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Abstract

Mirković–Vilonen polytopes encode in a geometrical way the numerical data present in
the Kashiwara crystal B(∞) of a semisimple group G. We retrieve these polytopes from
the coproduct of the Hopf algebra O(N) of regular functions on a maximal unipotent
subgroup N of G. We bring attention to a remarkable behavior that the classical bases
(dual canonical, dual semicanonical, Mirković–Vilonen) of O(N) manifest with respect to
the extremal points of these polytopes, which extends the crystal operations. This study
leans on a notion of stability for graded bialgebras.

1 Introduction

Let G be a split semisimple, or more generally a split reductive group over a field k of char-
acteristic zero. The representation theory of G is well understood thanks to Weyl’s theory of
the highest weight. Let B be a Borel subgroup of G, let T be a maximal torus of B, let P be
the character lattice of T , and let N be the unipotent radical of B. Then all the irreducible
rational G-modules can be embedded as N -modules in the algebra O(N) of regular functions
on N , which thus plays a central role in the theory. Moreover, the images of these embeddings
are invariant under the action of T on O(N) deduced from the action on N by conjugation.

It is therefore natural to pay attention to the N -submodules of O(N) that are invariant under
the action of T . A basic piece of combinatorial information associated to such modules is the
set of their weights. Conversely, given a convex polytope K in the vector space P ⊗Z R, one
can consider the largest T -invariant N -submodule S (K) of O(N) whose weights lie in K. The
map K 7→ S (K) then defines a filtration of O(N) indexed by the set of all convex polytopes,
endowed with the partial order given by inclusion. The places in the filtration where the jumps
occur, to wit the convex polytopes K such that S (K) 6=

∑
K′(K S (K ′), certainly reflect the

structure of the N -module O(N).

It turns out that these polytopes are already known in the literature: they are the Mirković–
Vilonen polytopes introduced by Anderson [1]. The name comes from the Geometric Satake
Equivalence, where the irreducible rational G-modules are realized as the intersection cohomol-
ogy of affine Schubert varieties. In this context, Mirković and Vilonen selected algebraic cycles
whose fundamental classes form a basis of the cohomology [22], and the polytopes appear as
the images of these cycles by the moment map of a natural Hamiltonian action of a torus.
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Another occurrence of these polytopes was found in [7]. The context here is the representation
theory of the preprojective algebra Λ build from the Dynkin diagram of G (assumed to be of
simply-laced type). To a Λ-module M , one can associate its Harder–Narasimhan polytope,
that is, the convex hull in the Grothendieck group K(Λ-mod) ⊗Z R of the dimension-vectors
of all the submodules of M . Now the representation spaces rep(Λ, ν) of Λ (one for each
dimension-vector ν) are algebraic varieties, and it makes sense to speak of a general point in
an irreducible component of these varieties. The Mirković–Vilonen polytopes then appear as
the Harder–Narasimhan polytopes of general Λ-modules.

The fact that the moment polytopes of Mirković and Vilonen’s cycles coincide with the Harder–
Narasimhan polytopes of general Λ-modules seems miraculous. The initial proof of this coin-
cidence was indeed rather circuitous. On the one hand, the moment polytopes were described
using Berenstein, Fomin and Zelevinsky’s Chamber Ansatz and Braverman and Gaitsgory’s
crystal structure on the set of Mirković and Vilonen’s cycles [13, 14]. On the other hand, the
Harder–Narasimhan polytopes were studied with the help of tilting theory on Λ-modules [5, 7].
The two descriptions were then equated thanks to Saito’s work on Lusztig data and reflections
in the crystal B(∞) [24].

In this paper we propose a more straightforward argument. Through the Geometric Satake
Equivalence, the fundamental class in cohomology of a Mirković–Vilonen cycle Z can be viewed
as a basis element bZ in an irreducible rational G-module, which we view as embedded in O(N).
Gathering the elements bZ coming from all the irreducible rational G-modules, we obtain a
basis of O(N), called the Mirković–Vilonen basis [6]. Similarly, the study of Λ-modules leads
to a basis of O(N), called the dual semicanonical basis [11, 21]. This basis consists of elements
ρY , where Y denotes an irreducible component of a variety rep(Λ, ν). Lastly, to a function
f ∈ O(N), homogeneous with respect to the weight grading, we associate Pol(f), the convex
hull in P ⊗Z R of the set of weights of the N -submodule generated by f . Said differently, in
terms of the Hopf algebra structure of O(N), the polytope Pol(f) is the convex hull of the
weights of the elements bi that appear in a minimal writing

∑n
i=1 bi⊗ ci of the coproduct of f .

We will show that: (1) For each irreducible component Y of rep(Λ, ν), the Harder–Narasimhan
polytope of a general point M of Y is equal to −Pol(ρY ). (2) For each Mirković–Vilonen cycle
Z, the moment polytope of Z is equal to Pol(bZ). (3) Both the dual semicanonical basis and
the Mirković–Vilonen basis are compatible with the filtration K 7→ S (K), in the sense that
each subspace S (K) is spanned by subsets of either basis.

By construction, S (K) is the vector space spanned by the functions f such that Pol(f) ⊂ K.
Then (3) implies that the jumps in the filtration K 7→ S (K) occur precisely at the polytopes
Pol(ρY ) and Pol(bZ), so these two families of polytopes are the same, up to the indexing.

The proof of (1) is almost contained in [7]: each vertex µ of the Harder–Narasimhan polytope
of a Λ-module M is the dimension-vector of a unique submodule Mt of M . Moreover, if M
is a general point of an irreducible component Y of rep(Λ, ν), then Mt and M/Mt are general
points in irreducible components Yt and Yf of rep(Λ, µ) and rep(Λ, ν − µ), respectively. One
can then easily show that the term ρYt ⊗ ρYf occurs in the coproduct of ρY , which implies
that −µ belongs to Pol(ρY ). Assertion (2) is proved by a similar argument: one can cut a
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Mirković–Vilonen cycle at each vertex of its moment polytope, thereby producing two other
cycles Zt and Zs such that bZt ⊗ bZs occurs in the coproduct of bZ (see section 4.3 for the
accurate statement). These observations can also be put to good use to prove (3) (see the
proofs of Proposition 3.11 and Theorem 4.8).

The dual semicanonical basis and the Mirković–Vilonen basis are examples of perfect bases
of O(N). This notion, introduced by Berenstein and Kazhdan [8], codifies a specific behavior
that a basis exhibits regarding the action of the Chevalley generators of the Lie algebra of N .
The perfect bases of O(N) are parameterized by a common combinatorial object, namely
Kashiwara’s crystal B(∞), and it is possible to recover the Mirković–Vilonen polytopes from
the crystal operations on B(∞) [13]. Perfect bases enjoy a number of nice properties (see
for instance [6] for a review), but are generally not compatible with the subspaces S (K).
However, as we saw in (3) above, the dual semicanonical basis and Mirković and Vilonen’s
basis are compatible with them, and as it happens, the dual of Lusztig’s canonical basis [20]
(Kashiwara’s upper global basis [16]) also is. It then seems desirable to record this feature in
a definition. With this aim in view, we shall introduce the notion of polite basis. Polite bases
are perfect in the sense of Berenstein and Kazhdan, but the converse is not true.

As mentioned above, if f is a homogeneous element in O(N) with respect to the weight grading
and if ∆(f) =

∑n
i=1 bi⊗ci is a minimal writing of the coproduct of f , then Pol(f) is the convex

hull of the degrees of the elements bi. With this notation, a basis B is polite if each subspace
S (K) is spanned by its intersection with B and if, for each f ∈ B and each vertex µ of Pol(f),
there is just one term bi ⊗ ci in ∆(f) such that bi has weight µ, and for this i both bi and ci
belong to B. The precise definition we adopt in section 3.3 combines the two conditions at the
price of seeming intricate. One reason for this choice is that the filtration is more conveniently
described when we regard polytopes as intersections of closed half-spaces. In other words, we
look at the polytopes through a plane projection of the weight lattice.

The plan of this paper is the following. Section 2 adapts Harder and Narasimhan’s notion of
stability to the case of a connected bialgebra graded by a submonoid Γ of the half-plane; its
main result is Theorem 2.6. In section 3, we apply this theory to O(N) and define the notion of
polite basis (Definition 3.1); we prove that the semicanonical basis is polite (Proposition 3.11)
and that polite bases are perfect (Proposition 3.12). Section 4 deals with Mirković and Vilonen’s
basis; in particular we explain how to cut a Mirković–Vilonen cycle at a vertex of its moment
polytope (Proposition 4.4) and we prove that this basis is polite (Theorem 4.8).

Acknowledgements. The work reported in this paper originates from a stay at Osaka Central
Advanced Mathematical Institute (OCAMI) in 2016. The author thanks this institution, es-
pecially Yoshiyuki Kimura for the invitation and the useful discussions which ensued. He is
also grateful to Joel Kamnitzer for more than a decade of conversations on this topic and for
comments which helped improve the writing of this paper. Thanks are also due to Frédéric
Chapoton, JiaRui Fei and Dinakar Muthiah for relevant suggestions.
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2 Stability for graded connected bialgebras

In this section we consider a discrete submonoid Γ of the right half-plane{
(r, d) ∈ R2

∣∣ r > 0 or (r = 0 and d ≥ 0)
}

and a connected Γ-graded bialgebra A =
⊕

γ∈ΓA
γ over a field k. The connectedness assump-

tion means that A0 = k, where 0 = (0, 0) is the identity element of Γ.

Our aim is to explain a procedure to factorize A, patently inspired by the method that Harder
and Narasimhan introduced to study vector bundles on a curve (see for instance [2] for a survey
of slope filtrations and stability).

We denote the comultiplication and the augmentation maps of A by ∆ and ε, respectively. If
a is a homogeneous element in A, we write |a| = γ to indicate that a ∈ Aγ . Given (α, β) ∈ Γ2,
the notation α−β will be reserved to the case where the result of the subtraction in R2 actually
belongs to Γ.

2.1 Semistable elements

For any homogeneous element a ∈ A, we denote by L(a) (respectively, R(a)) the set of all β
(respectively, γ) such that ∆(a) has a nonzero component along a summand Aβ ⊗ Aγ in the
decomposition

A⊗A =
⊕

(β,γ)∈Γ2

(
Aβ ⊗Aγ

)
.

The obvious relation R(a) = |a|−L(a) connects these two sets. If we write ∆(a) =
∑n

i=1 bi⊗ci
with each bi and ci homogeneous and n minimal, then

L(a) = {|b1|, . . . , |bn|} and R(a) = {|c1|, . . . , |cn|}.

Since A is connected (and assuming that a 6= 0), we have {0, |a|} ⊂ L(a); specifically the
homogeneous components of bidegree (0, |a|) (respectively, (|a|, 0)) is 1⊗a (respectively, a⊗1).

Lemma 2.1 Let a ∈ A be a homogeneous element and write ∆(a) =
∑n

i=1 bi ⊗ ci as above.
Then L(bi) ⊂ L(a) and R(ci) ⊂ R(a) for all i ∈ J1, nK.

Proof. Both families (bi)i∈J1,nK and (ci)i∈J1,nK consist of linearly independent elements. Pick
i ∈ J1, nK and choose a linear form f : A→ k that vanishes on cj for all j 6= i and that verifies
f(ci) = 1. The coassociativity axiom implies

∆(bi) = (∆⊗ f) ◦∆(a) = (idA ⊗ idA ⊗ f) ◦ (∆⊗ idA) ◦∆(a)

= (idA ⊗ ((idA ⊗ f) ◦∆)) ◦∆(a)

=
n∑
j=1

bj ⊗ ((idA ⊗ f) ◦∆(cj)),

which shows that L(bi) ⊂ L(a). The inclusion R(ci) ⊂ R(a) is proved in a similar way. �
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We set R = R ∪ {∞}; here ∞ is regarded as larger than any real number. We define

Γ∞ = {(r, d) ∈ Γ | r = 0} and Γµ = {(r, d) ∈ Γ | d = µr}

for µ ∈ R. Given µ ∈ R, we set

Γ≤µ =
⋃
ν≤µ

Γν and Γ≥µ =
⋃
ν≥µ

Γν .

Let µ ∈ R. A homogeneous element a ∈ A is said to be of slope µ if |a| ∈ Γµ. It is said to be
semistable of slope µ if moreover L(a) ⊂ Γ≤µ, or equivalently R(a) ⊂ Γ≥µ.

We denote by Aµ (respectively, A[µ]) the subspace of A spanned by homogeneous elements
of slope µ (respectively, semistable elements of slope µ). We denote by pµ : A → Aµ the
projection according to the decomposition

A = Aµ ⊕

 ⊕
γ∈Γ\Γµ

Aγ


and we set ∆µ = (pµ ⊗ pµ) ◦∆.

Proposition 2.2 The subspace A[µ] is a subalgebra of Aµ. Further, ∆µ(A[µ]) ⊂ A[µ] ⊗ A[µ]

and A[µ] becomes a bialgebra when endowed with the coproduct ∆µ.

Proof. Set A≤µ =
∑

ν≤µAν and A≥µ =
∑

ν≥µAν . Then Aµ, A≤µ and A≥µ are subalgebras
of A and pµ restricts to morphisms of algebras A≤µ → Aµ and A≥µ → Aµ. It follows that
A[µ] = Aµ ∩∆−1(A≤µ ⊗A≥µ) is a subalgebra of A and that the composition

A[µ]
∆−→ A≤µ ⊗A≥µ

pµ⊗pµ−−−−→ Aµ ⊗Aµ

is a morphism of algebras.

Now let a ∈ A be a homogeneous semistable element of slope µ and write ∆(a) =
∑n

i=1 bi⊗ ci
with each bi and ci homogeneous and n minimal. By Lemma 2.1

L(bi) ⊂ L(a) ⊂ Γ≤µ and R(ci) ⊂ R(a) ⊂ Γ≥µ

for each i ∈ J1, nK, so bi and ci are semistable as soon as they are of slope µ. Therefore
∆µ(a) ∈ A[µ] ⊗ A[µ]. Routine verifications show then that A[µ] equipped with the coproduct
∆µ fulfills the requirements to be a bialgebra. �
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2.2 Ordered Monomials

For any homogeneous element a ∈ A of nonzero degree, we denote the convex hull of L(a) in
R2 by Pol(a). The (closed) region between the upper rim of Pol(a)—which starts at 0 and
ends at |a|—and the straight line between these two points will be of particular interest; we
denote it by Pol∧(a). Obviously a is semistable if and only if Pol∧(a) is just the straight line
between 0 and |a|.

Definition 2.3. An ordered monomial is a product a1a2 · · · ap of homogeneous semistable ele-
ments of nonzero degree, ordered so that their slopes form a decreasing sequence.

Lemma 2.4 Let a = a1a2 · · · ap be an ordered monomial.

(i) The upper rim of the polytope Pol(a) is the polygonal line [0, |a1|, |a1|+ |a2|, . . . , |a| ].

(ii) Let j ∈ J0, pK and let α = |a1| + · · · + |aj | be the j-th extremal point on the upper
rim of Pol(a). Then the homogeneous component of ∆(a) of bidegree (α, |a| − α) is
a1 · · · aj ⊗ aj+1 · · · ap.

Proof. As the element aj is homogeneous and semistable, the upper rim of Pol(aj) is the
line [0, |aj | ]. The condition on the slopes then entails that the upper rim of the Minkowski
sum Pol(a1) + · · · + Pol(ap) is the polygonal line [0, |a1|, |a1| + |a2|, . . . , |a| ]. Furthermore,
given j ∈ J0, pK, the only tuple (α1, . . . , αp) ∈ Pol(a1)× · · ·×Pol(ap) such that α1 + · · ·+αp =
|a1|+· · ·+|aj | is (α1, . . . , αp) = (|a1|, . . . , |aj |, 0, . . . , 0). The lemma follows from these geometric
considerations, using the multiplicativity of the coproduct and the connectedness of A. �

Ordered monomials span the algebra A. More precisely:

Proposition 2.5 Any homogeneous element a of nonzero degree is the sum of ordered mono-
mials a1, . . . , a` such that |ai| = |a| and Pol∧(ai) ⊂ Pol∧(a) for each i ∈ J1, `K.

The proof uses a method introduced by Schiffmann [25].

Proof. The statement is obviously true if a itself is already semistable. In the rest of the proof,
we assume that a is not semistable (in particular it is not of slope∞) and proceed by induction
on the number N(a) of points in Γ ∩ Pol∧(a).

Let r be the abscissa of |a|. The upper rim of the polytope Pol(a) is the graph of a piecewise
linear concave function f : [0, r] → R and has at least one angular point. We choose such a
point, let us say α; it belongs to L(a).

We write ∆(a) =
∑n

i=1 bi⊗ ci with each bi and ci homogeneous and n minimal. Let I ⊂ J1, nK
be the set of all indices i such that |bi| = α and set a′ = a −

∑
i∈I bici. We will show that
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N(bi) < N(a) and N(ci) < N(a) for all i ∈ I and that N(a′) < N(a). Applying the induction
hypothesis, we may then write these elements a′, bi and ci as sums of ordered monomials and
obtain thereby the desired expression for a.

Let x denote the abscissa of α. Let us pick i ∈ I. By Lemma 2.1 we have L(bi) ⊂ L(a).
Therefore Pol(bi) is contained in Pol(a) ∩ ([0, x] × R). Noting that the line R|bi| lies above
R|a| in the band [0, x] × R, we obtain Pol∧(bi) ⊂ Pol∧(a) and conclude that N(bi) < N(a)
(the inequality is strict because the point |a| is in Pol∧(a) but not in Pol∧(bi)). Likewise,
R(ci) ⊂ R(a). Since |a| − |ci| = |bi| = α, this can be rewritten as α+ L(ci) ⊂ L(a). Therefore
α+ Pol(ci) is contained in Pol(a) ∩ ([x, r]× R). Noting that the line α+ R|ci| lies above R|a|
in the band [x, r]× R, we obtain α+ Pol∧(ci) ⊂ Pol∧(a) and conclude that N(ci) < N(a).

Now let β ∈ L(bi) and γ ∈ L(ci). Both β and α+ γ belong to Pol(a). Let y and z denote the
abscissae of these two points; then 0 ≤ y ≤ x ≤ z ≤ r. Also, α is the point (x, f(x)), β lies
below the point (y, f(y)), and α+γ lies below the point (z, f(z)), so β+γ lies below the point
(y+ z− x, f(y) + f(z)− f(x)). Since f is concave, we have f(y) + f(z) ≤ f(x) + f(y+ z− x),
and therefore β+ γ lies below (y+ z− x, f(y+ z− x)), that is, below the upper rim of Pol(a).
To sum up, all the points in L(bi) + L(ci) lie below the upper rim of Pol(a). Moreover the
concavity inequality is strict if (y, z) 6= (x, x) (because α is an extremal point of Pol(a)), so
(α, 0) is the only pair (β, γ) ∈ L(bi)× L(ci) for which β + γ lies on the upper rim of Pol(a).

Since ∆ is a morphism of algebras, we have L(bici) ⊂ L(bi) + L(ci). From the previous
paragraph, we deduce that for each i ∈ I, all the points in L(bici) lie below the upper rim
of Pol(a), and that moreover the homogeneous component of degree (α, |a| − α) in ∆(bici) is
bi ⊗ ci. We conclude that all the points in L(a′) lie below the upper rim of Pol(a) and that
∆(a′) does not contain any term of degree (α, |a| −α). In other words Pol∧(a′) is contained in
Pol∧(a) \ {α}. It follows that N(a′) < N(a), as announced.

Now pick i ∈ I, and consider two concave polygonal lines, one that joins 0 to α and is contained
in Pol∧(bi), and another one that joins α to |a| and is contained in α + Pol∧(ci). Arguments
given earlier in the proof imply that the concatenation of these two lines lies in Pol∧(a); in
addition, this concatenated line is concave because α is an extremal point of Pol(a). These
geometrical observations guarantee that, when we substitute in a′+

∑
i∈I bici expansions of a

′,
bi and ci obtained by induction, we obtain an expression for a that satisfies the requirements.
�

Let J ⊂ R. For any finite subset M ⊂ J , we can form the vector space
⊗

µ∈M A[µ], where
the tensor product is computed in the decreasing order. An inclusion M1 ⊂M2 ⊂ J gives rise
to an injective linear map

⊗
µ∈M1

A[µ] →
⊗

µ∈M2
A[µ] defined by inserting the unit element 1

at each factor that occurs only in the second product. We denote the limit of this inductive
system by

⊗
µ∈J A[µ]. Inclusions J1 ⊂ J2 ⊂ R give rise to injective linear maps

⊗
µ∈J1 A[µ] →⊗

µ∈J2 A[µ] →
⊗

µ∈RA[µ].

Theorem 2.6 The multiplication in A induces a bijective linear map m :
⊗

µ∈RA[µ] → A.
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Proof. The surjectivity of m is a direct consequence of Proposition 2.5.

Suppose that there exists a nonzero element

a =
n∑
i=1

ai,1 ⊗ · · · ⊗ ai,pi

in the kernel of m. In this writing, each ai,j is homogeneous semistable of nonzero degree, and
for each i ∈ J1, nK the slope of ai,j decreases when j increases from 1 to pi.

We assume that a and this writing have been chosen with n as small as possible, and for this
n, with max(p1, . . . , pn) as small as possible. This minimality assumption implies that a is
homogeneous and that all the terms in the sum above have the same degree. Also, at most
one pi is equal to 1 (all the terms with pi = 1 have the same slope so they can be combined).

Let µ be the maximum value among the slopes of the elements ai,1, let α be the point that is
the farthest from the origin among those

∣∣ai,1∣∣ that lie on the line Rµ, and let I ⊂ J1, nK be
the subset of indices i such that

∣∣ai,1∣∣ = α. Extracting the homogeneous component of degree
(α, |a| − α) from the equation

∆

(
n∑
i=1

ai,1 · · · ai,pi

)
= 0

with the help of Lemma 2.4, we obtain∑
i∈I

ai,1 ⊗ ai,2 · · · ai,pi = 0.

Any linear form f : Aα → k then gives birth to an element∑
i∈I

f
(
ai,1
)
ai,2 ⊗ · · · ⊗ ai,pi

in the kernel of m. Our minimality requirement for a forces this shorter element to be zero.

Picking an f that does not annihilate all the ai,1, we obtain a linear dependence relation between
the elements ai,2 ⊗ · · · ⊗ ai,pi . With the help of this relation, we can shorten the writing of a,
and thereby contradict our minimality requirement. Consequently our assumption about the
existence of a was incorrect, and we conclude that m is injective. �

The next proposition encompasses the existence of straightening relations in A.

Proposition 2.7 If J is an interval in R, then m
(⊗

µ∈J A[µ]

)
is a subalgebra of A.

Proof. Let a = a1a2 · · · ap be a product of homogeneous semistable elements whose slopes are
in J . Let σ be a permutation of J1, pK that reorder the sequence (a1, a2, . . . , ap) by weakly
decreasing slopes. Similar arguments as in Lemma 2.4 prove that the upper rim of Pol(a) is
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the polygonal line [0, |aσ(1)|, |aσ(1)| + |aσ(2)|, . . . , |a| ]. Applying Proposition 2.5, we expand a
as a sum of ordered monomials bi such that |bi| = |a| and Pol∧(bi) ⊂ Pol∧(a) for each index i.
The slopes of all the semistable factors of bi are then less than or equal to the slope of aσ(1)

and greater or equal than the slope of aσ(p), so are in J . We conclude that a belongs to

m
(⊗

µ∈J A[µ]

)
. As a particular case, we see that this space is stable by multiplication. �

Given µ ∈ R, we define the subalgebras A[≤µ] = m
(⊗

ν≤µA[ν]

)
and A[≥µ] = m

(⊗
ν≥µA[ν]

)
.

Proposition 2.8 The subalgebra A[≤µ] (respectively, A[≥µ]) is a right (respectively, left) coideal
of A.

Proof. Lemma 2.4 and Proposition 2.5 imply that a homogeneous element a belongs to A[≤µ]

(respectively, A[≥µ]) if and only if L(a) ⊂ Γ≤µ (respectively, R(a) ⊂ Γ≥µ). The proposition
then follows from Lemma 2.1. �

Likewise we define subalgebras A[<µ] and A[>µ].

2.3 The splitting isomorphisms

We will need to look at the multiplication map A[>0] ⊗A[0] ⊗A[<0] → A through the prism of
filtrations.

Let Π′ = {(r, d) ∈ R2 | d < 0 or (d = 0 and r ≥ 0)}. For (α1, α2) ∈ Γ2, we write α1 ≤′ α2 if
α1 + Π′ ⊂ α2 + Π′. This relation ≤′ is a total order on Γ.

We define an increasing filtration F ′•A of the vector space A by the poset (Γ,≤′) as follows:
for α ∈ Γ, the subspace F ′αA is the linear span of all homogeneous elements a ∈ A such that
L(a) ⊂ α+Π′. This filtration is compatible with the algebra structure of A, and the associated
graded algebra gr′•A is bigraded by Γ, for the original Γ-grading of A comes through.

As an example, we see that F ′0A = A[≤0] (see the proof of Proposition 2.8) and F ′αA = 0 if
α <′ 0 (if F ′αA contains a nonzero homogeneous element a, then 0 ∈ L(a) and L(a) ⊂ α+ Π′,
so 0 ≤′ α), therefore gr′0A = A[≤0]. Similarly, we see that A[>0] =

⊕
γ∈Γ(F ′γA)γ .

Proposition 2.9 There is a unique linear map ∆′ : gr′•A → A[>0] ⊗ A[≤0] that sends a
homogeneous element a ∈ gr′αA to the homogeneous component of degree (α, |a| − α) of ∆(a).
This map ∆′ is an isomorphism of algebras. The inverse map is induced by the multiplication
in A.

Proof. Let α ∈ Γ. The vector space F ′αA is spanned by the homogeneous elements a that satisfy
Pol∧(a) ⊂ α + Π′, so is spanned by the ordered monomials that satisfy this same condition
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(Proposition 2.5). Likewise, the space
∑

β<′α F
′
βA is spanned by the ordered monomials that

satisfy Pol∧(a) ⊂ (α + Π′) \ {α}. In addition, if an ordered monomial a = a1a2 · · · ap belongs
to F ′αA, if α ∈ L(a), and if j is the largest index in J1, pK such that aj has positive slope, then
|a1| + |a2| + · · · + |aj | = α and the homogeneous component of degree (α, |a| − α) of ∆(a) is
a1 · · · aj ⊗ aj+1 · · · ap. These remarks entail that the map ∆′ is well-defined.

In the other direction, if a is a homogeneous element in A[>0] of degree α and if b is in A[≤0],
then ab belongs to F ′αA. Letm : A[>0]⊗A[≤0] → gr′•A be the map that sends a⊗b to the image
of ab in gr′αA, where a and b are as in the previous sentence. Then ∆

′ and m are mutually
inverse linear bijections. Further, ∆

′ inherits from the coproduct the property of being an
algebra morphism. �

Let Π′′ = {(r, d) ∈ R2 | d > 0 or (d = 0 and r ≥ 0)}. For (β1, β2) ∈ Γ2, we write β1 ≤′′ β2 if
β1 + Π′′ ⊂ β2 + Π′′. This relation ≤′′ is a total order on Γ.

We define an increasing filtration F ′′•A of the algebra A by the poset (Γ,≤′′) as follows: for
β ∈ Γ, the space F ′′βA is the linear span of all homogeneous elements a ∈ A such that R(a) ⊂
β + Π′′. The associated graded algebra gr′′• A is then bigraded by Γ.

Proposition 2.10 There is a unique linear map ∆′′ : gr′′• A → A[≥0] ⊗ A[<0] that sends a
homogeneous element a ∈ gr′′β A to the homogeneous component of degree (|a| − β, β) of ∆(a).
This map ∆′′ is an isomorphism of algebras. The inverse map is induced by the multiplication
in A.

The filtration F ′• on A induces a filtration on gr′′• A, and likewise the filtration F ′′• induces
a filtration on gr′•A. The associated graded algebras gr′• gr′′• A and gr′′• gr′•A are naturally
isomorphic and are trigraded by Γ.

Proposition 2.11 There is a unique linear map ∆2 : gr′• gr′′• A→ A[>0]⊗A[0]⊗A[<0] that sends
a homogeneous element a ∈ gr′α gr′′β A to the homogeneous component of degree (α, |a|−α−β, β)

of (∆ ⊗ id) ◦∆(a). This map ∆2 is an isomorphism of algebras. The inverse map is induced
by the multiplication in A.

We omit the proofs of the last two propositions. For future use, we record that A[≥0] = F ′′0 A =
gr′′0 A, that A[<0] =

⊕
γ∈Γ(F ′′γA)γ , and that A[0] = F ′0A ∩ F ′′0 A = gr′0 gr′′0 A.

2.4 Duality

In this section we assume that each homogeneous component Aγ is finite-dimensional. The
graded dual of A, which we denote by B, is also a Γ-graded connected bialgebra. We use
the same notation ∆ for the coproduct of B as for A. We can define the bialgebras B[µ]

(Proposition 2.2) and we can look at the basis of ordered monomials in B.
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Proposition 2.12 (i) Let 〈 , 〉 : A×B → k be the duality bracket, and let a and b be ordered
monomials in A and B, respectively. Then 〈a, b〉 = 0 unless Pol∧(a) = Pol∧(b).

(ii) For each µ ∈ R, the bialgebra B[µ] identifies with the graded dual of A[µ].

Proof. Let a = a1 · · · ap and b = b1 · · · bq be ordered monomials in A and B, respectively.
Suppose that |a| = |b|, but that Pol∧(a) 6= Pol∧(b). Exchanging A and B if necessary, we may
assume that one extremal point on the upper rim of Pol(a), say α, does not belong to Pol∧(b).
By Lemma 2.4, there exists j ∈ J1, p− 1K such that α = |a1|+ · · ·+ |aj |. As the homogeneous
component of degree (α, |a| − α) of ∆(b) is zero, we have

〈a, b〉 = 〈(a1 · · · aj)(aj+1 · · · ap), b〉 = 0.

This shows the first assertion. The second one then follows from Theorem 2.6. �

3 Polytopes and bases of O(N)

3.1 Notation

For the rest of the paper we consider a split connected reductive group G over a field k of
characteristic 0. We fix a Borel subgroup B and a maximal torus T contained in B. Let P
be the character lattice of T , let Φ be the root system of (G,T ), let Φ+ (respectively, Φ−) be
the set of positive (respectively, negative) roots determined by B, and let {αi}i∈I be the set of
simple roots. We denote by Q (respectively, Q±) the subgroup (respectively, submonoid) of P
generated by Φ (respectively, Φ±).

Let N be the unipotent radical of B and let n be the Lie algebra of N . For i ∈ I, we choose
a root vector ei ∈ n of weight αi. The enveloping algebra U(n) is generated by the elements
ei. It is graded by Q+, with deg ei = αi. For (i, `) ∈ I × N, the divided power e`i/`! in U(n) is
denoted by e(`)

i .

Since N is an algebraic group, the algebra O(N) of regular functions on N is a Hopf algebra.
It acquires a grading

⊕
λ∈Q− O(N)λ by means of the conjugation action of T on N . The group

N and its Lie algebra n acts on both sides on O(N); our convention is that n · f = f(?n) and
f · n = f(n?) for all (n, f) ∈ N × O(N). Denoting by 1N the identity element of N , we then
have (x ·f)(1N ) = (f ·x)(1N ) for all (x, f) ∈ U(n)×O(N), so it makes sense to define a pairing
between U(n) and O(N) by 〈x, f〉 = (x · f)(1N ). This pairing is perfect and identifies O(N)
as a bialgebra to the graded dual of U(n). For i ∈ I, we denote by ζi ∈ O(N) the function of
weight −αi such that 〈ei, ζi〉 = 1.

We define the height htλ of an element λ ∈ Q as the sum of the coordinates of λ in the
basis {αi}i∈I . We define an involution ∗ on the vector space O(N)λ by setting f∗(n) =
(−1)htλf(n−1) for all (n, f) ∈ N ×O(N)λ. This involution ∗ is extended linearly to the whole
algebra O(N).
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For a function f ∈ O(N) of weight λ, we denote by L(f) the set of all weights µ such that the
coproduct ∆(f) has a nonzero component along the summand O(N)µ⊗O(N)λ−µ of O(N)⊗2.
In other words, L(f) is the set of weights of the left N -submodule of O(N) generated by f .
We set QR = Q ⊗Z R and we denote the convex hull of L(f) in this vector space by Pol(f).
This definition mimics the notion of KLR polytope introduced in [26].

In the sequel, we will just write U and O for respectively U(n) and O(N) when this does not
cause any confusion.

3.2 Stability in U(n) and O(N)

In our story the dual Q∗R of QR plays the role of the space of stability parameters.

Let us pick an element θ ∈ Q∗R. The map λ 7→ (htλ, θ(λ)) projects Q+ onto a submonoid Γθ
of the right half-plane. The Q+-grading on U then descends to a Γθ-grading, for which the
results in section 2 can be applied. Likewise the Q−-grading on O descends to a Γθ-grading by
means of the map Jθ : λ 7→ −(htλ, θ(λ)).

For each slope µ ∈ R, the set of positive roots α such that θ(α)/ htα = µ is closed in Φ.
The corresponding root vectors span a subalgebra nµ of the Lie algebra n. As homogeneous
elements in n are primitive hence semistable, the subalgebra of U generated by nµ is contained
in U[µ]. Comparing then Theorem 2.6 with the Poincaré–Birkhoff–Witt theorem, we conclude
that U(nµ) = U[µ].

We set n>0 =
∑

µ>0 nµ and n<0 =
∑

µ<0 nµ, and we denote by N>0, N0 and N<0 the closed
subgroups of N with Lie algebras n>0, n0 and n<0, respectively. Then N is the Zappa–Szép
product∗ N>0 ./ N0 ./ N<0.

Given a subgroup H of N , we denote by HO (respectively, OH) the subalgebras of invariant
elements in O with respect to the left (respectively, right) action of H. With this notation, we
deduce from Proposition 2.12 the following explicit description:

O[≥0] = N<0O, O[>0] = N0N<0O, O[≤0] = ON>0 , O[<0] = ON>0N0 , O[0] = N<0ON>0 .

Since the decomposition N = N>0 ./ N0 ./ N<0 is an isomorphism of algebraic varieties, we
obtain isomorphisms from O[>0], O[0] and O[<0] onto the algebras of regular functions on N>0,
N0 and N<0, respectively.

In the next sections, we will often decorate the objects with a label θ when we want to stress
that they depend on the choice of a stability parameter. As an example, the filtrations defined
in section 2.3 will be denoted by θF ′•O and θF ′′•O. Likewise, given a weight function f ∈ O,
the subsets L(f), Pol(f) and Pol∧(f) defined by the Γθ-grading of O will be adorned with an
index θ, so for instance Lθ(f) = Jθ(L(f)).
∗We recall that a group N is the (internal) Zappa–Szép product of two subgroups N ′ and N ′′ (in symbols,

N = N ′ ./ N ′′) if the product in N induces a bijection N ′ ×N ′′ → N .
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3.3 Polite bases

The following definition highlights properties that the dual canonical basis, the dual semi-
canonical basis and Mirković and Vilonen’s basis share.

Definition 3.1. A basis B of O is said to be polite if it satisfies the following four conditions:

(i) The elements of B are weight vectors.

(ii) For each (i, n) ∈ I × N, the function ζni belongs to B.

(iii) For each θ ∈ Q∗R, the basis B is compatible with the filtration θF ′•O and with the
isomorphism defined in Proposition 2.9.

(iv) For each θ ∈ Q∗R, the basis B is compatible with the filtration θF ′′•O and with the
isomorphism defined in Proposition 2.10.

The compatibility required in condition (iii) means the following. First, for each degree γ ∈ Γθ,
the subspace θF ′γO should be spanned by B ∩ θF ′γO. In particular, B induces bases in gr′•O,
O[≤0] and O[>0]. Then ∆

′ should map this basis of gr′•O onto the tensor product basis of
O[≤0] ⊗ O[>0].

A similar clarification is in order for condition (iv). However, one can show that conditions
(iii) and (iv) are in fact equivalent, so including them both is redundant.

Example 3.2. The quantized enveloping algebra Uq(n) can be categorified by modules over the
Khovanov–Lauda–Rouquier algebras. In this context, Varagnolo and Vasserot showed that for
G simply laced, the elements of the canonical basis of Uq(n) (up to a power of q) correspond
to the indecomposable projective graded objects [27]. From Tingley and Webster’s results
in [26], we then deduce that the dual canonical basis is a polite basis of O. Now choose
θ ∈ Q∗R and adopt the notation of section 3.2. Then the subspaces θF ′0O = O[≤0] = ON>0 and
θF ′′0 O = O[≥0] = N<0O are spanned by their intersection with the dual canonical basis. This
proves afresh a result of Kimura [18]. (Kimura’s actual result is in truth deeper, as it is valid
for quantized symmetrizable Kac–Moody algebra.)

Given a convex polytope K contained in QR, we define S (K) as the vector subspace of O
spanned by weight functions f such that Pol(f) ⊂ K.

Proposition 3.3 Let B be a polite basis of O. Then for each convex polytope K in QR the
subspace S (K) is spanned by B ∩S (K).
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Proof. We may without loss of generality restrict our considerations to a weight subspace Oλ

with λ ∈ Q−. We set M = Q− ∩ (λ−Q−). The Hahn–Banach theorem implies the existence
of finitely many elements θ1, . . . , θn in Q∗R and of degrees γ1 ∈ Γθ1 , . . . , γn ∈ Γθn such that,
for each µ ∈M ,

µ ∈ K ⇔
(
∀i ∈ J1, nK, Jθi(µ) ∈ γi + Π′

)
.

As L(f) ⊂M for any function f ∈ Oλ, we obtain that

Oλ ∩S (K) = {f ∈ Oλ | L(f) ⊂ K} = Oλ ∩
n⋂
i=1

(
θiF ′γiO

)
.

The proposition now follows from the compatibility of B with all the subspaces occurring in
the right-hand side. �

Corollary 3.4 Let B be a polite basis of O, let f ∈ B, and let θ ∈ Q∗R. Expand f as a sum∑`
i=1 ai of ordered monomials with respect to the Γθ-grading of O. Then there exists a term ai

such that Pol∧θ (f) = Pol∧(ai).

Proof. We may assume without loss of generality that the functions ai are homogeneous with
respect to the weight grading on O. From Proposition 2.5, we know that Pol∧θ (ai) ⊂ Pol∧θ (f)
for each i ∈ J1, `K. On the other hand, ai belongs to S (Pol(ai)), which is spanned by its
intersection with B. So each ai, and therefore f , can be written as a linear combination of
elements in

⋃`
i=1(B ∩S (Pol(ai))). As B is a basis, there necessarily exists an index i ∈ J1, `K

such that f ∈ S (Pol(ai)). We obtain Polθ(f) ⊂ Polθ(ai), then Pol∧θ (f) = Pol∧θ (ai). �

The root hyperplanes draw a fan in the vector space Q∗R, called the Weyl fan. We say that a
convex polytope P contained in QR is GGMS if its normal fan is a coarsening of the Weyl fan
(GGMS stands for Gelfand, Goresky, MacPherson and Serganova; see [14], section 2.4).

Corollary 3.5 Let B be a polite basis of O and let f ∈ B. Then the polytope Pol(f) is GGMS.

Proof. Let −θ be an element in a face of the normal fan to Pol(f), so that the locus where
θ achieves its minimum on Pol(f) is a face of positive dimension. The upper rim of Polθ(f)
has then a nontrivial segment of slope 0. Applying Corollary 3.4, we conclude that O[0] is not
reduced to the base field k. According to the discussion in section 3.2, there exists a positive
root α such that θ(α) = 0, so θ belongs to a face of the Weyl fan. To sum up, each chamber
of the Weyl fan is contained in a chamber of the normal fan to Pol(f). �

Proposition 3.6 Let B be a polite basis of O and let θ ∈ Q∗R be such that the slopes θ(α)/htα
of the positive roots α are pairwise different. Then the map f 7→ Pol∧θ (f) is injective on B.
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Proof. Let f1 and f2 be two elements of B that have the same image by the map Pol∧θ . By our
assumption on θ, there is a unique ordered monomial a relative to the Γθ-grading of O such
that Pol∧(a) = Pol∧θ (f1) = Pol∧θ (f2). By Corollary 3.4, a occurs in the expansions of both f1

and f2 as sums of ordered monomials, and there exists a scalar t such that f1 + tf2 is a sum∑`
i=1 bi of ordered monomials, homogeneous with respect to the weight grading on O, with

Pol∧(bi) ( Pol∧(a) for all i ∈ J1, `K. Certainly then f1 + tf2 is a linear combination of elements
in
⋃`
i=1(B ∩S (Pol(bi))), but as neither f1 nor f2 belongs to this union, we necessarily have

f1 + tf2 = 0, in particular f1 = f2. �

Corollary 3.7 Let B be a polite basis of O. Then the map f 7→ Pol(f) is injective on B.

The map K 7→ S (K) is a filtration of O indexed by the set of all convex polytopes, endowed
with the inclusion order. We denote the associated graded by gr•O. By Proposition 3.3, any
polite basis B of O is compatible with this filtration and thus allows to compute this associated
graded. Explicitly, we get that grK O is one dimensional if K is of the form Pol(f) for f ∈ B
and is zero otherwise.

Accordingly, the set Pol(B) is the same for all polite basesB. As mentioned in the introduction,
the elements of this set are the Mirković–Vilonen polytopes [1]. Kamnitzer proved that among
the GGMS polytopes, these are characterized by the shape of their 2-faces, which is constrained
by the tropical Plücker relations [14]. A more general statement is that faces of Mirković–
Vilonen polytopes are Mirković–Vilonen polytopes of smaller ranks [7].

Remark 3.8. This last fact can be proved in our set-up in the following way. As in section 3.2,
the datum of an element θ ∈ Q∗R defines subgroups N>0, N0 and N<0 of N , and the space
O[0] = N<0ON>0 is naturally isomorphic to the algebra of regular functions on N0. As N0

can be regarded as the maximal unipotent subgroup of a reductive group with root system
Φ ∩ ker θ, it makes sense to speak of polite bases of O[0]. (The only true matter of concern
is the normalization condition (ii), which should be adequately managed.) And as a matter
of fact, one easily shows that if B is a polite basis of O, then B ∩ O[0] is a polite basis of
O(N0). Now consider such a basis B and pick f ∈ B. Any face of Pol(f) can be obtained as
the minimum locus on Pol(f) of an element θ ∈ Q∗R. Using this θ as a stability parameter,
the upper ridge of Polθ(f) contains a segment of slope 0, with endpoints α and β. Denoting
by f̄ the image of f in gr′α gr′′β O and adopting the notation of Proposition 2.11, we can write
∆2(f̄) = f+ ⊗ f0 ⊗ f− with f+, f0 and f− in B. Then f0 belongs to B ∩ O[0], and the face of
Pol(f) that we considered is a translate of the polytope Pol(f0).

Proposition 3.9 Let B1 and B2 be polite bases of O. We index both of them by the Mirković–
Vilonen polytopes by means of the map Pol. Then the transition matrix between B1 and B2 is
upper unitriangular with respect to the inclusion order of the polytopes.

Proof. The triangularity of the transition matrix is a consequence of the compatibility of both
bases with the filtration K 7→ S (K). The fastest way to prove that there are only ones on
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the diagonal is to observe that polite bases are always perfect (see section 3.5 for the specific
definition we use in this paper) and to invoke the fact that the transition matrix between two
perfect bases is unitriangular (see for instance Proposition 2.6 in [3] for the dual version). �

3.4 The dual semicanonical basis

In this section we assume that G is simply laced and we show that the dual semicanonical
basis of O is polite. We start with a few recollections to settle the notation and refer to the
literature for complete explanations [11, 21].

Let Λ be the proprejective algebra on the Dynkin diagram of G over the field of complex
numbers. This is the path algebra of a quiver with relations, with vertex set I. We regard the
dimension-vector dimM of a Λ-module M as an element of Q+, identified to NI by means of
the basis {αi}i∈I . The Harder–Narasimhan polytope of a Λ-module M is the convex hull in
the space QR of the set of dimension-vectors of all the submodules of M .

We define the weight of a word i = i1 · · · in in the alphabet I as αi1 + · · · + αin . To such a
word, we associate the monomial ei = ei1 · · · ein in the Chevalley generators of n. If M is a
Λ-module of dimension-vector ν and i is a word of weight ν, we denote by Fi,M the set of all
flags 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = M of Λ-submodules of M such that dim(Nj/Nj−1) = αij
for all j ∈ J1, nK. With this notation, each Λ-module M of dimension-vector ν determines a
function ϕM ∈ O−ν such that 〈ei, ϕM 〉 is the Euler characteristic of Fi,M for all words i of
weight ν.

Proposition 3.10 The Harder–Narasimhan polytope of a Λ-module M is equal to −Pol(ϕM ).

Proof. We set ν = dimM and pick µ ∈ (−L(ϕM )). The component of weight (−µ,−ν + µ) of
∆(ϕM ) is nonzero, so there exist words i and j of weights µ and ν − µ, respectively, such that
〈ei ⊗ ej,∆(ϕM )〉 6= 0. Denoting by ij the concatenation of these words, we get 〈eij, ϕM 〉 6= 0,
so Fij,M 6= ∅ and M has a submodule of dimension-vector µ. We conclude that −L(ϕM ), and
therefore its convex hull −Pol(ϕM ), is contained in the Harder–Narasimhan polytope of M .

To prove the reverse inclusion, we choose a vertex µ of the Harder–Narasimhan polytope
of M . Then M contains a unique submodule N of dimension-vector µ ([7], section 3.2).
If i and j are words of weights µ and ν − µ, respectively, then any flag in Fij,M contains
N , whence an isomorphism Fij,M

∼= Fi,N × Fj,M/N . Taking Euler characteristics, we get
〈eij, ϕM 〉 = 〈ei, ϕN 〉〈ej, ϕM/N 〉. Since this holds for all such words i and j, we deduce that
the component of weight (−µ,−ν + µ) of ∆(ϕM ) is equal to ϕN ⊗ ϕM/N , hence is not zero
([12], Lemma 9.5). Therefore −µ ∈ L(ϕM ). We conclude that all the vertices of the Harder–
Narasimhan polytope of M belong to −Pol(ϕM ). �

Given ν ∈ Q+, we denote the representation space of Λ-modules (aka Lusztig’s nilpotent
variety) in vector-dimension ν by rep(Λ, ν). If M is the Λ-module defined by the point m ∈
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rep(Λ, ν), we allow ourselves to write ϕm instead of ϕM . The map m 7→ ϕm from rep(Λ, ν) to
O−ν is constructible. To any irreducible component Y of rep(Λ, ν), one can therefore associate
a function ρY ∈ O−ν so that {m ∈ Y | ϕm = ρY } contains a dense open subset of Y . The dual
semicanonical basis of O is the family of all these functions ρY .

Each θ ∈ Q∗R defines a torsion pair (Iθ,Pθ) in Λ-mod ([7], section 3.1). For each Λ-module
M , denote by Mt and Mf = M/Mt the torsion and locally-free part of M with respect to this
torsion pair. The map M 7→ (Mt,Mf ) extends to irreducible components: given a dimension-
vector ν and an irreducible component Y of rep(Λ, ν), there exists a dimension-vector µ and
irreducible components Yt and Yf of rep(Λ, µ) and rep(Λ, ν − µ), respectively, such that the
general point of Yt × Yf is of the form (Mt,Mf ) with M a general point in Y . Moreover µ,
Yt and Yf are uniquely defined and the map Y 7→ (Yt, Yf ) is injective (loc. cit., Theorem 4.4).
From Proposition 3.10 and its proof, we deduce that −Jθ(µ) is the largest element in Lθ(ρY )
with respect to the total order ≤′ and that the component of weight (−µ,−ν + µ) of ∆(ρY )
is ρYt ⊗ ρYf .

Proposition 3.11 The dual semicanonical basis of O is polite.

Proof. By construction, the dual semicanonical basis satisfies the condition (i) in the definition
of polite bases. For condition (ii), we choose (i, n) ∈ I × N, denote the unique Λ-module of
dimension-vector nαi by nSi, observe that 〈eii···i, ϕnSi〉 is equal to n!, the Euler characteristic
of the complete flag variety of an n-dimensional complex vector space, and conclude that ζni
is equal to ϕnSi , so belongs to the dual semicanonical basis.

We now show that the dual semicanonical basis satisfies condition (iii). Let θ ∈ Q∗R, let
(α, γ) ∈ Γ2

θ, and let f be a homogenous element in θF ′αO of degree γ. Let us expand f on
the dual semicanonical basis and write f =

∑`
i=1 ciρYi , where each scalar ci is nonzero and

where Yi is an irreducible component of a representation space rep(Λ, νi). We decompose each
Yi according to the torsion pair (Iθ,Pθ), producing a dimension-vector µi and irreducible
components (Yi)t and (Yi)f of rep(Λ, µi) and rep(Λ, νi−µi), respectively. Let β be the largest
element among the degrees −Jθ(µi) with respect to the total order ≤′ and let I be the set of
all indices i such that −Jθ(µi) = β. Then the homogeneous component of degree (β, γ − β) of
∆(f) is

∑
i∈I ci ρ(Yi)t ⊗ ρ(Yi)f . Since the pairs ((Yi)t, (Yi)f ) are all different, this sum cannot

be zero, so β ∈ L(f) and therefore β ≤′ α. It follows that for each i ∈ J1, `K, the set Lθ(ρYi)
is contained in α + Π′ and the function ρYi belongs to θF ′αO. We conclude that θF ′αO is
spanned by its intersection with the dual semicanonical basis. The same arguments imply the
compatibility of the dual semicanonical basis with the isomorphism ∆

′.

Condition (iv) in the definition of polite bases can be checked similarly, using instead the
torsion pair (I θ,Pθ) in Λ-mod. �
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3.5 Comparison with perfect bases

Berenstein and Kazhdan introduced in [8] the notion of perfect bases for locally finite U(n)-
modules. The following is a reformulation of their definition in the case of the U(n)-module O,
actually a strengthened version of it where the values of some structure constants is prescribed.
For i ∈ I and f ∈ O, let `i(f) denote the smallest nonnegative integer n such that en+1

i ·f = 0.
Then a basis B of O consisting of weight vectors is said to be perfect if, for each (i, n) ∈ I×N,
the rule b 7→ e

(n)
i · b defines an injective map {b ∈ B | `i(b) = n} → {b ∈ B | ei · b = 0}.

We will say that a basis B of O is biperfect if both B and its image by the involution ∗ are
perfect.

Proposition 3.12 A polite basis of O is biperfect.

Proof. We fix i ∈ I and choose θ ∈ Q∗R so that θ(αi) < 0 and that θ takes positive values
on all the other positive roots. With this stability parameter, the group N<0 defined in sec-
tion 3.2 is the additive group Ga defined by the root αi and the algebra O[<0] is the polynomial
algebra k[ζi]. Also, O[≥0] = N<0O = {f ∈ O | ei · f = 0}.

We set γ = Jθ(−αi); this is the degree of ζi relative to the Γθ-grading on O. From Proposi-
tion 2.10, we deduce that gr′′• O is concentrated in degrees nγ with n ∈ N.

If a homogeneous element f ∈ O is in F ′′nγO, then (n+ 1)γ /∈ R(f) and therefore en+1
i · f = 0.

Conversely, if f is not in F ′′nγO, then there exists β ∈ R(f) such that β /∈ nγ + Π′′. In other
words, there exists an element x ∈ U(n) of degree β (for the Γθ-grading of U(n)) such that
x · f 6= 0, and without loss of generality we can assume that x is a PBW monomial ending
with some power of ei. The fact that β /∈ nγ + Π′′ forces this power to be at least en+1

i , and
we conclude that en+1

i · f 6= 0.

The previous paragraph shows that for a homogeneous element f ∈ O, the smallest nonnegative
integer n such that f ∈ F ′′nγO is `i(f). For this integer n = `i(f), denoting by f̄ the image of f
in gr′′nγ O, we then have ∆

′′(
f̄
)

= e
(n)
i ·f ⊗ϕni , because e

(n)
i spans the homogeneous component

of degree nγ in U(n) and ϕni is the dual basis element in O.

Now let B be a polite basis of O. For n ∈ N, set Bn = {b ∈ B | `i(b) = n}. In view of our
previous observations, the axioms of a polite basis require that B0 is a basis of F ′′0 O = O[≥0],
that

{
b̄
∣∣ b ∈ Bn

}
is a basis of gr′′nγ O, and that b̄ 7→ e

(n)
i · b maps bijectively this basis onto B0.

Therefore B is a perfect basis of O.

Employing −θ as stability parameter and arguing in similar fashion, we deduce from the
compatibility of B with the filtration F ′• and with the isomorphism ∆

′ that B enjoys the same
property with respect to the right action of ei on O. Therefore {b∗ | b ∈ B} is also perfect. �

Perfect bases are automatically endowed with a structure of crystal in the sense of Kashiwara.
We will not recall the definition of this notion; let us just say that we will use the standard
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notation, with crystal operators denoted by ẽi and f̃i and with functions εi and ϕi for each
i ∈ I. One important result from [8] is that the crystals of the perfect bases of O are all
isomorphic. The abstract crystal they share is denoted by B(∞).

Proposition 3.12 therefore entails that any polite basis B is indexed by the crystal B(∞).
Also, as we saw in section 3.3, the map Pol defines a bijection from B onto the set of Mirković–
Vilonen polytopes. We thus obtain a bijection from B(∞) onto the set of Mirković–Vilonen
polytopes, and this bijection does not depend on B ([3], Lemma 2.1). It follows that the set of
Mirković–Vilonen polytopes has a natural crystal structure, isomorphic to B(∞). This result
goes back to Kamnitzer, who described this bijection in the most explicit manner [13].

Remark 3.13. The converse of Proposition 3.12 is not true: biperfect bases are not necessarily
polite. Suppose indeed given a pair (b′, b′′) of elements in B(∞) which have the same weight
and satisfy εi(b′) < εi(b

′′) and ε∗i (b
′) < ε∗i (b

′′) for each i ∈ I, but also Pol(b′) 6⊂ Pol(b′′). By
Proposition 3.9, the transition matrix between any two polite bases of O have a zero entry
at position (b′′, b′). However, Fei explains in sect. 10.1 of [10] that one can find two biperfect
bases of O(N) such that the transition matrix between these bases has a nonzero entry at that
position. In this case certainly one of these biperfect bases is not polite.

The main point now is to show that such pairs (b′, b′′) do exist. The following is Example 2.7 (ii)
in [3] (a smaller example is given in [10], Example 10.7). Here we are in type A4 with the
standard numbering of the vertices of the Dynkin diagram. We consider the two elements
of B(∞)

b′ =
(
f̃3f̃2f̃1f̃4f̃3f̃2

)4
(1) and b′′ =

(
f̃2

1 f̃
5
3 f̃

5
2 f̃

2
4

)(
f̃2f̃3f̃4f̃1f̃2f̃3

)(
f̃4f̃3f̃2f̃1

)
(1).

They have the same weight ν, and in the preprojective model [17, 19], they correspond to the
irreducible components of rep(Λ, ν) whose general points are the Λ-modules

M ′ =

(
3

2 4
1 3

2

)⊕4

and M ′′ =
4

3
2

1
⊕

2
1 3

2 4
3
⊕
(

1 3
2 4

)⊕2
⊕
(

3
2

)⊕3
,

respectively. Looking at the heads and the socles of these modules, we find that

(ε1(b′), ε2(b′), ε3(b′), ε4(b′)) = (0, 0, 4, 0), (ε1(b′′), ε2(b′′), ε3(b′′), ε4(b′′)) = (2, 1, 5, 1),

(ε∗1(b′), ε∗2(b′), ε∗3(b′), ε∗4(b′)) = (0, 4, 0, 0), (ε∗1(b′′), ε∗2(b′′), ε∗3(b′′), ε∗4(b′′)) = (1, 5, 1, 2).

On the other hand, adopting the notation of [5], we get

N(s2s4s3 ω3) = 1 3
2

and we can then compute

dim HomΛ(N(s2s4s3 ω3),M ′) = 4 > 2 = dim HomΛ(N(s2s4s3 ω3),M ′′).

Using Theorem 6.3 in loc. cit. we conclude that Pol(b′) 6⊂ Pol(b′′).

Computer experiments lead us to believe that in this type A4, the algebra O has several
biperfect bases but only one polite basis.
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4 Mirković and Vilonen’s basis

4.1 Recollection about the Geometric Satake Equivalence

In this section, we present a very brief summary of the Geometric Satake Equivalence. We
direct the reader to [22] for additional details.

We carry on with the notation set up in section 3.1 and denote the Borel subgroup opposite to
B with respect to T by B−. Since the group T is the quotient of B− by its unipotent radical,
any character λ of T can be inflated to a linear character of B−, still denoted by λ. One can
then consider the coinduced G-module (customarily called costandard)

∇(λ) =
{
f ∈ O(G)

∣∣ ∀(b, g) ∈ B− ×G, f(bg) = λ(b)f(g)
}
.

If λ is dominant, then∇(λ) has λ for highest weight and its character is given byWeyl’s formula.
The Geometric Satake Equivalence realizes ∇(λ) as the homology of a certain perverse sheaf
I∗(λ, k) on the affine Grassmannian of the Langlands dual of G.

Let us set up the relevant notation. The Langlands dual of G will be denoted by G∨ (for us, G∨

will be a complex algebraic group). Its maximal torus T∨ has P for cocharacter lattice and the
root system of G∨ is the coroot system of G. We choose an additive one-parameter subgroup
xα∨ : Ga → G∨ for each coroot α∨. We denote by N∨± the subgroups of G∨ generated by the
subgroups xα∨ for α ∈ Φ±. We introduce the ring O = C[[z]] and its fraction field K = C((z)).

The affine Grassmannian of G∨ is the homogeneous space Gr = G∨(K)/G∨(O). It is the set of
C-points of a reduced projective ind-scheme over C. Each weight λ ∈ P can be regarded as a
point zλ in T∨(K), hence defines a point Lλ in Gr. The orbit through Lλ under the action of
N∨+(K) (respectively, N∨−(K)) is denoted by Sλ (respectively, Tλ). Then

Gr =
⊔
λ∈P

Sλ =
⊔
λ∈P

Tλ, Sλ =
⊔

µ∈Q+

Sλ−µ, Tλ =
⊔

µ∈Q+

Tλ+µ,

and for each µ ∈ P , the action of zµ on Gr sends Sλ onto Sλ+µ and Tλ onto Tλ+µ.

Let λ be a dominant weight. We denote the orbit through Lλ under the action of G∨(O) by
Grλ and consider the perverse sheaf

I∗(λ, k) = pτ≤0 (jλ)∗ kGrλ [2ρ(λ)]

in the derived category Db(Gr, k) of constructible sheaves on Gr. Here 2ρ : P → Z is the sum
of the positive coroots, jλ : Grλ → Gr is the inclusion map, (jλ)∗ is the (derived) direct image,
and pτ≤0 is the truncation functor for the perverse t-structure. Then, under the Geometric
Satake Equivalence, the module ∇(λ) is the hypercohomology H•(Gr, I∗(λ, k)), and for all
ν ∈ P , the weight space ∇(λ)ν is H2ρ(ν)(Tν , t

!
ν I∗(λ, k)), where tν : Tν → Gr is the inclusion

map. Rewriting the sheaf as

I∗(λ, k) = pτ≤0 (jλ)∗ DGrλ [−2ρ(λ)],
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we get (see [22], Proposition 3.10)

∇(λ)ν ∼= H2ρ(ν−λ)
(
Grλ ∩ Tν ,DGrλ∩Tν

) ∼= HBM
2ρ(λ−ν)

(
Grλ ∩ Tν , k

)
.

Furthermore, all the irreducible components of Grλ ∩ Tν have dimension ρ(λ − ν), so their
fundamental classes form a basis of ∇(λ)ν .

Let q : P → Q be a positive definite quadratic form on P , invariant under the Weyl group. It
determines a central extension g̃∨ of the Lie algebra g∨ ⊗ C[z, z−1] by C. The basic represen-
tation† V of g̃∨ provides an embedding Υ : Gr → P(V ) and a G∨(K)-equivariant line bundle
L = Υ∗O(1) on Gr. For each dominant weight λ, the cup-product with c1(L ) defines an
endomorphism of the vector space H•(Gr, I∗(λ, k)). Then the Geometric Satake Equivalence,
suitably normalized, identifies this endomorphism with the action on ∇(λ) of the principal
nilpotent element

∑
i∈I q(αi)ei.

4.2 Cutting Mirković–Vilonen cycles

For (λ, ν) ∈ P 2, it is known that Sλ ∩ Tλ = {Lλ}, that the intersection Sλ ∩ Tν is non-empty
if and only if λ− ν ∈ Q+, and that in this case this intersection has pure dimension ρ(λ− ν).
The irreducible components of the closure Sλ ∩ Tν are called Mirković–Vilonen cycles of weight
(λ, ν). We shall denote the set they form by Zλ,ν .

We now fix a regular element θ ∈ Q∗R and define

Φθ =
{
α ∈ Φ

∣∣ θ(α) < 0
}
.

We define M = z−1C[z−1], a subspace of K. For A ∈ {K,O,M}, we denote by U∨(A) (re-
spectively, U∨±(A)) the subgroup of G∨(K) generated by the elements xα∨(a) with a ∈ A and
α ∈ Φθ (respectively, α ∈ Φθ ∩ Φ±).

Lemma 4.1 (i) For A ∈ {K,O,M}, we have U∨(A) = U∨+(A) ./ U∨−(A).

(ii) We have the following decompositions:

U∨(K) = U∨(M) ./ U∨(O) and U∨±(K) = U∨±(M) ./ U∨±(O).

Proof. For all coroots α∨ and β∨ that are not opposite, there exist commutation relations of
the form

xα∨(a)xβ∨(b)xα∨(a)−1 xβ∨(b)−1 =
∏
i,j>0

xiα∨+jβ∨
(
Ci,ja

ibj
)

†If G is simple and if one chooses q such that q(α) = 1 for each short root α, then g̃∨ is an affine untwisted
Kac–Moody algebra—up to the derivation d/dz—and the basic representation is the integrable representation
with highest weight Λ0.
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with Ci,j ∈ C; see for instance [9], chapter 5. These relations allow to write any element in
U∨(K) in a unique way as a product ∏

α∈Φθ

xα∨(aα) (∗)

computed according to any given convex order on Φθ. Choosing a convex order for which the
elements in Φθ∩Φ+ are smaller than the elements in Φθ∩Φ−, this fact gives the decomposition
U∨(A) = U∨+(A) ./ U∨−(A) for A = K. Noting that, in the commutation relation, the monomials
Ci,ja

ibj belong to O (respectively, M) as soon as a and b do so, we can use the same process
to obtain the decomposition for A = O (respectively, A = M). Along the way, we note that
for A ∈ {O,M}, the element (∗) belongs to U∨(A) if and only if all the aα belong to A.

We have so far proved the first item. To prove the second, we enumerate the roots α1, . . . , αn
in Φθ according to a convex order. To simplify the notation, we write xi instead of xα∨i . Let
g ∈ U∨(K). We claim that for any k ∈ J0, nK, g can be written as a product

x1(b1) · · ·xk(bk)xk+1(ak+1) · · ·xn(an)xk(ck) · · ·x1(c1),

with ai in K, bi ∈M and ci ∈ O. For k = 0, this is (∗). Let us assume that such a factorization
exists for k ∈ J0, n−1K and let us decompose ak+1 = bk+1 +ck+1 with (bk+1, ck+1) ∈M×O. As
the ordering is convex, each coroot of the form iα∨k+1 + jα∨` with i and j positive and ` ≥ k+ 2
belongs to

{
α∨k+2, . . . , α

∨
n

}
, so there exists a′k+2, . . . , a

′
n in K such that

xk+1(ck+1)xk+2(ak+2) · · ·xn(an)xk+1(ck+1)−1 = xk+2(a′k+2) · · ·xn(a′n).

We then obtain the desired writing

g = x1(b1) · · ·xk+1(bk+1)xk+2(a′k+2) · · ·xn(a′n)xk+1(ck+1) · · ·x1(c1)

for k+ 1, which establishes our claim by induction. For k = n, we get a factorization g = g′g′′

with (g′, g′′) ∈ U∨(M) × U∨(O). Moreover, the uniqueness of the writing (∗) implies that
U∨(M) ∩ U∨(O) = {1}. We conclude that U∨(K) = U∨(M) ./ U∨(O). Similar arguments
prove the remaining decompositions. �

For µ ∈ P , we denote by Rµ the orbit through Lµ under the action of the group U∨(K). The
stabilizer of L0 under this action is U∨(O), so by Lemma 4.1 the map g 7→ g ·L0 is a bijection
from U∨(M) onto R0.

Lemma 4.2 For each µ ∈ P , the intersection Sµ ∩ Rµ (respectively, Tµ ∩ Rµ) is the orbit
through Lµ under the action of the group U∨+(K) (respectively, U∨−(K)).

Proof. The inclusion U∨+(K) · Lµ ⊂ Sµ ∩ Rµ is banal. For the reverse direction, we choose an
element x ∈ Sµ ∩ Rµ and write x = g · Lµ with g ∈ U∨(K). Using Lemma 4.1, we decompose
g = g+g− with g± ∈ U∨±(K). Since x ∈ Sµ, we get g−1

+ · x ∈ Sµ. As Sµ ∩ Tµ = {Lµ}, we obtain
g− · Lµ = Lµ, and therefore x = g+ · Lµ belongs to U∨+(K) · Lµ. �
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We define a map
Ωµ : Rµ → (Tµ ∩Rµ)× (Sµ ∩Rµ)

as follows. Given x ∈ Rµ, there is a unique g ∈ U∨(M) such that z−µ · x = g · L0. By
Lemma 4.1, we can write in a unique fashion g = g+g− = h−h+ with g+, h+ in U∨+(M) and
g−, h− in U∨−(M). We then set Ωµ(x) = (zµg− · L0, z

µh+ · L0).

Proposition 4.3 Let (λ, µ, ν) ∈ P 3. Then the map Ωµ is bijective and restricts to an isomor-
phism of algebraic varieties from Sλ ∩ Tν ∩Rµ onto (Sλ ∩ Tµ ∩Rµ)× (Tν ∩ Sµ ∩Rµ).

Proof. We readily reduce to the case µ = 0.

Given (y, z) ∈ (T0 ∩R0)× (S0 ∩R0), we write y = g− · L0 and z = h+ · L0 with g− in U∨−(M)
and h+ in U∨+(M), and we write the element g−h−1

+ of U∨(M) as g−1
+ h− with (g−1

+ , h−) ∈
U∨+(M)×U∨−(M). We then have g+g− = h−h+, and we check that x = g+g− ·L0 is the unique
element in R0 such that (y, z) = Ω0(x). The map Ω0 is therefore bijective.

Suppose that x ∈ R0 and set (y, z) = Ω0(x). Then x and y belong to the same orbit under the
action of N∨+(K), so x ∈ Sλ if and only if y ∈ Sλ. Likewise, x ∈ Tν if and only if z ∈ Tν . We
conclude that Ω0 induces a bijection from Sλ ∩ Tν ∩R0 onto (Sλ ∩ T0 ∩R0)× (Tν ∩ S0 ∩R0).
This bijection is in fact an isomorphism of algebraic varieties because the definition of Ω0 and
the construction of its inverse depend only on the operations that provide the decomposition
U∨(M) = U∨+(M) ./ U∨−(M). �

The subsets Rµ are locally closed and form a partition of Gr, so for any irreducible subvariety
Z of Gr, there is a unique weight µ ∈ P such that Z ∩ Rµ is open and dense in Z. For
(λ, µ, ν) ∈ P 3, we denote by Z µ

λ,ν the subset of Zλ,ν formed by the cycles Z whose general
point belongs to Rµ. Therefore Z µ

λ,ν is the set of irreducible components of Sλ ∩ Tν ∩Rµ of
dimension ρ(λ− ν).

Proposition 4.4 The map Z 7→
(
Z ∩ Tµ ∩Rµ, Z ∩ Sµ ∩Rµ

)
defines a bijection

Ξ : Z µ
λ,ν

'−→ Z µ
λ,µ ×Z µ

µ,ν .

Proof. We denote the set of irreducible components of a topological space X by Irr(X). The
proof of Proposition 4.3 implies that Ωµ restricts to an isomorphism of algebraic varieties

Sλ ∩ Tν ∩Rµ
'−→ (Sλ ∩ Tµ ∩Rµ)× (Tν ∩ Sµ ∩Rµ),

so induces a bijection

Irr
(
Sλ ∩ Tν ∩Rµ

) '−→ Irr
(
Sλ ∩ Tµ ∩Rµ

)
× Irr

(
Tν ∩ Sµ ∩Rµ

)
.

The dimension of Sλ ∩ Tν ∩ Rµ is less than or equal to ρ(λ − ν), and likewise the dimensions
of Sλ ∩ Tµ ∩Rµ and Tν ∩ Sµ ∩Rµ are bounded by ρ(λ− µ) and ρ(µ− ν), respectively.
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The map Z 7→ Z ∩Rµ defines a bijection from Z µ
λ,ν onto the set of irreducible components of

Sλ ∩ Tν ∩Rµ of dimension ρ(λ− ν), and there are similar bijections from Z µ
λ,µ and Z µ

µ,ν onto
the sets of irreducible components of Sλ ∩ Tµ ∩ Rµ and Tν ∩ Sµ ∩ Rµ of dimension ρ(λ − µ)
and ρ(µ − ν), respectively. Therefore the above bijection produces by restriction a bijection
Ξ : Z µ

λ,ν
'−→ Z µ

λ,µ × Z µ
µ,ν , and to conclude the proof it remains to check that Ξ is the map

described in the statement.

To simplify the notation, we shall take µ = 0. By construction, Ξ relates a Mirković–Vilonen
cycle Z ∈ Z 0

λ,ν and a pair (Zt, Zs) ∈ Z 0
λ,0 ×Z 0

0,ν if and only if

Z ∩R0 =
{
g · L0

∣∣ g− · L0 ∈ Zt ∩ (T0 ∩R0) and h+ · L0 ∈ Zs ∩ (S0 ∩R0)
}
,

where as before g ∈ U∨(M) is written in the form g+g− or h−h+ with g+, h+ in U∨+(M) and
g−, h− in U∨−(M).

With these notations, if g · L0 ∈ S0, then g ∈ U∨+(M), therefore g = h+. It follows that
Z ∩ (S0 ∩ R0) ⊂ Zs ∩ (S0 ∩ R0), whence Z ∩ S0 ∩R0 ⊂ Zs. For the reverse inclusion, we
note that L0 ∈ Zt ∩ (T0 ∩ R0), so (taking g− = h− = 1) Zs ∩ (S0 ∩ R0) ⊂ Z ∩ R0, and
therefore Zs = Zs ∩ S0 ∩R0 ⊂ Z ∩ S0 ∩R0. We conclude that Zs = Z ∩ S0 ∩R0. The
equality Zt = Z ∩ T0 ∩R0 is established in like manner. �

We have assumed thus far in this section that θ ∈ Q∗R is regular, but this assumption was only
made to simplify the exposition. All the constructions presented are indeed valid in general
provided we replace Φθ by either

′Φθ =
{
α ∈ Φ

∣∣ θ(α) < 0
}
∪
{
α ∈ Φ+

∣∣ θ(α) = 0
}

or
′′Φθ =

{
α ∈ Φ

∣∣ θ(α) < 0
}
∪
{
α ∈ Φ−

∣∣ θ(α) = 0
}
.

4.3 Politeness of Mirković and Vilonen’s basis

For each dominant weight λ, the costandard module ∇(λ), as defined in section 4.1, is a
subspace of O(G). It contains a unique vector vλ whose restriction to N is the constant
function equal to 1, and this vector has weight λ. Given a second dominant weight µ, the
multiplication map f 7→ fvµ embeds ∇(λ) as an N -submodule of ∇(λ + µ). The restriction
to N , to wit the map f 7→ f |N , defines an embedding of N -modules Ψλ : ∇(λ)→ O, and the
diagram

∇(λ)
?vµ

//

Ψλ ��

∇(λ+ µ)

Ψλ+µ��

O

commutes. In this fashion O is identified with the direct limit of the spaces ∇(λ).
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As we saw, the Geometric Satake Equivalence provides an identification

∇(λ) ∼=
⊕
ν∈P

HBM
2ρ(λ−ν)

(
Grλ ∩ Tν , k

)
and the fundamental classes of the irreducible components of Grλ ∩ Tν , for all ν ∈ P , form a
basis of ∇(λ). Now let ν ∈ Q− and let Z ∈ Z0,ν . If λ is a dominant enough weight, then
Z is contained in z−λ Grλ. In this case, zλZ is the closure of an irreducible component Y of
Grλ ∩ Tλ+ν ([1], Proposition 3); furthermore, the image by Ψλ : ∇(λ)→ O of the fundamental
class of Y depends only on Z and not on λ ([6], Proposition 6.1). We denote this image by bZ .
For each ν ∈ Q−, the elements bZ with Z ∈ Z0,ν form a basis of Oν . The Mirković–Vilonen
basis of O is the family of all these functions bZ .

Let us resume the discussion in the last paragraph of section 4.1, with the projective embedding
Υ : Gr → P(V ) derived from the choice of a quadratic form q. Let H be the direct sum of all
weight subspaces of V save for the highest weight (with respect to the Cartan subalgebra of
the semi-direct product g̃∨ o C d

dz ); this is a hyperplane of V . We denote by D the divisor on
Gr cut by P(H), and for ν ∈ P , we set Dν = zνD. By [22], Proposition 3.1, we then have

Dν ∩ Tν =
⋃
i∈I

Tν+αi .

Given two Mirković–Vilonen cycles Z and Z ′ of weights (λ, ν) and (λ, ν +αi), respectively, we
denote by i(Z ′, Dν · Z) the multiplicity of Z ′ in the intersection product Dν · Z.

The basis elements bZ can now be explicitly described in the following way. If Z is a Mirković–
Vilonen cycle of weight (0, ν) and i = i1 · · · in is a word of weight −ν, we denote by Ci,Z the set
of all chains {L0} = Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = Z of Mirković–Vilonen cycles such that Yj ∈ Z0,νj

for each j ∈ J0, nK, where νj = −(αi1 + · · ·+ αij ). By [6], Theorem 5.4, we then have

〈ei, bZ〉 =
1

q(αi1) · · · q(αin)

∑
Y•∈Ci,Z

i(Y0, Dν1 · Y1) · · · i(Yn−1, Dνn · Yn).

We will need the following technical lemmas. The second one confirms in part Anderson’s
description of the coproduct of O in the Mirković–Vilonen basis ([1], section 10). In both
statements, we assume that a stability parameter θ has been fixed in Q∗R and we adopt the
notation of section 4.2, with Φθ replaced by either ′Φθ or ′′Φθ if θ is not regular.

Lemma 4.5 Let (λ, µ, ν) ∈ P 3, let i ∈ I, and let (Z,Z ′) ∈ Z µ
λ,ν×Z µ

λ,ν+αi
be such that Z ′ ⊂ Z.

Write Ξ(Z) = (Zt, Zs) and Ξ(Z ′) = (Z ′t, Z
′
s). Then Zt = Z ′t and i(Z ′s, Dν · Zs) = i(Z ′, Dν · Z).

Proof. We observe that Z ′t = Z ′ ∩ Tµ ∩Rµ ⊂ Z ∩ Tµ ∩Rµ = Zt. As both Zt and Z ′t are
Mirković–Vilonen cycles of weight (λ, µ), they have the same dimension, and therefore the
inclusion is an equality.

25



We set Ż = Z ∩Rµ, Żt = Z ∩Tµ∩Rµ, Żs = Z ∩Sµ∩Rµ, Ż ′ = Z ′∩Rµ and Ż ′s = Z ′∩Sµ∩Rµ.
These are affine varieties. The map Ωµ restricts to an isomorphism of algebraic varieties
Ω̃µ : Ż → Żt×Żs. Let pr2 : Żt×Żs → Żs be the second projection. We have Ω̃µ(Ż ′) = Żt×Ż ′s,
that is, Ż ′ = (pr2 ◦ Ω̃µ)−1(Ż ′s).

The Lie algebra g̃∨ integrates to a central extension E(G∨(K)) of the loop group G∨(K), so that
V is an ordinary representation of E(G∨(K)). The cocycle on G∨(K) that defines this central
extension E(G∨(K)) is trivial when restricted to the subgroups N∨±(K) or U∨(K). Therefore
these subgroups lift (non-canonically) to the central extension, in other words their action on
Gr lifts to an action on V .

Let σ and τ be linear forms on V with kernels zνH and zµH, respectively. Then τ is nonzero
on the line Υ(Lµ) and it vanishes on all the other weight subspaces of V , so it takes a constant
nonzero value on the U∨(K)-orbit of any nonzero vector v1 in Υ(Lµ). In particular τ , regarded
as a section of the line bundle L , does not vanish on Rµ. If we also regard σ as a section
of L , then f = σ/τ is a rational function on Gr which is regular on Rµ. This function f is the
equation of the divisor Dν on Rµ.

We claim that if x is in Ż and if y = pr2 ◦ Ω̃µ(x), then f(x) = f(y). To show this, we write
x = g ·Lµ with g ∈ zµ U∨(M) z−µ, we decompose g = h−h+ with h± ∈ zµ U∨±(M) z−µ, and we
note that y = h+ ·Lµ and x = h− ·y. The closure Tν contains Z and is the disjoint union of the
semi-infinite orbit Tν and its boundary D∩Tν , which are both N∨−(K)-invariant. The points x
and y are therefore both either in D ∩ Tν or in Tν . In the first case, we have f(x) = f(y) = 0.
In the second case, we note that the vector v3 = h+ ·v1 belongs to the line Υ(y). As τ assumes
a constant value on the orbit of v1 under the action of U∨(K), we have τ(h− · v3) = τ(v3). As
y is assumed to be in Tν , there exists g′ ∈ N∨−(K) such that y = g′ · Lν , so v2 = g′−1 · v3 is in
Υ(Lν). We can now repeat our argument: σ is nonzero on the line Υ(Lν) and it vanishes on
all the other weight subspaces of V , so it takes a constant nonzero value on the N∨−(K)-orbit
of v2. We deduce that σ(h− · v3) = σ(v3), and therefore f(x) = f(y) in this case as well. Our
claim is proved.

In conclusion, the equation of the divisor Dν and the equation of the subvariety Ż ′ inside Ż
both factorize through pr2 ◦ Ω̃µ. This implies that i(Z ′, Dν · Z) = i(Z ′s, Dν · Zs). �

Lemma 4.6 Let (µ, ν) ∈ P ×Q− and let Z ∈ Z µ
0,ν .

(i) We have Lµ ∈ Z, and if an element Lη belongs to Z, then µ− η is a nonnegative linear
combination of roots in Φθ.

(ii) Cut Z in two Mirković–Vilonen cycles Zt = Z ∩ Tµ ∩Rµ and Zs = Z ∩ Sµ ∩Rµ. Then
the component of weight (µ, ν − µ) of ∆(bZ) is equal to bZt ⊗ bz−µZs.

Proof. The first item is standard: Lµ is in Z because Z meets Rµ and is closed and invariant
under the action of T∨(C), and the second point follows from the inclusion Z ⊂ Rµ.
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Since Z µ
0,ν is non-empty, both µ and ν − µ are in Q−. Let i = i1 · · · im and j = im+1 · · · in be

words in the alphabet I of weights −µ and −ν+µ, respectively. We set νj = −(αi1 + · · ·+αij )

for each j ∈ J0, nK. Let Y• be an element in Cij,Z . For each j ∈ J0, nK, we have Yj ⊂ Z ⊂ Rµ, so
Yj ∩Rµ is open in Yj . We observe that Lµ ∈ Ym, so Yj ∩Rµ is non-empty if j ≥ m. Therefore
for all j ∈ Jm,nK, the general point of Yj belongs to Rµ. Since both Ym ∩ Tµ and Ym ∩Rµ are
open dense in Ym, we have

Ym = Ym ∩ Tµ ∩Rµ ⊂ Z ∩ Tµ ∩Rµ = Zt.

This implies that Ym = Zt, because both Ym and Zt are Mirković–Vilonen cycles of weight
(0, µ), and we deduce that Yj ∩ Tµ ∩Rµ = Zt for all j ∈ Jm,nK. In the notation of Propo-
sition 4.4, we can then write Ξ(Yj) = (Zt, Y

′
j ), where Y ′j = Yj ∩ Sµ ∩Rµ is in Zµ,νj . Plainly

then, (Y0, . . . , Ym) ∈ Ci,Zt and (z−µY ′m, . . . , z
−µY ′n) ∈ Cj,z−µZs . We can thus define a map

Cij,Z → Ci,Zt × Cj,z−µZs , which is patently bijective.

From Lemma 4.5, we deduce that for all j ∈ Jm+ 1, nK,

i(Yj−1, Dνj · Yj) = i(Y ′j−1, Dνj · Y ′j ) = i(z−µY ′j−1, Dνj−µ · z−µY ′j ).

A straightforward calculation then shows that 〈eij, bZ〉 = 〈ei, bZt〉〈ej, bz−µZs〉. The truthfulness
of this equality for all words i and j of weights −µ and −ν +µ establishes that the component
of weight (µ, ν − µ) of ∆(bZ) is equal to bZt ⊗ bz−µZs . �

The group G∨(K) and its subgroup T∨(C) act on the affine Grassmannian Gr. We define the
moment polytope of a closed irreducible T∨(C)-invariant subvariety X of Gr as the convex hull
in P ⊗Z R of the set {µ ∈ P | Lµ ∈ X}. We refer to [1], section 6 for an explanation of the
terminology ‘moment polytope’. The moment polytope of a closed irreducible T∨(C)-invariant
subvariety is always a GGMS polytope (see loc. cit.; see also Lemma 2.3 in [14]).

Proposition 4.7 The moment polytope of a Mirković–Vilonen cycle Z is equal to Pol(bZ).

Proof. Let ν be the weight of bZ , so that Z ∈ Z0,ν . Let us pick µ ∈ L(bZ). The component of
weight (µ, ν − µ) of ∆(bZ) is nonzero, so there exist words i and j of weights −µ and −ν + µ,
respectively, such that 〈eij, bZ〉 6= 0. Therefore Cij,Z 6= ∅, so there exists a Mirković–Vilonen
cycle Z ′ ∈ Z0,µ which is contained in Z. Then Lµ ∈ Z and µ belongs to the moment polytope
of Z. We conclude that L(bZ), and therefore its convex hull Pol(bZ), is contained in the
moment polytope of Z.

To prove the reverse inclusion, we choose a vertex µ of the moment polytope of Z. Let θ be
a regular element in Q∗R such that −θ lies in the normal cone at µ of this polytope. Adopting
the notation of section 4.2, we claim that the general point of Z belongs to the semi-infinite
orbit Rµ.

In fact, denote by λ the weight such that Z ∩ Rλ is open dense in Z. By Lemma 4.6, as Lµ
belongs to Z, the difference λ − µ is a nonnegative linear combination of roots α such that
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θ(α) < 0. It follows that θ(λ − µ) ≤ 0, with equality only if λ = µ. On the other hand, λ
belongs to the moment polytope of Z, and our choice of θ implies that θ(λ− µ) ≥ 0. We then
conclude that λ = µ, as announced.

Returning to the main proof, we deduce from Lemma 4.6 that the component of weight (µ, ν−µ)
of ∆(bZ) is equal to bZt ⊗ bz−µZs with (Zt, Zs) ∈ Z0,µ ×Zµ,ν . This is not zero, so µ ∈ L(bZ).
We conclude that all the vertices of the moment polytope of Z belong to Pol(bZ). �

Theorem 4.8 The Mirković–Vilonen basis of O is polite.

Proof. By construction, the Mirković–Vilonen basis satisfies the condition (i) in the definition
of polite bases. The condition (ii) follows from Proposition 5.5 in [6].

We now show that the Mirković–Vilonen basis satisfies condition (iii). Let θ ∈ Q∗R, let (α, γ) ∈
Γ2
θ, and let f be a homogenous element in θF ′αO of degree γ. Let us expand f on the Mirković–

Vilonen basis and write f =
∑`

i=1 cibZi , where each scalar ci is nonzero and where Zi is in
Z0,νi for a certain weight νi. We adopt the notation of section 4.2 with Φθ replaced by ′Φθ. We
denote by µi the weight such that the general point of Zi belongs to the semi-infinite orbit Rµi
and we cut Zi at Lµi , producing cycles (Zi)t and (Zi)s in Z0,µi and Zµi,νi , respectively.

By the proof of Proposition 4.7, any element η ∈ L(bZi) verifies Lη ∈ Zi. It then follows from
Lemma 4.6 that µi−η is a nonnegative linear combination of roots α such that either θ(α) < 0,
or θ(α) = 0 and htα > 0. Therefore Jθ(η) ≤′ Jθ(µi), with equality only if η = µi. We conclude
that Jθ(µi) is the largest element of Lθ(bZi) with respect to the order ≤′.

Let β be the largest element among the degrees Jθ(µi) with respect to the total order ≤′ and
let I be the set of all indices i such that Jθ(µi) = β. Then the homogeneous component of
degree (β, γ − β) of ∆(f) is

∑
i∈I ci b(Zi)t ⊗ bz−µi (Zi)s . Since the pairs ((Zi)t, (Zi)s) are all

different, this sum cannot be zero, so β ∈ L(f) and therefore β ≤′ α. It follows that for each
i ∈ J1, `K, the set Lθ(bZi) is contained in α + Π′ and the function bZi belongs to θF ′αO. We
conclude that θF ′αO is spanned by its intersection with the Mirković–Vilonen basis. The same
arguments imply the compatibility of the Mirković–Vilonen basis with the isomorphism ∆

′.

Condition (iv) in the definition of polite bases can be checked similarly, replacing instead Φθ

by ′′Φθ in section 4.2. �

Example 4.9. Let W be the Weyl group of G, endowed with the Bruhat order. Let λ be a
dominant weight and let w be an element inW . The costandard module ∇(λ) contains a vector
vwλ of weight wλ, unique up to multiplication by a scalar. Let ∇(λ)w be the N -submodule
of ∇(λ) generated by vwλ and let fw,λ be the image of vwλ by the map Ψλ : ∇(λ) → O. It
is well-known that fw,λ belongs to all the perfect bases of O (provided that vwλ is suitably
normalized), therefore to all the polite bases. In particular, Pol(fw,λ) is a Mirković–Vilonen
polytope. Now, since Ψλ is an embedding of N -modules, the polytope λ + Pol(fw,λ) is the
convex hull of the set of weights of ∇(λ)w. On the other hand, it follows from the Demazure
character formula that this polytope is the convex hull of {xλ | x ∈W, x ≤ w}. We recover in
this way a result of Naito and Sagaki ([23], Theorem 4.1.5 and Remark 4.1.6).
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