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Abstract. Let g be a simple finite-dimensional complex Lie algebra and let G

be the corresponding simply-connected algebraic group. A theorem of Kostant

states that the universal enveloping algebra of g is a free module over its center.

A theorem of Richardson states that the algebra of regular functions on G is a

free module over the subalgebra of regular class functions. Joseph and Letzter

extended Kostant’s theorem to the case of the quantized enveloping algebra of g.

Using the theory of crystal bases as the main tool, we prove a quantum analogue

of Richardson’s theorem. From it, we recover Joseph and Letzter’s result by a

kind of “quantum duality principle”.

1. Introduction

Let g be a simple finite-dimensional complex Lie algebra. The univer-
sal enveloping algebra U(g) is a g-module for the adjoint action, and this
module, being the sum of its finite-dimensional submodules, is completely
reducible. Let Z be the subalgebra of invariant elements in U(g), in other
words Z is the center of U(g). Kostant [Ko] proved the existence of a
g-submodule K of U(g) such that the multiplication in U(g) affords an iso-
morphism of g-modules from Z ⊗C K onto U(g).

The algebra U(g) has a q-analogue, usually called the quantized envelop-
ing algebra of g and denoted by Uq(g). (More precisely, we will choose the
“simply-connected variant” of it, as explained below.) Being a Hopf algebra
over the field C(q) of rational functions, Uq(g) is a left module over itself for
the adjoint action. Joseph and Letzter defined F(Uq(g)) to be the sum of
the finite-dimensional submodules of Uq(g) and studied its properties (see
[JL] and [Jo]). They observed that F(Uq(g)) is a subalgebra of Uq(g) and a
completely reducible Uq(g)-module. Let Zq be the subspace of invariants in
F(Uq(g)), i.e. the center of Uq(g). The following statement is an important
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result of [JL].

Theorem 1. There exists a Uq(g)-submodule Kq of F(Uq(g)) such that

• the multiplication in the algebra Uq(g) affords an isomorphism of Uq(g)-
modules from Zq ⊗C(q) Kq onto F(Uq(g));
• any simple finite-dimensional Uq(g)-module has in Kq a multiplicity equal

to the dimension of its zero-weight subspace.

On the other hand, consider the simply-connected algebraic group G
corresponding to g and denote its function algebra by C[G]. Acting on
itself by conjugation, G acts also on C[G]. Let C[G]G be the subalgebra
of invariant elements in C[G], i.e. the subalgebra of regular class functions.
Richardson [Ri] proved the existence of a G-submodule H of C[G] such
that the multiplication in C[G] affords an isomorphism of G-modules from
C[G]G ⊗C H onto C[G].

Richardson’s theorem has a q-analogue. Indeed, finite-dimensional
g-modules may be deformed into Uq(g)-modules, and the matrix coefficients
of the Uq(g)-modules obtained in this manner span a subalgebra Cq[G] in
the Hopf dual algebra of Uq(g). This algebra Cq[G] is a Uq(g)-module for

the coadjoint action; let Cq[G]
G

be its subalgebra of invariants.

Theorem 2. There exists a Uq(g)-submodule Hq of Cq[G] such that

• the multiplication in the algebra Cq[G] affords an isomorphism of Uq(g)-

modules from Cq[G]
G
⊗C(q) Hq onto Cq[G];

• any simple finite-dimensional Uq(g)-module has in Hq a multiplicity equal
to the dimension of its zero-weight subspace.

The quantum situation seems simpler than the classical one in two re-
spects. On the one hand, whereas there is no general relation between
Kostant’s and Richardson’s results, Theorems 1 and 2 are equivalent state-
ments. This fact follows from the existence, first noticed by Caldero [Ca1],
of a canonical isomorphism between the Uq(g)-modules Cq[G] and F(Uq(g))
which preserves partially the multiplication (see Theorem 3). On the other
hand, Kostant’s and Richardson’s proofs rely on a geometric analysis of the
G-varieties g and G, while the proof of Theorem 1 by Joseph and Letzter
uses only algebra.

In this note, we present another proof of Joseph and Letzter’s theorem.
We actually prove Theorem 2, because things seem more natural on this side.
Our approach is based on Kashiwara’s theory of crystal bases. The algebra
Cq[G] has a natural crystal basis in which we define explicitly a suitable
Uq(g)-submodule Hq. The nice behaviour of crystal bases under tensor
product allows us to show that the properties stated in Theorem 2 hold
for this particular choice of Hq. By contrast, Joseph and Letzter allowed
more freedom in the choice of Kq, but they needed several auxiliary results
to conclude (namely Corollary 7.3.3, Lemma 7.3.4, and Proposition 7.3.7
in [Jo]), which in turn required separate and unrelated proofs.
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The plan of this paper is the following. In Sections 2.2 and 2.3, we
recall the definition of the quantized enveloping algebra Uq(g) and basic
facts concerning its representation theory. In Section 2.4, following an idea
which goes back to Reshetikhin and Semenov-Tian-Shansky [RS], we use
the universal R-matrix of Uq(g) to construct an isomorphism between Cq[G]
and F(Uq(g)), which leads to the equivalence between Theorems 1 and 2. In
Sections 2.5 and 2.6, we recall the definition and the fundamental properties
of crystal bases of finite-dimensional Uq(g)-modules. In Section 3.1, we
sketch our proof to Theorem 2. The final Sections 3.2–3.5 contain all the
details of the proof.

Thanks are due to P. Caldero, P. Littelmann, and M. Rosso for helpful
discussions or information. P. Caldero [Ca2] has indeed obtained results
related to the ones presented here at almost the same time. The numerous
suggestions made by the referees have greatly contributed to the accuracy
of the present text. Finally the author acknowledges the financial support
of the French Ministère de l’Education Nationale, de la Recherche et de la
Technologie.

2. Definitions and auxiliary facts

2.1. Basic conventions

By convention, all modules considered in this paper are left modules.
We fix a ground field k. (From Section 2.2 to the end of the paper, k will

be the field C(q) of rational functions.) The tensor products are taken over
k, except where otherwise stated. We denote the dual of a k-vector space V
by V ∗ = Homk(V, k).

For any Hopf algebra H over k, the comultiplication map, the augmen-
tation map, and the antipode will be denoted by

∆H : H → H ⊗k H, εH : H → k, and SH : H → H.

When the context makes clear what H is, and especially when H is the
quantized enveloping algebra Uq(g), we will abbreviate the notation in ∆,
ε, and S. We will also use the Sweedler notation, writing

∆H(x) =
∑

(x)

x(1) ⊗ x(2)

for any x ∈ H.
Let H be a Hopf algebra over k. For any H-modules M and N , the rule

x · (m ⊗ n) =
∑

(x)

(x(1) · m) ⊗ (x(2) · n)

where x ∈ H, m ∈ M , and n ∈ N , endows the tensor product M ⊗k N with
an H-module structure. For any H-module M , the dual space M∗ becomes
an H-module when endowed with the action

x · m∗ = (M → k, m 7→ 〈m∗, SH(x) · m〉) ,



4 aAP. BAUMANN

where x ∈ H and m∗ ∈ M∗. The subspace of invariants of an H-module M
is

MH = {m ∈ M | ∀x ∈ H, x · m = εH(x)m}.

The space H is a module over itself for the adjoint action, defined by the
formula

x · y =
∑

(x)

x(1)y SH(x(2))

where x, y ∈ H. The dual space H∗ is an H-module for the coadjoint action,
defined by

x · ϕ =
(
H → k, y 7→ ϕ(SH(x(1))yx(2))

)

where x ∈ H and ϕ ∈ H∗. It is also an associative algebra for the multipli-
cation

ϕψ =
(
H → k, y 7→

∑

(y)

ϕ(y(1)) ψ(y(2))
)
,

where ϕ,ψ ∈ H∗, with εH as unit.
Let M be an H-module. To any pair (m, m∗) ∈ M × M∗, we associate

the matrix coefficient

cM
m∗,m : (H → k, x 7→ 〈m∗, x · m〉) .

Endowing H∗ with the coadjoint action, the map

(
M∗ ⊗ M → H∗, m∗ ⊗ m 7→ cM

m∗,m

)

is a homomorphism of H-modules. The subspace spanned in H∗ by the ma-
trix coefficients of the finite-dimensional H-modules is called the restricted
dual of H; since the duals of the structure maps of H endow this space with
the structure of a Hopf algebra over k (see Section 6.0 of [Sw]), it is also
called the Hopf dual algebra of H.

2.2. The quantized enveloping algebra Uq(g)

The choice of a Cartan subalgebra in g yields a root system. Let P be the
weight lattice, let {αi | i ∈ I} be a set of simple roots, let (̟i)i∈I be the
corresponding family of fundamental weights, let Q+ =

∑
i∈I Z≥0 αi be the

positive cone, and let P++ =
∑

i∈I Z≥0 ̟i be the cone of dominant integral
weights. Up to normalization, there is a unique scalar product on P ⊗Z R

such that the Cartan matrix of g has aij = 2
(αi|αj)
(αi|αi)

for coefficients. We

may impose the additional requirement that (P |P ) ⊆ Z. We then define
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di = 1
2 (αi|αi) ∈ Z and α∨

i = αi/di. We finally denote the longest element
in the Weyl group by w0.

From now on, the ground field k is the field C(q) of rational functions.
For any natural integer n and any index i ∈ I, we set

[n]i =
qdin − q−din

qdi − q−di
and [n]i! =

n∏

r=1

[r]i.

The “simply-connected” variant of the quantized enveloping algebra of g is
the C(q)-algebra Uq(g) generated by elements (Kλ)λ∈P , (Ei)i∈I , and (Fi)i∈I ,

with the relations

Kλ Ei = q(λ|αi)Ei Kλ, Kλ Fi = q−(λ|αi)Fi Kλ,

Kλ Kµ = Kλ+µ, [Ei, Fj ] = δij

Kαi
− K−αi

qdi − q−di
,

∑

r,s≥0

r+s=1−〈α∨

i ,αj〉

[r + s]i!

[r]i![s]i!
Er

i Ej Es
i = 0 (when i 6= j),

∑

r,s≥0

r+s=1−〈α∨

i ,αj〉

[r + s]i!

[r]i![s]i!
F r

i Fj F s
i = 0 (when i 6= j).

This definition appeared in [JL] and in Section (0.3) of [DKP].
There are unique morphisms of algebras

∆ : Uq(g) → Uq(g) ⊗C(q) Uq(g) and ε : Uq(g) → C(q)

such that

∆(Kλ) = Kλ ⊗ Kλ, ε(Kλ) = 1,

∆(Ei) = Ei ⊗ 1 + Kαi
⊗ Ei, ε(Ei) = 0,

∆(Fi) = Fi ⊗ K−αi
+ 1 ⊗ Fi, ε(Fi) = 0.

Endowed with this coproduct ∆ and this augmentation ε, the space Uq(g)
becomes a Hopf algebra.

2.3. Uq(g)-modules

For any µ ∈ P , we define the µ-weight subspace of a Uq(g)-module M by

Mµ = {m ∈ M | ∀λ ∈ P, Kλ · m = q(λ|µ)m}.

A module M is said to be integrable if it is the sum of both its finite-
dimensional submodules and its weight subspaces. It is known that inte-
grable modules are completely reducible. In the sequel, we will deal only
with integrable Uq(g)-modules.
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Given a dominant weight λ ∈ P++, there is a unique up to isomorphism
simple integrable Uq(g)-module that has λ as highest weight: we denote
it by V (λ). Let C(λ) be the linear span of the matrix coefficients of the
module V (λ); by the results recalled in Section 2.1, the subspaces C(λ) are
submodules of the coadjoint Uq(g)-module (Uq(g))∗.

The subspace spanned in the dual of Uq(g) by the matrix coefficients of
the integrable Uq(g)-modules is

Cq[G] =
⊕

λ∈P++

C(λ). (1)

Being a submodule of (Uq(g))∗, this space Cq[G] is a Uq(g)-module for the
coadjoint action. It is also a Hopf subalgebra of the Hopf dual algebra of
Uq(g), since the category of finite-dimensional integrable Uq(g)-modules is
closed under tensor product and dualization. By Lemma 7.1.9 in [Jo], the
space Cq[G] separates the points of Uq(g), so the canonical duality between
Cq[G] and Uq(g) is non-degenerate.

We denote by Cq[G]
G

and Zq the subspaces of invariants in the Uq(g)-
modules Cq[G] and Uq(g), the latter being endowed with the adjoint action;
thus Zq is the center of Uq(g). As mentioned in Section 1, we let F(Uq(g))
denote the sum of the finite-dimensional submodules of the adjoint module
Uq(g). It is easily seen that the Uq(g)-module F(Uq(g)) is integrable and is a

subalgebra of Uq(g) which contains Zq. The next lemma shows that Cq[G]
G

is a subalgebra of Cq[G].

Lemma 1. For any invariant element ϕ ∈ Cq[G]
G
, the multiplication map

(Cq[G] → Cq[G], ψ 7→ ϕψ)

is Uq(g)-linear. The subspace Cq[G]
G

is a subalgebra of Cq[G].

Proof. For any ϕ ∈ Cq[G]
G

, ψ ∈ Cq[G], and x ∈ Uq(g), we have

x · (ϕψ) =

(
Uq(g) → C(q)

y 7→
∑

(x)〈ϕψ, S(x(1))yx(2)〉

)

=
(
y 7→

∑

(x),(y)

〈ϕ, S(x(2))y(1)x(3)〉 〈ψ, S(x(1))y(2)x(4)〉
)

=
(
y 7→

∑

(x),(y)

〈ϕ, y(1)〉 〈ψ, S(x(1))y(2)x(2)〉
)

= ϕ (x · ψ).

The second and fourth equalities come from the definition of the product in
Cq[G] and the third one comes from the Uq(g)-invariance of ϕ. This compu-
tation proves the first assertion. Being Uq(g)-linear, the left multiplication

by an invariant element ϕ sends the space of invariants Cq[G]
G

into itself,
which implies the second assertion.
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2.4. The R-matrix and the equivalence between Theorems 1 and 2

The R-matrix of Uq(g) is an element of Uq(g)⊗̂C(q)Uq(g) given by a certain
sum R12 =

∑
j aj ⊗ bj , where the elements aj (respectively, bj) belong to

the subalgebra generated by the Fi and the Kλ (respectively, by the Ei and
the Kλ). Although the sum is infinite, the special structure of R12 (see
Section 13 of [Dr1]) makes it define two maps

l+ :
(
Cq[G] → Uq(g), ϕ 7→ 〈idUq(g) ⊗ ϕ,R12〉

)
,

l− :
(
Cq[G] → Uq(g), ϕ 7→ 〈(ϕ ◦ SUq(g)) ⊗ idUq(g), R12〉

)
.

Note that this precise point requires the use of the simply-connected variant
of the quantized enveloping algebra.

Reshetikhin and Semenov-Tian-Shansky [RS] have used the maps l+ and
l− to define a third map

I :
(
Cq[G] → Uq(g), ϕ 7→

∑

(ϕ)

l+(ϕ(1)) S(l−(ϕ(2)))
)
.

With the notation R21 =
∑

j bj ⊗ aj , one may also write

I(ϕ) = 〈ϕ ⊗ idUq(g), R21R12〉.

The following result is more or less well-known (see Proposition 3.3 in [Dr2],
Proposition 2.1 in [Ma], [Ca1], and Proposition 7.1.23 in [Jo]).

Theorem 3. (i) The map I affords an isomorphism of Uq(g)-modules from
Cq[G] onto F(Uq(g)).

(ii) For any ϕ ∈ Cq[G]
G

and ψ ∈ Cq[G], one has I(ϕψ) = I(ϕ)I(ψ).

(iii) The map I induces an isomorphism of algebras from Cq[G]
G

onto Zq.

Proof. The element R21R12 in Uq(g)⊗̂C(q)Uq(g) commutes with all the ele-
ments of the form ∆(y), where y ∈ Uq(g). Consequently for any ϕ,ψ ∈ Cq[G]
and x ∈ Uq(g)

〈ψ, I(x · ϕ)〉= 〈(x · ϕ) ⊗ ψ,R21R12〉

=
∑

(x)

〈ϕ ⊗ ψ, (S(x(1)) ⊗ 1)(R21R12)(x(2) ⊗ 1)〉

=
∑

(x)

〈ϕ ⊗ ψ, (S(x(1)) ⊗ 1)(R21R12)∆(x(2))(1 ⊗ S(x(3)))〉

=
∑

(x)

〈ϕ ⊗ ψ, (S(x(1)) ⊗ 1)∆(x(2))(R21R12)(1 ⊗ S(x(3)))〉

=
∑

(x)

〈ϕ ⊗ ψ, (1 ⊗ x(1))(R21R12)(1 ⊗ S(x(2)))〉

=
∑

(x)

〈ψ, x(1)I(ϕ)S(x(2))〉

=〈ψ, x · I(ϕ)〉.
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Thus I is Uq(g)-linear. (Despite the infinite sum in the R-matrix, no trouble
arises here, because the computation can indeed be done using only the well-
defined maps l+ and l−; see the proof of Proposition 3 in [BS].)

The definition of an R-matrix implies that l± are morphisms of coalgebras
and antihomomorphisms of algebras (see Section 10 of [Dr1]). Then l± =
SUq(g) ◦ l± ◦ SCq[G], and thus for any ϕ,ψ ∈ Cq[G] we have

I
( ∑

(ψ)

(
[(l+ ◦ SCq[G])(ψ(1))] · ϕ

)
ψ(2)

)

=
∑

(ψ)

∑

([(l+◦SCq [G])(ψ(1))]·ϕ)

l+
(
([(l+ ◦ SCq[G])(ψ(1))] · ϕ)(1)ψ(2)

)

× (SUq(g) ◦ l−)
(
([(l+ ◦ SCq[G])(ψ(1))] · ϕ)(2)ψ(3)

)

=
∑

(ψ)

l+(ψ(2)) I
(
[(l+ ◦ SCq[G])(ψ(1))] · ϕ

)
(SUq(g) ◦ l−)(ψ(3))

=
∑

(ψ)

l+(ψ(2))
(
[(l+ ◦ SCq[G])(ψ(1))] · I(ϕ)

)
(SUq(g) ◦ l−)(ψ(3))

=
∑

(ψ)

l+(ψ(3)) (l+ ◦ SCq [G])(ψ(2)) I(ϕ)

× (SUq(g) ◦ l+ ◦ SCq[G])(ψ(1)) (SUq(g) ◦ l−)(ψ(4))

=
∑

(ψ)

l+
(
SCq[G](ψ(2))ψ(3)

)
I(ϕ) l+(ψ(1)) (SUq(g) ◦ l−)(ψ(4))

= I(ϕ)I(ψ). (2)

We also have

I(εU ) = 1. (3)

Finally the known relation (SUq(g)⊗SUq(g))(R12) = R12 (see Proposition 3.1

in [Dr2]) implies that for any ϕ,ψ ∈ Cq[G],

〈I(ϕ), ψ〉 = 〈ϕ ⊗ ψ,R21R12〉

= 〈ϕ ⊗ ψ, (SUq(g) ⊗ SUq(g))(R12R21)〉

= 〈SCq[G](ψ) ⊗ SCq[G](ϕ), R21R12〉

= 〈I(SCq[G](ψ)), SCq[G](ϕ)〉. (4)

Let λ ∈ P++ and choose a lowest weight vector mlw in V (λ) and a highest
weight vector m∗

hw in V (λ)∗ such that 〈m∗
hw,mlw〉 = 1. The description of

the R-matrix given in Section 13 of [Dr1] implies that

l+(c
V (λ)
m∗

hw,m) = 〈m∗
hw,m〉Kw0λ and l−(c

V (λ)
m∗,mlw

) = 〈m∗,mlw〉K−w0λ,
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for any m ∈ M and m∗ ∈ M∗. Taking a basis (mk) of V (λ) and the dual
basis (m∗

k) of V (λ)∗, we therefore get

I
(
c
V (λ)
m∗

hw,mlw

)
=

∑

k

l+
(
c
V (λ)
m∗

hw,m
k

)
(S ◦ l−)

(
c
V (λ)
m∗

k
,mlw

)

=
∑

k

〈m∗
hw,mk〉〈m

∗
k,mlw〉K2w0λ

= K2w0λ,

and so K2w0λ belongs to the image of I.
Formulas (2) and (3) show that the image of I is a subalgebra of Uq(g).

The Uq(g)-linearity of I shows that (im I) is stable under the adjoint action
of Uq(g). From the relations

Ei · K−2̟i
= (q(αi|αi) − 1) K−2̟i

Ei,

Fi · K−2̟i
= (1 − q(αi|αi)) Fi Kαi−2̟i

,

it follows that (im I) is a subalgebra of Uq(g) which contains all the elements
K−2λ, K−2̟i

Ei, and Fi Kαi−2̟i
, where λ ∈ P++ and i ∈ I. This is enough

to ensure that the Uq(g)-modules V (µ), where µ ∈ P++, are pairwise non-
isomorphic absolutely simple (im I)-modules. In other words, the duality
between Cq[G] ⊆ (Uq(g))∗ and (im I) ⊆ Uq(g) is non-degenerate. This non-
degeneracy, the bijectivity of SCq[G], and Formula (4) prove all together the
injectivity of I.

Since Cq[G] is the sum of its finite-dimensional Uq(g)-submodules, the
inclusion (im I) ⊆ F(Uq(g)) holds. The proof of the equality (im I) =
F(Uq(g)) requires the fact, due to Joseph and Letzter, that the Uq(g)-module
F(Uq(g)) is generated by the family (K−2λ)λ∈P++

(see [Ca1] for a simple
proof of this). The assertions of Statement (i) are at last proved.

Statement (ii) is a particular case of Formula (2) above. Finally State-
ment (iii) follows from Statements (i) and (ii) and from Formula (3).

According to Reshetikhin and Semenov-Tian-Shansky, the map I is a
quantum analogue of the Killing isomorphism from S(g∗) onto S(g). One
can understand this by looking at the expansion of the R-matrix in powers
of (q−1) (see Theorem 3.4.2 in [Ro] for instance): letting C ∈ g⊗C g be the
Casimir element and identifying in the limit q → 1 the subspace g ⊆ U(g)
with a subspace of Uq(g), one has

R21R12 = 1 ⊗ 1 + (q − 1) C + · · · .

2.5. Crystals

Kashiwara’s theory of crystals allows one to reduce certain problems in
representation theory to simple combinatorics. For the convenience of the
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reader, we recall a few facts about this theory. Since our purposes only re-
quire the most basic part of the theory, we slightly simplified the terminology
presented in the survey paper [Ka3]: for us, any crystal is semi-normal and
any morphism is strict.

The set I is fixed as in Section 2.2. A crystal is a set B with maps

ẽi, f̃i : B ⊔ {0} → B ⊔ {0},

where i ∈ I, such that:

• for any i ∈ I, one has ẽi(0) = f̃i(0) = 0;
• for any i ∈ I and b ∈ B, there is an integer n > 0 such that ẽn

i (b) =
f̃n

i (b) = 0;
• for any i ∈ I and b, b′ ∈ B, the equalities b′ = f̃i(b) and b = ẽi(b

′) are
equivalent.

Given two crystals B1 and B2, a morphism from B1 to B2 is a map
g : B1 ⊔ {0} → B2 ⊔ {0} such that g(0) = 0 and which commutes with the

action of the operators ẽi and f̃i. Then the crystals and their morphisms
form a category.

For an element b of a crystal B, one sets

εi(b) = max{n ≥ 0 | ẽn
i (b) 6= 0},

ϕi(b) = max{n ≥ 0 | f̃n
i (b) 6= 0}.

If g : B1 → B2 is a morphism of crystals, then given b ∈ B1 such that
g(b) 6= 0, one has εi(g(b)) = εi(b) and ϕi(g(b)) = ϕi(b) for any i ∈ I.

Given a crystal B, we define a map wt : B → P by letting the weight of
an element b ∈ B be

wt(b) =
∑

i∈I

(ϕi(b) − εi(b))̟i.

If g : B1 → B2 is a morphism of crystals, then for any b ∈ B1 such that
g(b) 6= 0, one has wt(g(b)) = wt(b).

Given two crystals B1 and B2, one defines their direct sum B1 ⊕B2 and
their tensor product B1 ⊗ B2 by the following rules:

• the underlying set of B1 ⊕ B2 is B1 ⊔ B2, and one glues the maps
ẽi, f̃i : B1 → B1 ⊔ {0} and ẽi, f̃i : B2 → B2 ⊔ {0} to form the maps
ẽi, f̃i : B1 ⊔ B2 → B1 ⊔ B2 ⊔ {0};
• the underlying set of B1 ⊗ B2 is B1 × B2, but one writes b1 ⊗ b2 instead

of (b1, b2);
• the actions of ẽi and f̃i on B1 ⊗ B2 are given by the rules

ẽi(b1 ⊗ b2) =

{
ẽi(b1) ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽi(b2) if ϕi(b1) < εi(b2),
(5)

f̃i(b1 ⊗ b2) =

{
f̃i(b1) ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃i(b2) if ϕi(b1) ≤ εi(b2),
(6)

where one agrees that b1 ⊗ 0 = 0 ⊗ b2 = 0.



aASEPARATION OF VARIABLES THEOREM 11

These operations are well-defined (i.e., afford crystals) and are associative
(see Lemma 2.2.4 in [KK]). One also has wt(b1 ⊗ b2) = wt(b1) + wt(b2)
(Formula (2.2.19) in [KK]).

A crystal B may be regarded as a graph B with oriented and coloured by
I edges. The vertices of B are the elements of B, and one draws an arrow
of colour i from a vertex b to a vertex b′ if and only if b′ = f̃i(b). Thus for
instance, the graph defined by the direct sum of two crystals B1 and B2 is
the disjoint union of the graphs defined by B1 and B2. With this graphical
interpretation, one can carry to crystals the notions of connectedness and
connected component.

Finally, given a crystal B, we say that an element b ∈ B is a highest
(respectively, lowest) weight vector if ẽi(b) = 0 (respectively, f̃i(b) = 0) for
each i ∈ I.

2.6. Crystal bases

Let us go back to the representation theory of Uq(g). Kashiwara defined

operators ẽi and f̃i that act on every integrable Uq(g)-module. Their defini-
tion is as follows. Given an integrable module M and an index i, any vector
m of weight λ can be written in a unique way as a finite sum

m =
∑

n≥0

Fn
i · mn,

where λ ∈ P and mn ∈ Mλ+nαi
is such that Ei · mn = 0. One defines then

ẽi(m) =
∑

n≥1

[n]i q−(αi|λ) Fn−1
i · mn,

f̃i(m) =
∑

n≥0

1

[n + 1]i
q(αi|λ−αi) Fn+1

i · mn.

(These normalizations are necessary to ensure the compatibility between
Kashiwara’s notations and ours.)

Let A ⊆ C(q) be the subring of rational functions without pole at q = 0.
A crystal basis of an integrable finite-dimensional Uq(g)-module M is a pair
(L,B) such that:

• L is an A-lattice in M and B is a basis of the C-vector space L/qL;
• for any weight µ ∈ P , the subspace Lµ = L ∩ Mµ is an A-lattice in Mµ

and Bµ = B ∩ (Lµ/qLµ) is a basis of the C-vector space Lµ/qLµ;

• Kashiwara’s operators ẽi and f̃i leave L stable and induce on L/qL op-
erators (still denoted by ẽi and f̃i) which leave B ⊔ {0} stable;

• for any i ∈ I and b, b′ ∈ B, the equalities b′ = f̃i(b) and b = ẽi(b
′) are

equivalent.

A crystal basis (L,B) of an integrable Uq(g)-module affords the crystal
B. Moreover, Formula (2.4.2) in [Ka1] shows that the two notions of weight
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are compatible: if b ∈ Bµ, then wt(b) = µ. Let M1 and M2 be two Uq(g)-
modules, with given crystal bases (L1, B1) and (L2, B2). A Uq(g)-linear map
f : M1 → M2 will be called compatible with the crystal bases if f sends L1

into L2 and induces a map f̄ : B1 ⊔ {0} → B2 ⊔ {0} after reduction modulo
q. Then f̄ is a morphism of crystals. A crystal arising from a crystal basis
of an integrable Uq(g)-module will be called normal, as in Section 7 of [Ka3].

Let M1 and M2 be two modules, given with crystal bases (L1, B1) and
(L2, B2). Denoting by B1 ⊕ B2 the set of vectors in L1/qL1 ⊕ L2/qL2 ≃
(L1 ⊕ L2)/q(L1 ⊕ L2) of the form b1 ⊕ 0 or 0 ⊕ b2, where b1 ∈ B1 and
b2 ∈ B2, the pair (L1⊕L2, B1⊕B2) is a crystal basis of the module M1⊕M2.
Denoting by B1 ⊗B2 the set of elements b1 ⊗ b2 ∈ (L1/qL1)⊗C (L2/qL2) ≃
(L1 ⊗A L2)/q(L1 ⊗A L2), where (b1, b2) runs over B1 × B2, Theorem 1
in [Ka1] asserts that (L1 ⊗A L2, B1 ⊗ B2) is a crystal basis of the module
M1⊗C(q) M2. The crystals associated to these crystal bases are B1⊕B2 and
B1 ⊗B2, respectively, as defined in Section 2.5. These constructions extend
to a finite number of terms or factors.

Given a highest weight vector uλ in the module V (λ), there is a unique
crystal basis (L(λ), B(λ)) of V (λ) such that L(λ)λ = Auλ and B(λ)λ =
{uλ mod qL(λ)} (see Theorems 2 and 3 in [Ka1]). We denote the residual
class of uλ in B(λ)λ by ūλ and take a representative dλ ∈ L(λ)w0λ of the
unique element d̄λ in B(λ)w0λ. The construction given in [Ka1] shows that
the crystals B(λ) are connected.

Theorem 3 in [Ka1] states that whenever two crystal bases (L1, B1) and
(L2, B2) of two isomorphic integrable Uq(g)-modules M1 and M2 are given,
there is an isomorphism f from M1 onto M2 which carries (L1, B1) onto
(L2, B2). The following proposition is a corollary of this uniqueness result.

Proposition 1. (i) Let M be an integrable Uq(g)-module and denote by
[M : V (λ)] the multiplicity of the simple module V (λ) in M . For any crystal
basis (L,B) of M , there is an isomorphism from

⊕
λ V (λ)⊕[M :V (λ)] onto M

that carries the crystal basis
⊕

λ(L(λ), B(λ))⊕[M :V (λ)] onto (L,B).
(ii) Let M be an integrable Uq(g)-module, let (L,B) be a crystal basis of M ,
and let N be an isotypical component of M . If one sets LN = L ∩ N and
BN = B ∩ (LN/qLN ), then (LN , BN ) is a crystal basis of N .
(iii) Let µ, ν ∈ P++. The Uq(g)-linear map pµ,ν from V (µ) ⊗C(q) V (ν) to
V (µ + ν) that sends uµ ⊗ uν to uµ+ν is compatible with the crystal bases
(L(µ) ⊗A L(ν), B(µ) ⊗ B(ν)) and (L(µ + ν), B(µ + ν)).
(iv) A crystal B is normal if and only if each of its connected components is
isomorphic to a crystal B(λ), for some λ ∈ P++. If such a crystal B comes
from a module M , then the number of connected components of B that are
isomorphic to a given B(λ) is equal to the multiplicity of V (λ) in M .

To clarify the discussion in the next sections, we collect in a proposi-
tion several known results. For an element b of a crystal, we put ε(b) =∑

i εi(b)̟i.
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Proposition 2. (i) The crystal B(λ) has exactly one highest weight vector
and one lowest weight vector, namely ūλ and d̄λ, respectively.
(ii) Let B1 and B2 be normal crystals, and let b1 ∈ B1 and b2 ∈ B2. If
b1 ⊗ b2 is a highest (respectively, lowest) weight vector in B1 ⊗ B2, then b1

is a highest weight vector (respectively, b2 is a lowest weight vector).
(iii) Let b ∈ B(λ). In the tensor product B(µ) ⊗ B(λ), the element ūµ ⊗ b
is a highest weight vector if and only if µ − ε(b) is a dominant weight. If
this condition holds, then the connected component of B(µ)⊗B(λ) to which
ūµ ⊗ b belongs is isomorphic to B(µ + wt(b)).
(iv) In the tensor product B(λ)⊗B(µ), the elements ūλ⊗ūµ and d̄λ⊗d̄µ are
the highest and the lowest weight vectors of the same connected component.
(v) In the tensor product B(λ)⊗B(µ), there is a connected component iso-
morphic to B(0) if and only if λ = −w0µ. If this condition holds, then that
component is reduced to the element ūλ ⊗ d̄µ.
(vi) Given two normal crystals B1 and B2, with B1 connected, a morphism
g from B1 to B2 is either the zero map or an isomorphism onto a connected
component of B2.

Proof. The construction of the crystal basis of V (λ) shows that any ele-
ment b in B(λ) can be written as f̃i1 · · · f̃in

(ūλ) for some finite sequence
(i1, . . . , in) ∈ I. If b 6= ūλ, then n ≥ 1 and so ẽi1(b) 6= 0, which shows that
b is not a highest weight vector. Thus ūλ is the only highest weight vector
in B(λ). Consider the crystal B(λ)∨ obtained from B(λ) by exchanging

the action of the operators ẽi with that of the corresponding operators f̃i.
The argument given in Section 7.4 of [Ka3] proves the existence of an iso-
morphism from the crystal B(−w0λ) onto B(λ)∨ which sends ū−w0λ to d̄λ.
Therefore d̄λ is the only lowest weight vector in B(λ). Statement (i) is
proved.

Statement (ii) and the first assertion in Statement (iii) are direct con-
sequences of the rules (5) and (6) that define the maps ẽi and f̃i on a
tensor product of two crystals. Now adopt the notation of Statement (iii),
and suppose that ūµ ⊗ b is a highest weight vector. The connected com-
ponent of B(µ) ⊗ B(λ) to which ūµ ⊗ b belongs is isomorphic to a crystal
B(ν), for some ν ∈ P++. The isomorphism sends ūµ ⊗ b to ūν , and so
ν = wt(ūµ ⊗ b) = µ + wt(b). This proves the second assertion in State-
ment (iii).

The simple module V (λ+µ) has multiplicity one in V (λ)⊗V (µ) therefore
there is one connected component isomorphic to B(λ + µ) in B(λ) ⊗ B(µ),
by Proposition 1 (iv). Since ūλ ⊗ ūµ and d̄λ ⊗ d̄µ are the only elements of
B(λ)⊗B(µ) with weights λ + µ and w0(λ + µ), respectively, they belong to
this component. Statement (iv) follows.

The trivial Uq(g)-module V (0) arises as a submodule of V (λ)⊗V (µ) if and
only if λ = −w0µ. Under this assumption, there is one connected component
isomorphic to B(0) in B(λ) ⊗ B(µ). This component is reduced to a single
element, which is a highest and a lowest weight vector. By Statement (ii),
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this element is ūλ ⊗ d̄µ. This proves Statement (v).
Let finally g be a non-zero morphism from a connected normal crystal

B1 to a normal crystal B2. The crystal g(B1) \ {0} is connected, hence
is contained in a connected component of B2. On the other hand, the
operators ẽi and f̃i send g(B1) ∪ {0} into itself, so g(B1) contains every
connected component of B2 that it meets. We conclude that g(B1) \ {0} is
a connected component B′ of B2. By Statement (i), the crystal B′ has a
unique highest weight vector, which is the image through g of the highest
weight vector of B1. In particular these highest weight vectors have the same
weight, which implies that B1 and B′ are isomorphic to the same B(λ), by
Proposition 1 (iv). Therefore B1 and B′ have the same finite cardinality,
and g is a bijection from B1 onto B′. Statement (vi) is proved.

3. Proof of Theorem 2

3.1. Sketch of the proof

Let us explain the construction of Hq. We want the multiplication to define

an isomorphism of Uq(g)-modules from Cq[G]
G
⊗Hq onto Cq[G]. Therefore

we must investigate the structure of the Uq(g)-module Cq[G].
The multiplicities of the simple modules inside the tensor product V (µ)⊗

V (λ) are given by the generalized Littlewood-Richardson rule (Proposi-
tion 4.2 in [Ka3] or Theorem 6.4.16 in [Jo]; see also [Li]):

V (µ) ⊗ V (λ) ≃
⊕

b∈B(λ)
µ−ε(b)∈P++

V (µ + wt(b)). (7)

Since the module V (λ) is isomorphic to its bidual V (λ)∗∗, we have

HomUq(g)(V (λ)∗, C(µ)) ≃ (V (µ)∗ ⊗ V (µ) ⊗ V (λ))
Uq(g)

≃
⊕

b∈B(λ)
µ−ε(b)∈P++

(V (µ)∗ ⊗ V (µ + wt(b)))
Uq(g)

,

and thus there is a basis (rb(µ)) of HomUq(g)(V (λ)∗, C(µ)) indexed by the
set {b ∈ B(λ)0 | µ − ε(b) ∈ P++}. We denote the image of rb(µ) by Fb(µ).
Then the module C(µ) is the direct sum of the submodules Fb(µ), for those
b ∈

⊔
λ∈P++

B(λ)0 such that µ − ε(b) ∈ P++.

In each subspace C(ν), there is a unique (up to a scalar) Uq(g)-invariant
vector, the so-called quantum trace in the module V (λ), which we denote
by Trq

ν . (We do not need more information about this element; for com-
pleteness however, we recall that this quantum trace is the linear form on
Uq(g) whose value on an element x is the trace of the operator defined by
the element xK2ρ ∈ Uq(g) on the module V (ν), where ρ =

∑
i∈I ̟i, see

for instance Lemma 7.1.18 in [Jo].) If for any b ∈ B(λ)0 and any ν ∈ P++,
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the multiplication by Trq
ν sent the subspace Fb(ε(b)) of C(ε(b)) onto the

subspace Fb(ε(b) + ν) of C(ε(b) + ν), then, letting Hq be the sum of the
spaces Fb(ε(b)), where b runs over

⊔
λ∈P++

B(λ)0, we would have

Cq[G] =
⊕

µ∈P++

(
⊕

b∈
F

λ B(λ)0

such that µ−ε(b)∈P++

Fb(µ)

)

=
⊕

b∈
F

λ B(λ)0

⊕

ν∈P++

Fb(ε(b) + ν)

=

( ⊕

ν∈P++

Trq
ν

)( ⊕

b∈
F

λ B(λ)0

Fb(ε(b))

)

= Cq[G]
G

Hq,

as required.
However this does not work so easily. First, Equation (7) gives only the

multiplicities in the tensor product, and the proper definition of the sub-
modules Fb(µ) requires some additional work; this problem will be handled
in Sections 3.3 and 3.4. Second, the multiplication by Trq

ν does not send
C(µ) into C(µ + ν). The trouble will be cured with the help of a filtration,
which we will define in Section 3.2. (A similar filtration was used in the
original proof of Theorem 1 by Joseph and Letzter.) Third, even the use of
this filtration does not ensure that the multiplication by Trq

ν sends Fb(ε(b))
onto Fb(ε(b)+ ν). Indeed this latter fact is true only at the level of crystals,
as will be shown in Section 3.4.

To sum up, the next sections give the precise definitions needed for a
complete proof.

3.2. A filtration on Cq[G]

We define an order relation on the semigroup P++ by saying that λ ≥ µ
whenever λ − µ ∈ Q+. By its definition (see Equation (1)), the coadjoint
Uq(g)-module Cq[G] is graded by the semigroup P++. It is well-known that
the corresponding filtration on Cq[G]:

Cq[G]
λ

=
⊕

µ≤λ

C(µ)

is a filtration of algebras. The associated graded algebra, denoted by
gr(Cq[G]), is, as a Uq(g)-module, canonically isomorphic to Cq[G].

For any µ ∈ P++, we chose a highest weight vector uµ in the module V (µ).
For any µ, ν ∈ P++, let us denote the Uq(g)-linear map from V (µ) ⊗ V (ν)
to V (µ + ν) that sends uµ ⊗ uν to uµ+ν by pµ,ν . Set

Eµ = V (−w0µ) ⊗ V (µ) for µ ∈ P++, and E =
⊕

µ∈P++

Eµ.
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The family of linear maps
(

Eµ ⊗ Eν → Eµ+ν

(m ⊗ n) ⊗ (p ⊗ q) 7→ p−w0ν,−w0µ(p ⊗ m) ⊗ pµ,ν(n ⊗ q)

)
(8)

endows E with the structure of an algebra (a priori non-associative and
without unit).

Now for each weight µ ∈ P++, there is an isomorphism of Uq(g)-modules

gµ : V (−w0µ) → V (µ)∗ such that 〈gµ(u−w0µ), dµ〉 = 1.

It gives rise to an isomorphism of Uq(g)-modules

hµ :
(
V (−w0µ) ⊗ V (µ) → C(µ), ℓ ⊗ m 7→ c

V (µ)
gµ(ℓ),m

)
.

Lemma 2. There exists a family of scalars (ζµ) ∈ (C(q)×) P++ such that the
map

⊕
µ∈P++

ζµhµ : E → gr(Cq[G]) is a Uq(g)-linear isomorphism of alge-
bras.

Proof. For µ, ν ∈ P++, we denote by iµ,ν the Uq(g)-linear map from V (µ+ν)
to V (µ) ⊗ V (ν) that sends dµ+ν to dµ ⊗ dν . We denote its dual map by
(iµ,ν)T : V (ν)∗ ⊗ V (µ)∗ → V (µ + ν)∗. The following identity can be easily
checked:

gµ+ν ◦ p−w0ν,−w0µ = (iµ,ν)T ◦ (gν ⊗ gµ).

Being a non-zero map of the absolutely simple Uq(g)-module V (µ + ν),
the map pµ,ν ◦ iµ,ν is a scalar automorphism τµ,ν idV (µ+ν). The equalities

pµ+ν,σ ◦ (pµ,ν ⊗ idV (σ)) = pµ,ν+σ ◦ (idV (µ) ⊗ pν,σ),

(iµ,ν ⊗ idV (σ)) ◦ iµ+ν,σ = (idV (µ) ⊗ iν,σ) ◦ iµ,ν+σ

lead to τµ+ν,στµ,ν = τµ,ν+στν,σ, for all µ, ν, σ ∈ P++. Therefore there exist
elements ζµ ∈ C(q)× such that ζµζν = τµ,νζµ+ν , for all µ and ν ∈ P++,
because P++ is a free abelian semigroup.

Now for any (m ⊗ n) ∈ Eµ and (p ⊗ q) ∈ Eν as in the definition of the
multiplication map (8), we compute:

hµ+ν ((m ⊗ n) (p ⊗ q)) = c
V (µ+ν)
(gµ+ν◦p−w0ν,−w0µ)(p⊗m),pµ,ν(n⊗q)

= c
V (µ+ν)

(iµ,ν)T ◦(gν⊗gµ)(p⊗m),pµ,ν(n⊗q)

= c
V (µ)⊗V (ν)
gν(p)⊗gµ(m),(iµ,ν◦pµ,ν)(n⊗q)

≡ τµ,ν c
V (µ)
gµ(m),n c

V (ν)
gν(p),q mod

⊕

σ<µ+ν

C(σ)

≡ τµ,ν hµ(m ⊗ n) hν(p ⊗ q) mod
⊕

σ<µ+ν

C(σ).
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A comparison with the relations τµ,ν = ζµζν/ζµ+ν completes the proof. The
ζµ are necessary to rectify our careless choice of the vectors dµ in Section 2.6.

The following statement, which clarifies somewhat the properties of the
multiplication map of E, is a direct consequence of Lemmas 1 and 2.

Lemma 3. The algebra E is associative and has a unit. For any invariant
element c in the Uq(g)-module E, the map (E → E, x 7→ cx) is Uq(g)-linear.

3.3. Indexation of the connected components of B(−w0µ) ⊗ B(µ)

Let us choose λ, µ ∈ P++ and b ∈ B(λ)0 such that µ − ε(b) ∈ P++. By
Proposition 2 (iii), the element ūµ ⊗ b is a highest weight vector of weight µ
in the crystal B(µ) ⊗ B(λ). The connected component to which it belongs
is isomorphic to B(µ) and contains a unique lowest weight vector, which is,
by Proposition 2 (ii), of the form tb(µ) ⊗ d̄λ, where tb(µ) ∈ B(µ)w0(µ−λ).
Then Proposition 2 (v) shows that in the crystal B(−w0µ) ⊗ B(µ) ⊗ B(λ),
the element ū−w0µ ⊗ tb(µ) ⊗ d̄λ spans its connected component, which is
isomorphic to B(0). Thus, again by Proposition 2 (v), the element ū−w0µ ⊗
tb(µ) is a highest weight vector of weight −w0λ in the crystal B(−w0µ) ⊗
B(µ). We denote the connected component to which it belongs by Wb(µ);
the crystal Wb(µ) is isomorphic to B(−w0λ).

Lemma 4. (i) Let µ ∈ P++. The assignment b 7→ Wb(µ) is a bijection
from the set {b ∈

⊔
λ∈P++

B(λ)0 | µ− ε(b) ∈ P++} onto the set of connected

components of the crystal B(−w0µ) ⊗ B(µ).
(ii) For any λ, µ, ν ∈ P++ and b ∈ B(λ)0 such that µ − ε(b) ∈ P++, the
morphism of crystals p̄ν,µ : B(ν) ⊗ B(µ) → B(µ + ν), induced by the map
pν,µ, sends d̄ν ⊗ tb(µ) to tb(µ + ν).

Proof. Using Proposition 2, one can easily see that all the steps used in the
definition of the map b 7→ Wb(µ) are reversible. Assertion (i) follows.

Let us turn to Assertion (ii). The elements ūµ ⊗ b and tb(µ) ⊗ d̄λ are
the highest and the lowest weight vectors of the same connected component
of the crystal B(µ) ⊗ B(λ). Therefore by Proposition 2 (iv), the elements
ūν ⊗ ūµ⊗ b and d̄ν ⊗ tb(µ)⊗ d̄λ are the highest and the lowest weight vectors
of the same connected component of the crystal B(ν) ⊗ B(µ) ⊗ B(λ). By
Proposition 1 (iii), the Uq(g)-linear map pµ,ν ⊗ idV (λ) induces a morphism of
crystals p̄ν,µ⊗idB(λ) from B(ν)⊗B(µ)⊗B(λ) to B(µ+ν)⊗B(λ), which sends
that connected component isomorphically onto a connected component of
B(µ + ν) ⊗ B(λ), by Proposition 2 (vi). The highest weight vector of this
latter is then p̄ν,µ(ūν ⊗ ūµ) ⊗ b = ūµ+ν ⊗ b and the lowest weight one is

p̄ν,µ(d̄ν ⊗ tb(µ)) ⊗ d̄λ. The result follows.

3.4. Completion of the proof

We endow each Uq(g)-module Eµ with the crystal basis

(Lµ,Bµ) = (L(−w0µ) ⊗A L(µ), B(−w0µ) ⊗ B(µ)),
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and get a crystal basis (L,B) of E by forming their direct sum. By Propo-
sition 1 (ii), the pair (L,B) defines a crystal basis (L′,B′) of the subspace
EUq(g) of invariant vectors in the module E.

Lemma 4 (i) says that for each µ ∈ P++, the crystal B(−w0µ) ⊗ B(µ) is
the direct sum of the subcrystals Wb(µ), where b runs over {b ∈

⊔
λ B(λ)0 |

µ − ε(b) ∈ P++}. By Proposition 1 (i), we can therefore find, for each
µ ∈ P++, a decomposition of the module Eµ as a direct sum of simple
submodules Fb(µ) such that

• (Fb(µ) ∩ Lµ,Wb(µ)) is a crystal basis of Fb(µ);

• Lµ =
⊕

b(Fb(µ) ∩ Lµ);

where again b runs over {b ∈
⊔

λ B(λ)0 | µ − ε(b) ∈ P++}. We define F to

be the direct sum of the submodules Fb(ε(b)) of E, for all b ∈
⊔

λ B(λ)0,
and endow it with the crystal basis

(LF ,BF ) =
⊕

b

(
Fb(ε(b)) ∩ L

ε(b),Wb(ε(b))
)

.

Lemma 5. The multiplication in E affords an isomorphism of Uq(g)-mod-
ules from EUq(g) ⊗C(q) F onto E, which carries the crystal basis

(L′ ⊗A LF ,B′ ⊗ BF ) onto (L,B).

Proof. Let f be the restriction to EUq(g)⊗C(q)F of the multiplication map of

E. Lemma 3 implies that f is Uq(g)-linear, because the Uq(g)-module EUq(g)

is trivial. The definition (8) of the multiplication on E and Proposition 1 (iii)
imply that f is compatible with the crystal bases considered above. By
Proposition 2 (v), B′ is the subcrystal consisting of the elements ū−w0ν ⊗ d̄ν

in B =
⊕

ν (B(−w0ν) ⊗ B(ν)).
Let us take a connected component Wb(ε(b)) of BF , where b ∈ B(λ)0 for

some λ ∈ P++. Since the crystal B(0)⊗B(−w0λ) is isomorphic to B(−w0λ),
hence connected, the crystal {ū−w0ν ⊗ d̄ν} ⊗ Wb(ε(b)) is connected and its

highest weight vector is ū−w0ν ⊗ d̄ν ⊗ ū−w0ε(b) ⊗ tb(ε(b)). By Lemma 4 (ii),
the morphism f̄ sends this element to

p̄−w0ε(b),−w0ν(ū−w0ε(b) ⊗ ū−w0ν) ⊗ p̄ν,ε(b)(d̄ν ⊗ tb(ε(b)))

= ū−w0(ε(b)+ν) ⊗ tb(ε(b) + ν),

hence to the highest weight vector of the connected component Wb(ε(b)+ν)
of B. According to Proposition 2 (vi), this means that the morphism f̄
sends isomorphically {ū−w0ν ⊗ d̄ν}⊗Wb(ε(b)) onto Wb(ε(b)+ ν). Therefore
we have a commutative diagram

L′ ⊗A LF
f

−−−−→ L
y

y

(L′ ⊗A LF )/q(L′ ⊗A LF )
f̄

−−−−→ L/qL
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where the vertical maps are the canonical surjections and where, by Lem-
ma 4 (i), the bottom line is an isomorphism of C-vector spaces. Now L′ ⊗A

LF and L are P++-graded free A-modules, whose graded components are
of finite rank, and f preserves the grading. We conclude that the top line
is an isomorphism of A-modules, and therefore that f is an isomorphism of
Uq(g)-modules.

Let us call H̃q ⊆ gr(Cq[G]) the image of F through the isomorphism⊕
ζµhµ obtained in Lemma 2, and lift H̃q to a submodule Hq of Cq[G]

using the canonical isomorphism of Uq(g)-modules Cq[G]
∼
→ gr(Cq[G]). The

multiplication in Cq[G] defines a map

Cq[G]
G
⊗C(q) Hq → Cq[G]

which is Uq(g)-linear by Lemma 1, and bijective, since its graded counterpart
is bijective by Lemmas 2 and 5.

Finally we remark that the multiplicity of the simple module V (−w0λ) in

Hq is the same as in H̃q or in F , hence is equal to the cardinality of B(λ)0,
i.e. to the dimension of the zero-weight space V (−w0λ)0. This concludes
the proof of Theorem 2.

3.5. Final comments

The module Hq constructed in Section 3.4 is not uniquely determined, since
the decompositions Eµ =

⊕
b Fb(µ) are only specified at the crystal limit.

However the global crystal bases of the spaces Eµ defined in Section 2.1
of [Ka2] can be used to gain uniqueness. (In the actual procedure, one has
to project the dual bases of these global crystal bases onto the isotypical
components of Eµ.) It should then be possible to show that the isomorphism

from Cq[G]
G
⊗C(q) Hq onto Cq[G] can be specialized at q = 1, which would

yield another proof of Richardson’s theorem.
The “Killing isomorphism” I becomes degenerate at the classical limit

q = 1, and it seems difficult to deduce Kostant’s theorem from Richardson’s
one by a method similar to the one presented in Section 2.4.
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