Ω and Ω′ of (C×)N and of rational maps f̄ and ḡ from CN to itself such that:

• For each a ∈ Ω and b ∈ Ω′, f̄(a) and ḡ(b) have well-defined values in (C×)N .

• For any N -tuple p of Laurent series whose terms of lower degree are a1t
c̃1 , . . . , aN tc̃N with

(a1, . . . , aN ) ∈ Ω, the evaluation f(p) is a well-defined element q of (K ×)N ; moreover the
lower degree terms of the components of q are f̄1(a)tn1 , . . . , f̄N (a)tnN .

• For any N -tuple q of Laurent series whose terms of lower degree are b1t
n1 , . . . , bN tnN with

(b1, . . . , bN ) ∈ Ω′, the evaluation g(q) is a well-defined element p of (K ×)N ; moreover the
lower degree terms of the components of p are ḡ1(b)tc̃1 , . . . , ḡN (b)tc̃N .

Because f and g are mutually inverse birational maps, so are f̄ and ḡ. One can then assume
that these two latter maps are mutually inverse isomorphisms between Ω and Ω′, by shrinking
these open subsets if necessary. Thus f and g set up a bijective correspondence between

Ω̂ =

{
p ∈ (K ×)N

∣∣∣∣∣
each pj has lower degree term

ajt
c̃j with (a1, . . . , aN ) ∈ Ω

}

and

Ω̂′ =

{
q ∈ (K ×)N

∣∣∣∣∣
each qj has lower degree term

bjt
nj with (b1, . . . , bN ) ∈ Ω′

}
.

In other words, to each p ∈ Ω̂ corresponds a q ∈ Ω̂′ such that yi(p) = zi(q), and conversely.
This shows the equality

{
[yi(p)]

∣∣ p ∈ Ω̂
}

=
{
[zi(q)]

∣∣ q ∈ Ω̂′
}
.

By Kamnitzer’s theorem, the right-hand side is dense in Ai(n•) hence in Ξ(t0 ⊗ b). We thus
get another proof of our Proposition 16 (i), which claims that Ξ(t0 ⊗ b) is the closure of the
left-hand side.

Remark. We fix a reduced decomposition i of w0. Each MV cycle Z such that µ−(Z) = 0
is the closure of a set Ỹi,c for a certain c ∈ Ci; indeed there exists b ∈ B(−∞) such that
Z = Ξ(t0 ⊗ b), and one takes then c = ci(b). It follows that S−

0 is contained in the union
⋃

c∈Ci
Ỹi,c. On the other side, each Ỹi,c is contained in S−

0 . One could then hope that S−
0 is

the disjoint union of the Ỹi,c for c ∈ Ci, because the analogous property S−
0 =

⊔
n•∈NN Ai(n•)

for Kamnitzer’s subsets holds (see Proposition 4.1 in [13]).
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This is alas not the case in general, as the following counter-example shows. We take
G = SL4 with its usual pinning and enumerate the simple roots in the usual way (α1, α2, α3).
We choose the reduced decomposition i = (2, 1, 3, 2, 1, 3) and consider

g = y2(−1) y1(1/t) y3(1/t) y2(t) y1(−1/t) y3(−1/t) =





1 0 0 0
0 1 0 0
−1 t − 1 1 0
−1/t 1 0 1



 .

If one tries to factorize an element in gG(O) ∩ U−(K ) as a product

y2(p1) y1(p2) y3(p3) y2(p4) y1(p5) y3(p6)

using Berenstein, Fomin and Zelevinsky’s method [4], and if after that one adjusts c =
(c1, . . . , c6) so that (val(p1), . . . , val(p6)) = (c̃1, . . . , c̃6), then one finds

c1 6 0, c2 6 0, c3 6 0, c4 > 1, c5 > 1, c6 > 1.

These conditions on c must be satisfied in order that [g] can belong to Ỹi,c. However the
equations that define the cone Ci are

c1 > 0, c2 > c6 > 0, c3 > c5 > 0, c2 + c3 > c4 > c5 + c6.

We conclude that [g] 6∈
⋃

c∈Ci
Ỹi,c.

5 BFG crystal operations on MV cycles and root operators on

LS galleries

Let λ ∈ Λ++ be a dominant coweight. Littelmann’s path model [21] affords a concrete
realization of the crystal B(λ) in terms of piecewise linear paths drawn on Λ⊗Z R; it depends
on the choice of a path joining 0 to λ and contained in the dominant Weyl chamber. In [11],
Gaussent and Littelmann present a variation of the path model, replacing piecewise linear
paths by galleries in the Coxeter complex of the affine Weyl group W aff . They define a set
Γ+

LS(γλ) of “LS galleries”, which depends on the choice of a minimal gallery γλ joining 0 to λ
and contained in the dominant Weyl chamber. Defining “root operators” eα and fα for each
simple root α in Φ, they endow Γ+

LS(γλ) with the structure of a crystal, which happens to be
isomorphic to B(λ). Using a Bott-Samelson resolution π : Σ̂(γλ) → Gλ and a Białynicki-Birula

decomposition of Σ̂(γλ) into a disjoint union of cells C(δ), Gaussent and Littelmann associate
a closed subvariety Z(δ) = π(C(δ)) of G to each LS gallery δ and show that the map Z is a
bijection from Γ+

LS(γλ) onto Z (λ).
The main result of this section is Theorem 25, which says that Z is an isomorphism of

crystals. In other words, the root operators on LS galleries match Braverman and Gaitsgory’s
crystal operations on MV cycles under the bijection Z.

Strictly speaking, our proof for this comparison result is valid only when λ is regular. The
advantage of this situation is that elements in Γ+

LS(γλ) are then galleries of alcoves. In the case
where λ is singular, Gaussent and Littelmann’s constructions involve a more general class of
galleries (see Section 4 in [11]). Such a sophistication is however not needed: our presentation
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of Gaussent and Littelmann’s results in Section 5.2 below makes sense even if λ is singular.
Within this framework, our comparison theorem is valid for any λ, regular or singular.

A key idea of Gaussent and Littelmann is to view the affine Grassmannian as a subset of the
set of vertices of the (affine) Bruhat-Tits building of G(K ). In Section 5.1, we review quickly
basic facts about the latter and study the stabilizer in U+(K ) of certain of its faces. We warn
here the reader that we use our own convention pertaining the Bruhat-Tits building: indeed
our Iwahori subgroup is the preimage of B− by the specialization map at t = 0 from G(O) to
G, whereas Gaussent and Littelmann use the preimage of B+. Our convention is unusual, but
it makes the statement of our comparison result more natural. Section 5.2 recalls the main
steps in Gaussent and Littelmann’s construction, in a way that encompasses the peculiarities
of the case where λ is singular. The final Section 5.3 contains the proof of our comparison
theorem. To prove the equality ẽiZ(δ) = Z(eαi

δ) for each LS gallery δ and each i ∈ I, we
use the criterion of Proposition 12. The first three conditions are easily checked, while the
inclusion Z(δ) ⊆ Z(eαi

δ) is established in Proposition 28.

5.1 Affine roots, the Coxeter complex and the Bruhat-Tits building

We consider the vector space ΛR = Λ ⊗Z R. We define a real root of the affine root system
(for short, an affine root) as a pair (α, n) ∈ Φ × Z. To an affine root (α, n), we associate:

• the reflection sα,n : x 7→ x −
(
〈α, x〉 − n

)
α∨ of ΛR;

• the affine hyperplane Hα,n = {x ∈ ΛR | 〈α, x〉 = n} of fixed points of sα,n;

• the closed half-space H−
α,n = {x ∈ ΛR | 〈α, x〉 6 n};

• the one-parameter additive subgroup xα,n : b 7→ xα(btn) of G(K ); here b belongs to either
C or K .

We denote the set of all affine roots by Φaff . We embed Φ in Φaff by identifying a root
α ∈ Φ with the affine root (α, 0). We choose an element 0 that does not belong to I; we set
Iaff = I ⊔ {0} and α0 = (−θ,−1), where θ is the highest root of Φ. The elements αi with
i ∈ Iaff are called simple affine roots.

The group of affine transformations of ΛR generated by all reflections sα,n is called the
affine Weyl group and is denoted by W aff . For each i ∈ Iaff , we set si = sαi

. Then W aff

is a Coxeter system when equipped with the set of generators {si | i ∈ Iaff}. The parabolic
subgroup of W aff generated by the simple reflections si with i ∈ I is isomorphic to W . For
each λ ∈ ZΦ∨, the translation τλ : x 7→ x + λ belongs to W aff . All these translations form
a normal subgroup in W aff , isomorphic to the coroot lattice ZΦ∨, and W aff is the semidirect
product W aff = ZΦ∨ ⋊ W .

The group W aff acts on the set Φaff of affine roots: one demands that w(H−
β ) = H−

wβ

for each element w ∈ W aff and each affine root β ∈ Φaff . The action of an element w ∈
W or a translation τλ on an affine root (α, n) ∈ Φ × Z is given by w (α, n) = (wα, n) or
τλ (α, n) =

(
α, n + 〈α, λ〉

)
. One checks that wsαw−1 = swα for all w ∈ W aff and α ∈ Φaff .

Using Equation (1), one checks that

(tλ w )xα(a) (tλ w )−1 = xτλw(α)(±a) (15)

in G(K ), for all λ ∈ ZΦ∨, w ∈ W , α ∈ Φaff and a ∈ K .
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We denote by H the arrangement formed by the hyperplanes Hβ, where β ∈ Φaff . It divides
the vector space ΛR into faces. Faces with maximal dimension are called alcoves; they are
the connected components of ΛR \

⋃
H∈H

H. Faces of codimension 1 are called facets; faces of
dimension 0 are called vertices. The closure of a face is the disjoint union of faces of smaller
dimension. Endowed with the set of all faces, ΛR becomes a polysimplicial complex, called
the Coxeter complex A aff ; it is endowed with an action of W aff .

The dominant open Weyl chamber is the subset

Cdom = {x ∈ ΛR | ∀i ∈ I, 〈αi, x〉 > 0}.

The fundamental alcove
Afund = {x ∈ Cdom | 〈θ, x〉 < 1}

is the complement of
⋃

i∈Iaff H−
αi

. We label the faces contained in Afund by proper subsets of

Iaff by setting

φJ =




⋂

i∈J

Hαi



 \




⋃

i∈Iaff\J

H−
αi





for each J ⊂ Iaff . For instance φ∅ is the alcove Afund and φI is the vertex {0}. Any face of
our arrangement H is conjugated under the action of W aff to exactly one face contained in
Afund, because this latter is a fundamental domain for the action of W aff on ΛR. We say that
a subset J ⊂ Iaff is the type of a face F if F is conjugated to φJ under W aff .

We denote by B̂ the (Iwahori) subgroup of G(K ) generated by the torus T (O) and by
the elements xα(ta) and x−α(a), where α ∈ Φ+ and a ∈ O. In other words, B̂ is the preimage
of the Borel subgroup B− under the specialization map at t = 0 from G(O) to G. We lift the
simple reflections si to the group G(K ) by setting

si = xαi
(1)x−αi

(−1)xαi
(1) = x−αi

(−1)xαi
(1)x−αi

(−1)

for each i ∈ Iaff . We lift any element w ∈ W aff to an element w ∈ G(K ) so that w = si1 · · · sil

for each reduced decomposition si1 · · · sil of w. This notation does not conflict with our earlier
notation si for i ∈ I and w for w ∈ W . For each λ ∈ ZΦ∨, the lift τλ of the translation τλ

coincides with tλ up to a sign (that is, up to the multiplication by an element of the form
(−1)µ with µ ∈ ZΦ∨).

The affine Bruhat-Tits building I aff is a polysimplicial complex endowed with an action
of G(K ). The affine Coxeter complex A aff can be embedded in I aff as the subcomplex
formed by the faces fixed by T ; in this identification, the action of an element w ∈ W aff on
A aff matches the action of w on (I aff)T . Each face of I aff is conjugated under the action
of G(K ) to exactly one face contained in Afund; we say that a subset J ⊂ Iaff is the type
of a face F if F is conjugated to φJ . Finally there is a G(K )-equivariant map of the affine
Grassmannian G into I aff , which extends the map [tλ] 7→ {λ} from G T into A aff ∼= (I aff)T .

Given a subset J ⊆ Iaff , we denote by P̂J the subgroup of G(K ) generated by B̂ and the
elements si for i ∈ J ; thus B̂ = P̂∅ and G(O) = P̂I . (The subgroup P̂J is the stabilizer in
G(K ) of the face φJ . For each g ∈ G(K ), the stabilizer of the face gφJ is thus the parahoric
subgroup gP̂Jg−1. This bijection between the set of faces in the affine building and the set of
parahoric subgroups in G(K ) is indeed the starting point for the definition of the building,
see §2.1 in [10].) To shorten the notation, we will write P̂i instead of P̂{i} for each i ∈ Iaff .
Similarly, for each i ∈ Iaff , we will write Wi to indicate the subgroup {1, si} of W aff .
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We denote the stabilizer in U+(K ) of a face F of the affine building by Stab+(F ). Our
last task in this section is to determine as precisely as possible the group Stab+(F ) and the
set Stab+(F ′)/ Stab+(F ) when F and F ′ are faces of the Coxeter complex such that F ′ ⊆ F .
We need additional notation for that. Given a real number a, we denote the smallest integer
greater than a by ⌈a⌉. To a face F of the Coxeter complex, Bruhat and Tits (see (7.1.1) in [10])
associate the function fF : α 7→ supx∈F 〈α, x〉 on the dual space of ΛR. If α ∈ Φ, then ⌈fF (α)⌉
is the smallest integer n such that F lies in the closed half-space H−

α,n. The function fF is
convex and positively homogeneous of degree 1; in particular, fF (iα + jβ) 6 ifF (α) + jfF (β)
for all roots α, β ∈ Φ and all positive integers i, j. When F and F ′ are two faces of the Coxeter
complex such that F ′ ⊆ F , we denote by Φaff

+ (F ′, F ) the set of all affine roots β ∈ Φ+ × Z

such that F ′ ⊆ Hβ and F 6⊆ H−
β ; in other words, (α, n) ∈ Φaff

+ (F ′, F ) if and only if α ∈ Φ+,
n = fF ′(α) and n + 1 = ⌈fF (α)⌉. We denote by Stab+(F ′, F ) the subgroup of U+(K )
generated by the elements of the form xβ(a) with β ∈ Φaff

+ (F ′, F ) and a ∈ C.

Proposition 19 (i) The stabilizer Stab+(F ) of a face F of the Coxeter complex is generated
by the elements xα(p), where α ∈ Φ+ and p ∈ K satisfy val(p) > fF (α).

(ii) Let F and F ′ be two faces of the Coxeter complex such that F ′ ⊆ F . Then Stab+(F ′, F )
is a set of representatives for the right cosets of Stab+(F ) in Stab+(F ′). For any total order
on the set Φaff

+ (F ′, F ), the map

(aβ)β∈Φaff
+ (F ′,F ) 7→

∏

β∈Φaff
+ (F ′,F )

xβ(aβ)

is a bijection from CΦaff
+ (F ′,F ) onto Stab+(F ′, F ).

Proof. Item (i) is proved in Bruhat and Tits’s paper [10], see in particular Sections (7.4.4)
and Equation (1) in Section (7.1.8). We note here that this result implies that for any total
order on Φ+, the map

(pα)α∈Φ+ 7→
∏

α∈Φ+

xα

(
pαt⌈fF (α)⌉

)

is a bijection from OΦ+ onto Stab+(F ).
We now turn to Item (ii). We first observe the following property of Φaff

+ (F ′, F ): for each
pair i, j of positive integers and each pair (α, m), (β, n) of affine roots in Φaff

+ (F ′, F ) such that
iα+jβ ∈ Φ, the affine root (iα+jβ, im+jn) belongs to Φaff

+ (F ′, F ). Indeed F ′ ⊆ Hα,m∩Hβ,n

implies F ′ ⊆ Hiα+jβ,im+jn, and the inequality

fF (iα + jβ) > ifF (α) − jfF (−β) = ifF (α) + jn > im + jn

shows that F 6⊆ H−
iα+jβ,im+jn. Standard arguments based on Chevalley’s commutator for-

mula (5) show then the second assertion in Item (ii).
Now the map (α, m) 7→ α from Φaff to Φ restricts to a bijection from Φaff

+ (F ′, F ) onto a
subset Φ′

+ of Φ+. We set Φ′′
+ = Φ+ \ Φ′

+. We endow Φ+ with a total order, chosen so that
every element in Φ′

+ is smaller than every element in Φ′′
+, and we transport the order induced

on Φ′
+ to Φaff

+ (F ′, F ). By Item (i), each element in Stab+(F ′) may be uniquely written as a
product ∏

α∈Φ+

xα

(
pαt⌈fF ′ (α)⌉

)
(16)
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with (pα)α∈Φ+ in OΦ+ . We write pα = aα + tqα for each α ∈ Φ′
+, with aα ∈ C and qα ∈ O.

Thus for each (α, m) ∈ Φaff
+ (F ′, F ), we have pαt⌈fF ′(α)⌉ = aαtm + qαt⌈fF (α)⌉. On the other

hand, ⌈fF ′(α)⌉ = ⌈fF (α)⌉ for each α ∈ Φ′′
+. We may therefore rewrite the product in (16) as




∏

(α,m)∈Φaff
+ (F ′,F )

xα

(
aαtm

)
xα

(
qαt⌈fF (α)⌉

)







∏

α∈Φ′′
+

xα

(
pαt⌈fF (α)⌉

)


 .

We rearrange the first product above using again Chevalley’s commutator formula: there exists
a family (rα)α∈Φ′

+
of power series such that this product is




∏

(α,m)∈Φaff
+ (F ′,F )

xα

(
aαtm

)







∏

α∈Φ′
+

xα

(
rαt⌈fF (α)⌉

)


 ,

and for fixed numbers aα, the map (qα) 7→ (rα) is a bijection from OΦ′
+ onto itself. We

conclude that the map

((aβ), (pα)) 7→




∏

β∈Φaff
+ (F ′,F )

xβ

(
aβ

)







∏

α∈Φ+

xα

(
pαt⌈fF (α)⌉

)




is a bijection from CΦaff
+ (F ′,F ) × OΦ+ onto Stab+(F ′). This means exactly that the map

(g, h) 7→ gh is a bijection from Stab+(F ′, F ) × Stab+(F ) onto Stab+(F ′). The proof of
Item (ii) is now complete. ¤

Things are more easy to grasp when F is an alcove and F ′ is a facet of F , because then
Φaff

+ (F ′, F ) has at most one element. In this particular case, certain commutators involving
elements of Stab+(F ′) and Stab+(F ) automatically belong to Stab+(F ).

Lemma 20 Let F be an alcove of the Coxeter complex and let F ′ be a facet of F . Let
(α, m) ∈ Φ+ × Z be the affine root such that F ′ lies in the wall Hα,m and let (β, n) ∈ Φaff

be such that F ⊆ H−
β,n. We assume that β is either positive or is the opposite of a simple

root, and that β 6= −α. Then for each q ∈ O and each v ∈ Stab+(F ′, F ), the commutator
xβ,n(q) v xβ,n(q)−1 v−1 belongs to Stab+(F ).

Proof. There is nothing to show if F ⊆ H−
α,m since v = 1 in this case. We may thus assume

that Stab+(F ′, F ) =
{
(α, m)

}
; then there is an a ∈ C such that v = xα,m(a).

Suppose first that β = α. Then

xβ,n(q) v xβ,n(q)−1 v−1 = xβ,n(q)xα,m(a)xβ,n(−q)xα,m(−a) = xα(qtn + atm − qtn − atm) = 1.

Therefore the assertion holds in this case.
Suppose now that β 6= α. The facet F ′ is contained in the closure of exactly two alcoves,

F and say F ∗, the latter lying in H−
α,m. Then fF ∗(α) = m. We observe that no wall other

than Hα,m separates F ∗ and F . In particular, Hβ,n does not separate F ∗ and F , because
β 6= ±α. Since F lies in H−

β,n, so does F ∗, and thus fF ∗(β) 6 n. Therefore for any pair of
positive integers i, j such that iα + jβ is a root, fF ∗(iα + jβ) 6 im + jn. This means that F ∗

lies in the half-space H−
iα+jβ,im+jn. Again, the wall Hiα+jβ,im+jn does not separate F ∗ and F ,
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and we conclude that F lies in the half-space H−
iα+jβ,im+jn. Chevalley’s commutator formula

(5) implies that

xβ,n(q) v xβ,n(q)−1 v−1 = xβ,n(q)xα,m(a)xβ,n(−q)xα,m(−a)

=
∏

i,j>0

xiα+jβ,im+jn

(
Ci,j,α,β ai(−q)j

)
.

Here the product is taken over all pairs of positive integers i, j such that iα + jβ is a root.
The assumption about β in the statement of the lemma implies that such a root iα + jβ is
necessarily positive. By Proposition 19 (i), each factor xiα+jβ,im+jn

(
Ci,j,α,βai(−q)j

)
belongs

to Stab+(F ). Thus the commutator xβ,n(q) v xβ,n(q)−1 v−1 belongs to Stab+(F ). ¤

Remark. The first assertion in Proposition 19 (ii) means that Stab+(F ′) has the structure of
a bicrossed product Stab+(F ′, F ) ⋊⋉ Stab+(F ) (see [30]) whenever F and F ′ are two faces in
the Coxeter complex such that F ′ ⊆ F . Suppose now that F is an alcove and that F ′ is a
facet of F . Then Proposition 19 (i) and Lemma 20 imply that each element v ∈ Stab+(F ′, F )
normalizes the group Stab+(F ). Thus Stab+(F ) is a normal subgroup of Stab+(F ′) and
Stab+(F ′) is the semidirect product Stab+(F ′, F ) ⋉ Stab+(F ).

5.2 Galleries, cells and MV cycles

We fix a dominant coweight λ ∈ Λ++. As usual, we denote by Pλ the standard parabolic
subgroup PJ of G, where J = {j ∈ I | 〈αj , λ〉 = 0}. Besides, we denote by {λfund} the
vertex in Afund with the same type as {λ}. Finally, there is a unique element wλ in W aff

with minimal length such that λ = wλ(λfund). Thus among all alcoves in A aff having {λ} as
vertex, wλ(Afund) is the one closest to Afund.

We denote the length of wλ by p and we choose a reduced decomposition si1 · · · sip of
it, with (i1, . . . , ip) ∈ (Iaff)p. The geometric translation of this choice is the datum of the
sequence

γλ =
(
{0} ⊂ Γ0 ⊃ Γ′

1 ⊂ Γ1 ⊃ · · · ⊃ Γ′
p ⊂ Γp ⊃ {λ}

)

of alcoves and facets (also known as a gallery) in A aff , where

Γj = si1 · · · sij (Afund) and Γ′
j = si1 · · · sij−1

(
φ{ij}

)
.

By Proposition 2.19 (iv) in [31], these alcoves and facets are all contained in the dominant Weyl
chamber Cdom. The choice of the reduced decomposition si1 · · · sip of wλ and the notations
Pλ, λfund, γλ will be kept for the rest of Section 5.

We define the Bott-Samelson variety as the smooth projective variety

Σ̂(γλ) = G(O) ×
B̂

P̂i1 ×
B̂

· · · ×
B̂

P̂ip/B̂.

We will denote the image in Σ̂(γλ) of an element (g0, g1, . . . , gp) ∈ G(O) × P̂i1 × · · · × P̂ip by
the usual notation [g0, g1, . . . , gp]. The group G(O) acts on Σ̂(γλ) by left multiplication on
the first factor. There is a G(O)-equivariant map π : [g0, g1, . . . , gp] 7→ g0g1 · · · gp

[
tλfund

]
from

Σ̂(γλ) onto Gλ.
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The geometric language of buildings is of great convenience in the study of the Bott-
Samelson variety. Indeed each element d = [g0, g1, . . . , gp] in Σ̂(γλ) may be viewed as a gallery

δ =
(
{0} = ∆′

0 ⊂ ∆0 ⊃ ∆′
1 ⊂ ∆1 ⊃ · · · ⊃ ∆′

p ⊂ ∆p ⊃ ∆′
p+1

)
(17)

in I aff , where

∆j = g0 · · · gj(Afund) for 0 6 j 6 p,

∆′
j = g0 · · · gj−1

(
φ{ij}

)
for 1 6 j 6 p,

and ∆′
p+1 = g0 · · · gp{λfund}.

(This gallery has the same type as γλ, that is, each facet ∆′
j of δ has the same type as the

corresponding element Γ′
j in γλ. We also observe that the vertex ∆′

p+1 of the affine building
corresponds to the element π(d) of the affine Grassmannian.) Thus for instance the point[
1, si1 , si2 , . . . , sip

]
in Σ̂(γλ) is viewed as the gallery γλ. With this picture in mind, one proves

easily the following proposition.

Proposition 21 The restriction of π to π−1(Gλ) is a fiber bundle with fiber isomorphic
to Pλ/B+.

Proof. Let J = {j ∈ I | 〈αj , λ〉 = 0} and let P−
J be the parabolic subgroup of G generated

by B− ∪ MJ . The set S of alcoves whose closure contains φJ is in canonical bijection with
the set of all Iwahori subgroups of G(K ) contained in P̂J , hence with P̂J/B̂ ∼= P−

J /B−. In
particular, P−

J acts transitively on S and S is isomorphic to Pλ/B+.
Now let F = π−1([tλ]) and let H be the stabilizer of [tλ] in G(O); thus H ⊇ P−

J . Since π
is G(O)-equivariant, H acts on F and there is a commutative diagram

G(O) ×H F

²²

≃ // π−1(Gλ)

π

²²

G(O)/H
≃ // Gλ.

It thus suffices to prove that F is isomorphic to S.
Each element d ∈ F can be viewed as a gallery

δ =
(
{0} ⊂ ∆0 ⊃ ∆′

1 ⊂ ∆1 ⊃ · · · ⊃ ∆′
p ⊂ ∆p ⊃ {λ}

)

in I aff stretching from {0} to {λ}. We claim that ∆0 always contains φJ . When all faces of δ
belong to A aff , this claim follows from the proof of Proposition 2.29 in [31] (with proj{0}{λ} =

φJ); the general case is obtained by retracting δ onto A aff from the fundamental alcove, see
Lemma 3.6 in [31].

We finally consider the map f : d 7→ ∆0 from F to S. Corollary 3.4 in [31] implies that f is
injective, because in any apartment, there is only one non-stammering gallery of the same type
as γλ that starts from a given chamber ∆0. On the other side, f is H-equivariant; it is thus
surjective, for P−

J acts transitively on the codomain. We conclude that f is an isomorphism
from F onto S. ¤
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This proposition implies the following equality, which we record for later use:

∣∣Φ+

∣∣ + p = dim Σ̂(γλ) = dimGλ + dim(Pλ/B+) = ht(λ − w0λ) + dim(Pλ/B+). (18)

Our next task is to obtain a Białynicki-Birula decomposition of the Bott-Samelson variety.
The torus T acts on the latter by left multiplication on the first factor. If we represent an
element d ∈ Σ̂(γλ) by a gallery δ as in (17), then d is fixed by T if and only if all the faces
∆j and ∆′

j are in the Coxeter complex A aff ∼= (I aff)T . We devote a word to this situation:
a gallery δ as in (17), of the same type as γλ, all of whose faces are in A aff , is called a
combinatorial gallery. The weight ν such that ∆′

p+1 = {ν} is called the weight of δ; it belongs
to λ + ZΦ∨, because {ν} has the same type as {λ}.

We denote the set of all combinatorial galleries by Γ(γλ). This set is in bijection with
W×Wi1×· · ·×Wip ; indeed the map (δ0, δ1, . . . , δp) 7→

[
δ0, δ1, . . . , δp

]
from W×Wi1×· · ·×Wip

to Σ̂(γλ) is injective and its image is the set of T -fixed points in the codomain. Concretely
this correspondence maps (δ0, δ1, . . . , δp) ∈ W × Wi1 × · · · × Wip to the combinatorial gallery
whose faces are

∆j = δ0 · · · δj(Afund) and ∆′
j = δ0 · · · δj−1

(
φ{ij}

)
(19)

and whose weight is
ν = δ0δ1 · · · δpλfund. (20)

The retraction r∅ from G onto G T ∼= Λ can be extended to a map of polysimplicial
complexes from I aff onto (I aff)T ∼= A aff . Following Section 7 in [11], we further extend
this retraction to a map from Σ̂(γλ) onto Σ̂(γλ)T ∼= Γ(γλ) by applying it componentwise to
galleries. The preimage by this map of a combinatorial gallery δ will be denoted by C(δ).

Our aim now is to describe precisely the cell C(δ) associated to a combinatorial gallery δ.
Representing the latter as in (17), we introduce the notation

Stab+(δ) = Stab+(∆′
0, ∆0) × Stab+(∆′

1, ∆1) × · · · × Stab+(∆′
p, ∆p).

Proposition 22 Let δ be a combinatorial gallery and let (δ0, δ1, . . . , δp) be the sequence in
W × Wi1 × · · · × Wip associated to δ by Equations (19). Then the map

(v0, v1, . . . , vp) 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δp−1

−1
vp δ0 · · · δp

]

from Stab+(δ) to Σ̂(γλ) is injective and its image is C(δ).

Proof. Set

˜Stab+(δ) = Stab+(∆′
0) ×

Stab+(∆0)
Stab+(∆′

1) ×
Stab+(∆1)

· · · ×
Stab+(∆p−1)

Stab+(∆′
p)/ Stab+(∆p).

From the inclusions

Stab+(∆j) ⊆ δ0 · · · δj B̂ δ0 · · · δj
−1

(for 0 6 j 6 p),

Stab+(∆′
0) ⊆ G(O)δ0

−1
,

Stab+(∆′
j) ⊆ δ0 · · · δj−1 P̂ij δ0 · · · δj

−1
(for 1 6 j 6 p),
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standard arguments imply that the map

f : [v0, v1, . . . , vp] 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δp−1

−1
vp δ0 · · · δp

]

from ˜Stab+(δ) to Σ̂(γλ) is well-defined.
The proof of Proposition 6 in [11] says that an element d = [g0, g1, . . . , gp] in the Bott-

Samelson variety belongs to the cell C(δ) if and only if there exists u0, u1, . . . , up ∈ U+(K )
such that

g0g1 · · · gjAfund = uj∆j and uj−1∆
′
j = uj∆

′
j

for each j. Setting v0 = u0 and vj = u−1
j−1uj for 1 6 j 6 p, the conditions above can be

rewritten
g0g1 · · · gjB̂ = v0v1 · · · vj δ0δ1 · · · δj B̂ and vj ∈ Stab+(∆′

j),

which shows that f([v0, v1, . . . , vp]) = d. Therefore the image of f contains the cell C(δ). The
reverse inclusion can be established similarly.

The map f is injective. Indeed suppose that two elements v = [v0, v1, . . . , vp] and v′ =

[v′0, v
′
1, . . . , v

′
p] in ˜Stab+(δ) have the same image. Then

v0v1 · · · vj δ0δ1 · · · δj B̂ = v′0v
′
1 · · · v

′
j δ0δ1 · · · δj B̂

for each j ∈ {0, . . . , p}. This means geometrically that

v0v1 · · · vj δ0δ1 · · · δj Afund = v′0v
′
1 · · · v

′
j δ0δ1 · · · δj Afund;

in other words, v0v1 · · · vj and v′0v
′
1 · · · v

′
j are equal in U+(K )/ Stab+(∆j). Since this holds

for each j, the two elements v and v′ are equal in ˜Stab+(δ). We conclude that f induces a

bijection from ˜Stab+(δ) onto C(δ).
It then remains to observe that the map (v0, v1, . . . , vp) 7→ [v0, v1, . . . , vp] from Stab+(δ) to

˜Stab+(δ) is bijective. This follows from Proposition 19 (ii): indeed for each [a0, a1, . . . , ap] ∈

˜Stab+(δ), the element (v0, v1, . . . , vp) ∈ Stab+(δ) such that [v0, v1, . . . , vp] = [a0, a1, . . . , ap] is
uniquely determined by the condition that for all j ∈ {0, 1, . . . , p},

vj ∈
(
(v0 · · · vj−1)

−1(a0 · · · aj) Stab+(∆j)
)
∩ Stab+(∆′

j , ∆j).

¤

The definition of the map π, Equation (20), Proposition 19 (ii) and Proposition 22 yield
the following explicit description of the image of the cell C(δ) by the map π.

Corollary 23 Let δ be a combinatorial gallery of weight ν, as in (17), and equip the set
Φaff

+ (∆′
0, ∆0) with a total order. Then π(C(δ)) is the image of the map

(aj,β) 7→

p∏

j=0




∏

β∈Φaff
+ (∆′

j ,∆j)

xβ(aj,β)



 [tν ]

from
∏p

j=0 CΦaff
+ (∆′

j ,∆j) to G .
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Certainly the notation used in Corollary 23 is more complicated than really needed. Indeed
except perhaps for j = 0, each set Φaff

+ (∆′
j , ∆j) has at most one element. Each inner product

is therefore almost always empty or reduced to one factor. Keeping this fact in mind may help
understand the proofs of Lemma 27 and Proposition 28 in Section 5.3.

We now endow Γ(γλ) with the structure of a crystal. To do that, we introduce “root
operators” eα and fα for each simple root α of the root system Φ. These operators act on
Γ(γλ) and are defined by the following recipe (see Section 6 in [11]).

Let δ be a combinatorial gallery, as in Equation (17). We call m ∈ Z the smallest integer
such that the hyperplane Hα,m contains a face ∆′

j , where 0 6 j 6 p + 1.

• If m = 0, then eαδ is not defined. Otherwise we find k ∈ {1, . . . , p + 1} minimal such that
∆′

k ⊆ Hα,m, we find j ∈ {0, . . . , k − 1} maximal such that ∆′
j ⊆ Hα,m+1, and we define the

combinatorial gallery eαδ as

(
{0} = ∆′

0 ⊂ ∆0 ⊃ ∆′
1 ⊂ ∆1 ⊃ · · · ⊃ ∆′

j ⊂

sα,m+1

(
∆j

)
⊃ sα,m+1

(
∆′

j+1

)
⊂ · · · ⊃ sα,m+1

(
∆′

k−1

)
⊂ sα,m+1

(
∆k−1

)

⊃ τα∨

(
∆′

k

)
⊂ τα∨

(
∆k

)
⊃ · · · ⊂ τα∨

(
∆p

)
⊃ τα∨

(
∆′

p+1

)
= {ν + α∨}

)
.

Thus we reflect all faces between ∆′
j and ∆′

k across the hyperplane Hα,m+1 and we translate
all faces after ∆′

k by α∨. (Note here that sα,m+1(∆
′
j) = ∆′

j and that sα,m+1(∆
′
k) = τα∨(∆′

k).)

• If m = 〈α, ν〉, then fαδ is not defined. Otherwise we find j ∈ {0, . . . , p} maximal such that
∆′

j ⊆ Hα,m, we find k ∈ {j + 1, . . . , p + 1} minimal such that ∆′
k ⊆ Hα,m+1, and we define

the combinatorial gallery fαδ as

(
{0} = ∆′

0 ⊂ ∆0 ⊃ ∆′
1 ⊂ ∆1 ⊃ · · · ⊃ ∆′

j ⊂

sα,m

(
∆j

)
⊃ sα,m

(
∆′

j+1

)
⊂ · · · ⊃ sα,m

(
∆′

k−1

)
⊂ sα,m

(
∆k−1

)

⊃ τ−α∨

(
∆′

k

)
⊂ τ−α∨

(
∆k

)
⊃ · · · ⊂ τ−α∨

(
∆p

)
⊃ τ−α∨

(
∆′

p+1

)
= {ν − α∨}

)
.

Thus we reflect all faces between ∆′
j and ∆′

k across the hyperplane Hα,m and we translate all
faces after ∆′

k by −α∨. (Note here that sα,m(∆′
j) = ∆′

j and that sα,m(∆′
k) = τ−α∨(∆′

k).)

With the notations above, the maximal integer n such that (eα)nδ is defined is equal to −m,
and the maximal integer n such that (fα)nδ is defined is equal to 〈α, ν〉 − m.

The crystal structure on Γ(γλ) is then defined as follows. Given δ ∈ Γ(γλ), written as
in (17), and i ∈ I, we set

wt(δ) = ν, εi(δ) = −m and ϕi(δ) = 〈αi, ν〉 − m,

where ν is the weight of δ and m ∈ Z is the smallest integer such that the hyperplane Hαi,m

contains a face ∆′
j , with 0 6 j 6 p + 1. Finally ẽi and f̃i are given by the root operators eαi

and fαi
.

Let δ be a combinatorial gallery, written as in (17). We say that δ is positively folded if

∀j ∈ {1, . . . , p}, ∆j−1 = ∆j =⇒ Φaff
+ (∆′

j , ∆j) 6= ∅.

We define the dimension of δ as

dim δ =

p∑

j=0

∣∣Φaff
+ (∆′

j , ∆j)
∣∣.

40



(These are Definitions 16 and 17 in [11].) Thus for instance the gallery γλ is positively folded
of dimension

dim γλ =
∣∣Φ+

∣∣ + p = ht(λ − w0λ) + dim(Pλ/B+), (21)

by Equation (18). We denote the set of positively folded combinatorial gallery by Γ+(γλ).
Arguing as in the proof of Proposition 4 in [11], one shows that for each δ ∈ Γ+(γλ) of
weight ν,

dim γλ − dim δ > ht(λ − ν).

We say that a positively folded combinatorial gallery δ is an LS gallery if this inequality
is in fact an equality. The set of LS galleries is denoted by Γ+

LS(γλ). Then Corollary 2 in
[11] says that Γ+

LS(γλ) is a subcrystal of Γ(γλ) and that for any gallery δ ∈ Γ+
LS(γλ), there is

a sequence (α1, . . . , αt) of simple roots such that δ = fα1 · · · fαtγλ. Moreover Lemma 7 and
Definition 21 in [11] say that if δ is an LS gallery, written as in (5.3), if α is a simple root,
and if m ∈ Z is the smallest integer such that the hyperplane Hα,m contains a face ∆′

j , where
0 6 j 6 p + 1, then δ does not cross Hα,m; this implies that ∆j−1 = ∆j for all j ∈ {1, . . . , p}
such that ∆′

j ⊆ Hα,m.
The following proposition makes the link between LS galleries and MV cycles; it is equiv-

alent to Corollary 5 in [11] when λ is regular.

Proposition 24 The map Z : δ 7→ π(C(δ)) is a bijection from Γ+
LS(γλ) onto Z (λ); it maps

a combinatorial gallery of weight ν to a MV cycle in Z (λ)ν .

Proof. We fix ν ∈ Λ. We denote the set of combinatorial galleries of weight ν by Γ(γλ, ν) and
we set Γ+(γλ, ν) = Γ+(γλ) ∩ Γ(γλ, ν). By construction,

π−1(S+
ν ) =

⊔

δ∈Γ(γλ,ν)

C(δ).

We set Σ̊ = π−1
(
Gλ

)
and X = π−1

(
S+

ν ∩ Gλ

)
. Since S+

ν ∩ Gλ is of pure dimension
ht(ν − w0λ), Proposition 21 and Equation (21) imply that X is of pure dimension

ht(ν − w0λ) + dim(Pλ/B+) = dim γλ − ht(λ − ν).

Proposition 21 implies also that the map Z 7→ π−1(Z) is a bijection from the set of irreducible
components of S+

ν ∩ Gλ onto the set of irreducible components of X.
By Lemma 11 in [11], a cell C(δ) meets Σ̊ only if δ is positively folded. Therefore

X = π−1
(
S+

ν

)
∩ Σ̊ =

⊔

δ∈Γ+(γλ,ν)

(
C(δ) ∩ Σ̊

)
.

Now let δ ∈ Γ+(γλ, ν). Proposition 22 says that the cell C(δ) is isomorphic to Stab+(δ),
thus is an affine space of dimension dim δ. The intersection C(δ) ∩ Σ̊, as a non-empty open
subset of C(δ), is then irreducible of dimension dim δ 6 dim γλ − ht(λ − ν). It follows that
the irreducible components of X are the closures in X of the subsets C(δ) ∩ Σ̊, for δ running
over the set of LS galleries of weight ν.

To conclude the proof, it remains to observe that

π
(
C(δ) ∩ Σ̊

)
= π

(
C(δ)

)

for each δ ∈ Γ+(γλ, ν), since C(δ) ∩ Σ̊ is dense in C(δ). ¤
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5.3 The comparison theorem

The aim of this section is to show the following property of the map Z defined in Proposition 24.

Theorem 25 The bijection Z : Γ+
LS(γλ) → Z (λ) is an isomorphism of crystals.

The existence of an isomorphism of crystals from B(λ) onto Γ+
LS(γλ) was already known;

see for instance Theorem 2 in [11] for the case λ regular. The theorem above says that the
map Z−1 ◦Ξ(λ) is actually such an isomorphism. For its proof, we need two propositions and
a lemma.

Proposition 26 Let δ be a combinatorial gallery of weight ν, written as in (17), and let i ∈ I.
Call m the smallest integer such that the hyperplane Hαi,m contains a face ∆′

j of the gallery,
where 0 6 j 6 p + 1, and set ρ = ν − (〈αi, ν〉 − m)α∨

i . Then

r{i}(π(C(δ))) = S+
ν,{i} ∩ S−

ρ,{i} and siµ+

(
si

−1 π(C(δ))
)

= ρ.

Proof. We collect in a set J the indices j ∈ {0, . . . , p} such that Φaff
+ (∆′

j , ∆j) contains an affine
root of the form (αi, n), with n ∈ Z. For each j ∈ J , there is a unique integer, say nj , so that
(αi, nj) ∈ Φaff

+ (∆′
j , ∆j). (Thus nj = f∆′

j
(αi) in the notation of Section 5.1.)

All these integers nj are larger or equal than m. We claim that

{m, m + 1, m + 2, . . .} ⊇ {nj | j ∈ J} ⊇ {m, m + 1, . . . , 〈αi, ν〉 − 1}. (22)

Consider indeed an integer n in the right-hand side above. Since the gallery δ must go from
the wall Hαi,m to the point ν, it must cross the wall Hαi,n. More exactly, there is an index
j ∈ {0, . . . , p} such that ∆′

j ⊆ Hαi,n and ∆j 6⊆ H−
αi,n; this implies that (αi, n) ∈ Φaff

+ (∆′
j , ∆j),

and thus that j ∈ J and n = nj .
We apply now the parabolic retraction r{i} to the expression given in Corollary 23. Equa-

tion (10) allows us to remove all factors in the product that belong to the unipotent radical
of P{i}(K ). We deduce that r{i}(π(C(δ))) is the image of the map

(aj) 7→
∏

j∈J

xαi,nj
(aj)[t

ν ]

from CJ to M{i}. Using (22) and the fact that [tν ] is fixed by all subgroups xαi,n(C) with
n > 〈αi, ν〉, we then get

r{i}(π(C(δ))) =
{
xαi

(
pt〈α,ν〉

)
[tν ]

∣∣ p ∈ C[t−1]+〈α,ν〉−m

}
.

From there, the proposition follows easily using Proposition 8 (with + and − exchanged) and
Lemma 10. ¤

For a combinatorial gallery δ, written as in Equation (17), and an integer k ∈ {0, . . . , p+1},
we set

Stab+(δ)>k = Stab+(∆′
k, ∆k) × Stab+(∆′

k+1, ∆k+1) × · · · × Stab+(∆′
p, ∆p),

π(C(δ))>k =
{
vkvk+1 · · · vp[t

ν ]
∣∣ (vk, vk+1, . . . , vp) ∈ Stab+(δ)>k

}
.
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Lemma 27 Let δ be a combinatorial gallery, as in Equation (17), and let k ∈ {0, . . . , p + 1}.

(i) Let u ∈ Stab+(∆′
k). Then the left action of u on G leaves π(C(δ))>k stable. More

precisely, for each (vk, . . . , vp) ∈ Stab+(δ)>k, there exists (v′k, . . . , v
′
p) ∈ Stab+(δ)>k such that

v′k · · · v
′
p[t

ν ] = uvk · · · vp[t
ν ] and

∀j ∈ {k + 1, . . . , p}, ∆j−1 = ∆j =⇒ vj = v′j ;

moreover if k > 0 and u ∈ Stab+(∆k), then one can manage so that vk = v′k.

(ii) Assume that k > 0, let p ∈ O× and let µ ∈ Λ. Then the left action of pµ on G leaves
π(C(δ))>k stable. Suppose moreover that p ∈ 1 + tO and let (vk, . . . , vp) ∈ Stab+(δ)>k. Then
there exists (v′k, . . . , v

′
p) ∈ Stab+(δ)>k such that v′k · · · v

′
p[t

ν ] = pµvk · · · vp[t
ν ] and

∀j ∈ {k, . . . , p}, ∆j−1 = ∆j =⇒ vj = v′j .

(iii) Assume that k > 0 and that δ is an LS gallery. Let (vk, . . . , vp) ∈ Stab+(δ)>k, let α be
a simple root of the root system Φ, and let c ∈ C×. Call m the smallest integer such that the
hyperplane Hα,m contains a face ∆′

j, where 0 6 j 6 p + 1, form the list (k1, k2, . . . , kr) in

increasing order of all indices l ∈ {k, . . . , p} such that Φaff
+ (∆′

l, ∆l) = {(α, m)}, and find the
complex numbers c1, c2, . . . , cr such that vks

= xα,m(cs). Assume that c+c1+c2+ · · ·+cs 6= 0
for each s ∈ {1, . . . , r}. Then x−α,−m(1/c)vk · · · vp[t

ν ] belongs to π(C(δ))>k.

Proof. The proof of these three assertions proceeds by decreasing induction on k. For k = p+1,
all of them hold: indeed the element u in Assertion (i), the element pµ in Assertion (ii) and
the element x−α,−m(1/c) in Assertion (iii) fix the point [tν ].

Now assume that k 6 p and that the result holds for k + 1. If Φaff
+ (∆′

k, ∆k) is empty, then
Stab+(∆′

k, ∆k) = {1}. Assertions (i), (ii) and (iii) follow then immediately from the inductive
assumption, after one has observed that the element u in Assertion (i) belongs by assumption
to Stab+(∆′

k) and that Stab+(∆′
k) = Stab+(∆k) ⊆ Stab+(∆′

k+1). In the rest of the proof,
we assume that Φaff

+ (∆′
k, ∆k) is not empty. Let (vk, . . . , vp) ∈ Stab+(δ)>k. Except in the case

k = 0 (dealt with only in Assertion (i)), Φaff
+ (∆′

k, ∆k) has a unique element, say (ζ, n) with
ζ ∈ Φ+, and there exists b ∈ C such that vk = xζ,n(b).

Consider first Assertion (i). The element uvk belongs to Stab+(∆′
k). By Proposition 19 (ii),

there exists v′k ∈ Stab+(∆′
k, ∆k) and u′ ∈ Stab+(∆k) such that uvk = v′ku

′. The induc-
tive assumption applied to u′ and (vk+1, . . . , vp) ∈ Stab+(δ)>k+1 asserts the existence of
(v′k+1, . . . , v

′
p) ∈ Stab+(δ)>k+1 such that u′vk+1 · · · vp[t

ν ] = v′k+1 · · · v
′
p[t

ν ], with the further
property that vj = v′j for all j > k verifying ∆j−1 = ∆j . Certainly then uvkvk+1 · · · vp[t

ν ] =
v′kv

′
k+1 · · · v

′
p[t

ν ]. Now assume that k > 0 and that u ∈ Stab+(∆k). By Proposition 19 (i), we
may write u as a product of elements of the form xβ,n(q) with q ∈ O and (β, n) ∈ Φ+×Z such
that ∆k ⊆ H−

β,n. Lemma 20 now implies that uvk ∈ vk Stab+(∆k), which establishes v′k = vk.
This shows that Assertion (i) holds at k.

Consider now Assertion (ii). Let a ∈ C× be the constant term coefficient of p and set
q =

(
p〈ζ,µ〉 − a〈ζ,µ〉

)
/t. Then

pµvk = xζ,n

(
bp〈ζ,µ〉

)
pµ = xζ,n(b′)u′pµ = v′ku

′pµ,

where b′ = ba〈ζ,µ〉, u′ = xζ,n+1(bq) and v′k = xζ,n(b′). Observing that u′ ∈ Stab+(∆k) and
using the inductive assumption and Assertion (i), we find (v′k+1, . . . , v

′
p) ∈ Stab+(δ)>k+1 such
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that u′pµvk+1 · · · vp[t
ν ] = v′k+1 · · · v

′
p[t

ν ]; in the case a = 1, we may even demand that vj = v′j
for all j > k verifying ∆j−1 = ∆j . Then pµvkvk+1 · · · vp[t

ν ] = v′kv
′
k+1 · · · v

′
p[t

ν ], which shows
that Assertion (ii) holds at k.

It remains to prove Assertion (iii). We distinguish several cases.
Suppose first that ζ 6= α. By Lemma 20, the element

u = x−α,−m(−1/c) (vk)
−1 x−α,−m(1/c) vk

belongs to Stab+(∆k). Using Assertion (i), we find (v′k+1, . . . , v
′
p) ∈ Stab+(δ)>k+1 such

that uvk+1 · · · vp[t
ν ] = v′k+1 · · · v

′
p[t

ν ]. Moreover, since δ is an LS gallery, we know that
∆ks−1 = ∆ks

for each s ∈ {1, . . . , r}, and we may thus demand that v′ks
= vks

= xα,m(cs).
Applying the inductive assumption, we find a tuple (v′′k+1, . . . , v

′′
p) ∈ Stab+(δ)>k+1 such that

x−α,−m(1/c) v′k+1 · · · v
′
p[t

ν ] = v′′k+1 · · · v
′′
p [tν ]. Then

x−α,−m(1/c) vkvk+1 · · · vp[t
ν ] = vkv

′′
k+1 · · · v

′′
p [tν ],

which establishes that Assertion (iii) holds at k in this first case.
The second case is when ζ = α but n 6= m. Then n > m, by the minimality of m. Let p

be the square root in 1 + tO of 1 + tn−mb/c. Equation (3) implies that

x−α,−m(1/c)vk = x−α(1/ctm)xα(btn)

= p−α∨

xα(btn)x−α(1/ctm)p−α∨

= p−α∨

vkx−α,−m(1/c)p−α∨

.

Assertion (ii) allows us to find (v′k+1, . . . , v
′
p) ∈ Stab+(δ)>k+1 such that p−α∨

vk+1 · · · vp[t
ν ] =

v′k+1 · · · v
′
p[t

ν ], with the further property that v′ks
= vks

= xα,m(cs) for each s ∈ {1, . . . , r}.
We apply then the inductive assumption and find (v′′k+1, . . . , v

′′
p) ∈ Stab+(δ)>k+1 such that

x−α,−m(1/c) v′k+1 · · · v
′
p[t

ν ] = v′′k+1 · · · v
′′
p [tν ]. Then

x−α,−m(1/c) vkvk+1 · · · vp[t
ν ] = p−α∨

vkv
′′
k+1 · · · v

′′
p [tν ],

and a final application of Assertion (ii) concludes the proof of Assertion (iii) at k in this second
case.

The last case is (ζ, n) = (α, m). In this case, k1 = k and b = ck1 . The assumptions of the
lemma imply that b + c 6= 0. Equation (3) says then that

x−α,−m(1/c)vk = xα,m(bc/(b + c))(1 + b/c)−α∨

x−α,−m(1/(b + c)).

Applying the inductive assumption, we find (v′k+1, . . . , v
′
p) ∈ Stab+(δ)>k+1 such that

x−α,−m(1/(b + c)) vk+1 · · · vp[t
ν ] = v′k+1 · · · v

′
p[t

ν ].

Using now Assertion (ii), we see that

x−α,−m(1/c) vkvk+1 · · · vp[t
ν ] = xα,m(bc/(b + c)) (1 + b/c)−α∨

v′k+1 · · · v
′
p[t

ν ]

belongs to π(C(δ))>k. This concludes the proof of Assertion (iii) at k. ¤
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At the end of their paper [11], Gaussent and Littelmann describe several cases where the
crystal structure on Γ+

LS(γλ) controls inclusions between MV cycles. The next proposition
presents a general result.

Proposition 28 Let δ be an LS gallery and let α be a simple root of the system Φ. If the
gallery eαδ is defined, then Z(δ) ⊆ Z(eαδ).

Proof. We represent δ as in (17). We assume that eαδ is defined and we let m ∈ Z and
0 6 j < k 6 p + 1 be as in the definition of eαδ. We call (k = k0, k1, . . . , kr) the list in
increasing order of all indices l ∈ {1, . . . , p} such that Φaff

+ (∆′
l, ∆l) =

{
(α, m)

}
. Finally we

equip Φaff
+ (∆′

0, ∆0) with a total order.

Let (al,β) ∈
∏p

l=0 CΦaff
+ (∆′

l
,∆

l
) be a family of complex numbers such that

ak0,(α,m) + ak1,(α,m) + · · · + aks,(α,m) 6= 0

for each s ∈ {0, 1, . . . , r} and set

vl =
∏

β∈Φaff
+ (∆′

l
,∆

l
)

xβ(al,β) for each l ∈ {0, 1, . . . , p},

A =

j−1∏

l=0

vl and B =

p∏

l=j

vl.

By Corollary 23, the element AB[tν ] describes a dense subset of Z(δ) when the parameters
al,β vary. To establish the proposition, it therefore suffices to show that AB[tν ] belongs to
Z(eαδ). What we will now show is more precise:

For any non-zero complex number h, the element Ax−α,−m−1(h)B[tν ] belongs to π(C(eαδ)).

We first observe that xα,m+1(1/h) ∈ Stab+(∆′
j), for ∆′

j ⊆ Hα,m+1. Using Lemma 27 (i),
we find (v′j , v

′
j+1, . . . , v

′
p) ∈ Stab+(δ)>j such that

xα,m+1(1/h)B[tν ] = v′jv
′
j+1 · · · v

′
p[t

ν ].

We may moreover demand that v′ks
= vks

= xα,m(aks,(α,m)) for all s ∈ {0, 1, . . . , r}, for
∆ks−1 = ∆ks

. We set

C =
k−1∏

l=j

v′l and D =

p∏

l=k+1

v′l,

and then B[tν ] = xα,m+1(−1/h)Cv′kD[tν ]. Using Lemma 27 (iii), we now find (v′′k+1, v
′′
k+2,

. . . , v′′p) ∈ Stab+(δ)>k+1 such that

x−α,−m

(
1/ak,(α,m)

)
D[tν ] = v′′k+1v

′′
k+2 · · · v

′′
p [tν ].

We finally set

E = xα,m

(
ak,(α,m)

)
x−α,−m

(
−1/ak,(α,m)

)
xα,m

(
ak,(α,m)

)
,

F = xα,m

(
−ak,(α,m)

) p∏

l=k+1

v′′l ,

K = x−α,−m−1(h)xα,m+1(−1/h).
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Then Ax−α,−m−1(h)B[tν ] = AKCEF [tν ].
We now observe that

Φaff
+

(
sα,m+1(∆

′
l), sα,m+1(∆l)

)
=






{
(α, m + 1)

}
⊔ sα,m+1

(
Φaff

+ (∆′
j , ∆j)

)
if l = j,

sα,m+1

(
Φaff

+ (∆′
l, ∆l)

)
if j < l < k,

and that
Φaff

+

(
τα∨(∆′

l), τα∨(∆l)
)

= τα∨

(
Φaff

+ (∆′
l, ∆l)

)
if l > k.

These equalities, the definition of eαδ, Equation (15) and Proposition 19 (ii) imply that the
sequence

(
v0, . . . , vj−1, xα,m+1(h)

(
t(m+1)α∨

sα

)
v′j

(
t(m+1)α∨

sα

)−1
,

(
t(m+1)α∨

sα

)
v′j+1

(
t(m+1)α∨

sα

)−1
, . . . ,

(
t(m+1)α∨

sα

)
v′k−1

(
t(m+1)α∨

sα

)−1
,

tα
∨

xα,m

(
−ak,(α,m)

)
t−α∨

, tα
∨

v′′k+1t
−α∨

, . . . , tα
∨

v′′p t−α∨
)

belongs to Stab+(eαδ). Proposition 22, Equation (20) and the definition of the map π then
say that

A xα,m+1(h)
(
t(m+1)α∨

sα

)
C

(
t(m+1)α∨

sα

)−1
tα

∨

F [tν ]

belongs to π(C(eαδ)). An appropriate application of Lemma 27 (ii) shows that the element

obtained by inserting extra factors (−h)−α∨

and
(
−ak,(α,m)

)−α∨

in this expression, respectively

after A and before tα
∨

, also belongs to π(C(eαδ)). Now Equation (4) allows to rewrite

K = (−h)−α∨

xα,m+1(h)
(
t(m+1)α∨

sα

)

and
E =

(
t(m+1)α∨

sα

)−1 (
−ak,(α,m)

)−α∨

tα
∨

,

and we conclude that AKCEF [tν ] = Ax−α,−m−1(h)B[tν ] belongs to π(C(eαδ)), as announced.
¤

Proof of Theorem 25. Obviously Z preserves the weight. Comparing Proposition 26 with
Equation (12), we see that Z is compatible with the structure maps ϕi. The axioms of a
crystal imply then that Z is compatible with the structure maps εi. Now let δ be an LS gallery
of weight ν, let i ∈ I, and assume that the LS gallery eαi

δ is defined. Then the two MV cycles
Z(δ) and Z(eαi

δ) satisfy the four conditions of Proposition 12. Indeed the first and the third
conditions follow immediately from the fact that Z(δ) ∈ Z (λ)ν and Z(eαi

δ) ∈ Z (λ)ν+α∨
i
; the

second condition comes from Proposition 26 and from the second assertion of Lemma 6 (iii)
in [11]; the fourth condition comes from Proposition 28. Therefore Z(eαi

δ) = ẽiZ(δ); in other
words, Z intertwines the action of the root operators on Γ+

LS(γλ) with the action of Braverman
and Gaitsgory’s crystal operators on Z (λ). This concludes the proof that Z is a morphism
of crystals. Since Z is bijective and both crystals Γ+

LS(γλ) and Z (λ) are normal, Z is an
isomorphism. ¤
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