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Abstract

We propose an analogue of Solomon’s descent theory for the case of a wreath product

G ≀Sn, where G is a finite abelian group. Our construction mixes a number of ingredients:

Mantaci-Reutenauer algebras, Specht’s theory for the representations of wreath products,

Okada’s extension to wreath products of the Robinson-Schensted correspondence, Poirier’s

quasisymmetric functions. We insist on the functorial aspect of our definitions and explain

the relation of our results with previous work concerning the hyperoctaedral group.

Introduction

The problem studied in this article has its roots in a discovery by Solomon in 1976. Let
(W, (si)i∈I) be a Coxeter system. For any subset J ⊆ I, call WJ the parabolic subgroup
generated by the elements sj with j ∈ J . In each left coset wWJ of W modulo WJ , there
is a unique element of minimal length, called the distinguished representative of that coset.
We denote the set of these distinguished representatives by XJ , and we form the sum xJ =
∑

w∈XJ
w in the group ring ZW . Finally we denote by ΣW the Z-submodule of ZW spanned

by all elements xJ .
Now let R(W ) be the character ring of W , and let ϕJ ∈ R(W ) be the character of W

induced from the trivial character of WJ . Given two subsets J and K of I, each double
coset C ∈ WJ\W/WK contains a unique element x of minimal length, and a result of Tits,
Kilmoyer [18] and/or Solomon [33] asserts that the intersection x−1WJx∩WK is the parabolic
subgroup WL(C), where L(C) = {k ∈ K | ∃j ∈ J, x−1sjx = sk}. Joint to Mackey’s tensor
product theorem, this yields the multiplication rule in the representation ring R(W )

ϕJϕK =
∑

L⊆I

aJKL ϕL, where aJKL =
∣
∣{C ∈ WJ\W/WK | L = L(C)}

∣
∣.

With these notations, Solomon’s discovery [33] is the equality xJxK =
∑

L⊆I aJKLxL in
the ring ZW . It implies that ΣW is a subring of ZW and it shows the existence a morphism
of rings θW : ΣW → R(W ) such that θW (xJ) = ϕJ . This result means that (a part of) the
character theory of W can be lifted to a subring of its group ring. Additional details (for
instance, a more precise description of the image of θW ) can be found in the paper [7] by
F. Bergeron, N. Bergeron, Howlett and Taylor.

It is natural to look for a similar theory for groups other than Coxeter systems. The first
examples that come to mind are finite groups of Lie type and finite complex reflection groups.
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Among the latter, the groups of type G(r, 1, n) are wreath products (Z/rZ) ≀ Sn of a cyclic
group Z/rZ by the symmetric group Sn. One is then led to investigate the case of a general
wreath product G ≀Sn. To build the theory, it is necessary to have some knowledge about the
representation theory of G itself, and we assume in this paper that G is abelian. One of our
main results explains how to construct a subring MRn(ZG) inside the group ring Z

[
G ≀Sn] and

a surjective ring homomorphism θG from MRn(ZG) onto the representation ring R(G ≀Sn) of
the wreath product. Here the notation MR refers to the names of Mantaci and Reutenauer;
indeed it turns out that the remarkable subring inside Z

[
G ≀ Sn] discovered in 1995 by these

two authors [24] is adequate to our purpose.
A usually efficient method to tackle problems with the symmetric group Sn is to treat all

n at the same time. For instance, Malvenuto and Reutenauer observed in 1995 [23] that the
direct sum F =

⊕

n≥0 Z[Sn] can be endowed with the structure of a graded bialgebra in such

a way that the submodule Σ =
⊕

n≥0 ΣSn is a graded subbialgebra. A similar phenomenon

appears here: the direct sum F (ZG) =
⊕

n≥0 Z
[
G ≀ Sn

]
can be endowed with the structure

of a graded bialgebra, of which MR(ZG) =
⊕

n≥0 MRn(ZG) is a subbialgebra. (A particular
case of this construction was previously considered by Aguiar and Mahajan; the paper [2] by
Aguiar, N. Bergeron and Nyman presents an account of their result. Aguiar and his coauthors
view the hyperoctaedral group of order 2nn! as the wreath product {±1} ≀ Sn, that is, as
the group of signed permutations. Then they construct the graded bialgebra F

(
Z

[
{±1}

])

and its subbialgebra MR
(
Z

[
{±1}

])
. Using the morphism of group ‘forgetting the signs’ from

{±1} ≀ Sn onto Sn, they compare these graded bialgebras with Malvenuto and Reutenauer’s
bialgebra F and its subbialgebra Σ. Our construction and its functoriality generalize Aguiar
and his coauthors’ results to the case of all wreath products G ≀Sn.) This bialgebra structure
on F (ZG) will be the starting point of our story; indeed we define a ‘free quasisymmetric
algebra’ F (V ) for any Z-module V and investigate its properties.

We now present the plan and the main results of this paper.
In Section 1, we define the free quasisymmetric algebra on a module V over a commutative

ground ring K: this is a graded module F (V ) =
⊕

n≥0 Fn(V ), which we endow with an
‘external product’ and a coproduct to turn it into a graded bialgebra (Theorem 1). In the
case where V is endowed with the structure of a coalgebra, F (V ) contains a remarkable
subbialgebra MR(V ), the so-called Mantaci-Reutenauer bialgebra, which is a free associative
algebra as soon as V is a free module (Propositions 3 and 4).

In Section 2, we show that the functor V Ã F (V ) is compatible with the duality of
K-modules, in the sense that any pairing between two K-modules V and W gives rise to a
pairing of bialgebras between F (V ) and F (W ) (Proposition 5). In particular, the bialgebra
F (V ) is self-dual as soon as the module V is endowed with a perfect pairing.

In Section 3, we investigate the case where the module V is a K-algebra. Then F (V ) can
be endowed with an ‘internal product’, which turns each of the graded components Fn(V ) into
an algebra. The interesting point here is the existence of a splitting formula that describes the
compatibility between this internal product, the external product and the coproduct (Theo-
rem 10). This formula is a generalization of the splitting formula of Gelfand, Krob, Lascoux,
Leclerc, Retakh and Thibon [13]; it entails that the Mantaci-Reutenauer bialgebra MR(V )
is a subalgebra of F (V ) for the internal product whenever V is endowed with the structure
of a cocommutative bialgebra (Corollaries 11 and 12). In Section 3.5, we consider for V
the case of the group algebra KΓ of a finite group Γ and justify that the graded component
Fn(KΓ) is canonically isomorphic to the group algebra K

[
Γ ≀ Sn

]
, and that the graded com-
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ponent MRn(KΓ) = MR(KΓ)∩Fn(KΓ) coincides with the subalgebra defined by Mantaci and
Reutenauer in [24].

In Section 4, we at last provide the link between these constructions and a Solomon descent
theory for wreath products. We first recall Specht’s classification of the irreducible complex
characters of a wreath product G ≀Sn and Zelevinsky’s structure of a graded bialgebra on the
direct sum Rep(G) =

⊕

n≥0 R(G ≀Sn) for the induction product and the restriction coproduct
(Section 4.2). We then focus on the case where G is abelian. We denote the dual group of G
by Γ, we observe that the group ring ZΓ is a cocommutative bialgebra, so that the Mantaci-
Reutenauer bialgebra MR(ZΓ) is defined and is a subalgebra of F (ZΓ) for the internal product,
and we define a map θG : MR(ZΓ) → Rep(G). Then we show that θG is a surjective morphism
of graded bialgebras, and that in each degree, θG : MRn(ZΓ) → R(G ≀ Sn) is a surjective
morphism of rings whose kernel is the Jacobson radical of MRn(ZΓ) (Theorem 16). We also
show that θG enjoys a remarkable symmetry property analogous to the symmetry property of
Solomon’s homomorphisms θW proved by Jöllenbeck and Reutenauer [17] and by Blessenohl,
Hohlweg and Schocker [8] (Theorem 19). Finally we compare our results with the work of
Bonnafé and Hohlweg, who treated in [10] the case of the hyperoctaedral group {±1} ≀ Sn

using methods from the theory of Coxeter groups (Section 4.5).
The questions about the bialgebras F (V ) investigated in Sections 1 to 3 are functorial in

the K-module V . As usual, the most interesting point in this assertion is the compatibility of
the constructions with the homomorphisms, namely here the K-linear maps. On the contrary
the questions studied in Section 5 require that V be a free K-module and depend on the
choice of a basis B of V . Such a basis B can be viewed as the data of a structure of a pointed
coalgebra on V , which yields in turn a Mantaci-Reutenauer subbialgebra MR(V ) inside F (V ).
The choice of B also gives rise to a second subbialgebra Q(B), bigger than MR(V ), which we
call the coplactic bialgebra. The definition of Q(B) involves a combinatorial construction due
to Okada [28], which extends the well-known Robinson-Schensted correspondence to ‘coloured’
situations; at this point, we take the opportunity to provide an analogue of Knuth relations
for Okada’s correspondence (Proposition 24). In the case where B is a singleton set, the
bialgebra Q(B) is one of the ‘algèbres de Hopf de tableaux’ of Poirier and Reutenauer [30].
Extending the work of these authors, we define a surjective homomorphism ΘB of graded
bialgebras from Q(B) onto a bialgebra Λ(B) of ‘coloured’ symmetric functions (Theorem 31).
We then go back to the situation investigated in Section 4 and take the group algebra ZΓ for
V and the group Γ for B; here ΘΓ can be viewed as a lift of θG : MR(ZΓ) → Rep(G) to Q(Γ)
that yields a nice description of the simple representations of all wreath products G ≀Sn. We
recover Jöllenbeck’s construction of the Specht modules [16] as the particular case where G
is the group with one element; we refer the reader to Blessenohl and Schocker’s survey [9] for
additional details about Jöllenbeck’s construction.

Finally we present in Section 6 a realization of the bialgebra F (V ) in terms of free qua-
sisymmetric functions. As in Section 5, the K-module V is assumed to be free; we choose a
basis B of V and endow B with a linear order. When V has rank one, our free quasisymmetric
functions coincide with the usual ones [14]. In higher rank however, our free quasisymmetric
functions are different from those defined by Novelli and Thibon in [27]. This disagreement
has its roots in the fact that Novelli and Thibon’s construction and ours were designed with
different aims: roughly speaking, Novelli and Thibon’s goal was to find a noncommutative
version of Poirier’s quasisymmetric functions [29]; on the other side, we view the dual alge-
bra MR(V )∨ as a quotient of F (V ) and describe it in terms of commutative quasisymmetric
functions.
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At this point, we should mention that the assignment (V, B) Ã MR(V )∨ enjoys a certain
functoriality property; this property and the isomorphism between MR(K)∨ and the graded
bialgebra QSym of usual quasisymmetric functions yield in turn homomorphisms of graded
bialgebras from F (V ) and MR(V )∨ to QSym, which amounts to say that F (V ) and MR(V )∨

are ‘combinatorial Hopf algebras’ in the sense of Aguiar, N. Bergeron and Sottile [3].
The authors wish to thank Jean-Christophe Novelli and Jean-Yves Thibon for fruitful and

instructive conversations, which took place on March 30, 2004 in Ottrott and on May 3, 2004
at the Institut Gaspard Monge (University of Marne-la-Vallée). Their preprint [27] influenced
our writing of Sections 1 and 3. The main part of this work was carried out when C. H. was
at the Institut de Recherche Mathématique Avancée in Strasbourg.

We fix a commutative ground ring K. Connected N-graded K-bialgebras appear everywhere
in the paper. Such bialgebras are indeed automatically Hopf algebras, at least when K is a
field. However we will neither make use of this property nor attempt to work out explicitly
any antipode.

1 Free quasisymmetric bialgebras

In this section, we present our main objects of study, namely the free quasisymmetric bial-
gebras and the generalized descent algebras, among which the Novelli-Thibon bialgebras and
the Mantaci-Reutenauer bialgebras. Before that, we introduce some notations pertaining
permutations.

1.1 Notations related to permutations

For each positive integer n, we denote the symmetric group of all permutations of the set
{1, 2, . . . , n} by Sn. By convention, S0 is the group with one element. The unit element of
Sn is denoted by en. The group algebra over K of Sn is denoted by KSn. In practice, a
permutation σ ∈ Sn is written as the word σ(1)σ(2) · · ·σ(n) with letters in Z>0 = {1, 2, . . .}.

Let A be totally ordered set (an alphabet). The standardization of a word w = a1a2 · · · an

of length n with letters in A is the permutation σ ∈ Sn with smallest number of inversions
such that the sequence

(
aσ−1(1), aσ−1(2), . . . , aσ−1(n)

)

is non-decreasing. In other words, the word σ(1)σ(2) · · ·σ(n) that represents σ is obtained
by putting the numbers 1, 2, . . . , n in the place of the letters ai of w; in this process of
substitution, the diverse occurrences of the smallest letter of A get replaced first by the
numbers 1, 2, etc. from left to right; then we replace the occurrences of the second-smallest
element of A by the following numbers; and so on, up to the exhaustion of all letters of w. An
example clarifies this explanation: given the alphabet A = {a, b, c, . . .} with the usual order,
the standardization of the word w = bcbaba is σ = 364152.

A composition of a positive integer n is a sequence c = (c1, c2, . . . , ck) of positive integers
which sum up to n. The usual notation for that is to write c |= n. Given two compositions
c = (c1, c2, . . . , ck) and d = (d1, d2, . . . , dl) of the same integer n, we say that c is a refinement
of d and we write c < d if there holds

{c1, c1 + c2, . . . , c1 + c2 + · · · + ck−1} ⊇ {d1, d1 + d2, . . . , d1 + d2 + · · · + dl−1}.
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The relation 4 is a partial order on the set of compositions of n. For instance, the following
chain of inequalities hold among compositions of 5:

(5) ≺ (4, 1) ≺ (1, 3, 1) ≺ (1, 2, 1, 1) ≺ (1, 1, 1, 1, 1).

Let c = (c1, c2, . . . , ck) be a composition of n and set ti = c1+c2+ · · ·+ci for each i. Given
a k-uple (σ1, σ2, . . . , σk) ∈ Sc1 ×Sc2 ×· · ·×Sck

of permutations, we define σ1×σ2×· · ·×σk ∈
Sn as the permutation that maps an element a belonging to the interval [ti−1 + 1, ti] onto
ti−1 + σi(a − ti−1). This assignment defines an embedding Sc1 × Sc2 × · · · × Sck

→֒ Sn; we
denote its image by Sc. Such a Sc is called a Young subgroup of Sn. We obtain for free an
embedding for the group algebras

KSc1 ⊗ KSc2 ⊗ · · · ⊗ KSck

≃
−→ KSc ⊆ KSn.

The map c 7→ Sc is an order reversing bijection from the set of compositions of n, endowed
with the refinement order, onto the set of Young subgroups of Sn, endowed with the inclusion
order.

Let again c = (c1, c2, . . . , ck) be a composition of n and set ti = c1 + c2 + · · · + ci. The
subset

Xc =
{
σ ∈ Sn

∣
∣ ∀i, σ is increasing on the interval [ti−1 + 1, ti]

}

is a system of representatives of the left cosets of Sc in Sn. Here are some examples:

X(2,2) = {1234, 1324, 1423, 2314, 2413, 3412}, X(n) = {id} and X(1, 1, . . . , 1
︸ ︷︷ ︸

n times

) = Sn.

We define an element of the group ring KSn by setting xc =
∑

σ∈Xc
σ.

Let d = (d1, d2, . . . , dl) be a composition of an integer n. Then a composition c of n is a
refinement of d if and only if c can be obtained as the concatenation f1f2 · · · fl of a composition
f1 of d1, a composition f2 of d2, . . . , and a composition fl of dl. If this holds, then the map

(ρ, σ1, σ2, . . . , σl) 7→ ρ ◦ (σ1 × σ2 × · · · × σl)

is a bijection from Xd ×Xf1 ×Xf2 × · · · ×Xfl onto Xc, for Xf1 × · · · ×Xfl is a set of minimal
coset representatives of Sc in Sd. Therefore the equality

xc = xd (xf1 ⊗ xf2 ⊗ · · · ⊗ xfl) (1)

holds in the group ring KSn. As a particular case of (1), we see that

x(n,n′,n′′) = x(n,n′+n′′)

(
x(n) ⊗ x(n′,n′′)

)
= x(n+n′,n′′)

(
x(n,n′) ⊗ x(n′′)

)
(2)

holds true for any three positive integers n, n′ and n′′.
Let σ ∈ Sn. One may partition the word σ(1)σ(2) · · ·σ(n) that represents σ into its

longest increasing subwords; the composition of n formed by the successive lengths of these
subwords is called the descent composition of σ and is denoted by D(σ). For instance, the
descent composition of σ = 51243 is D(σ) = (1, 3, 1). Then for any composition c of n, the
assertions σ ∈ Xc and D(σ) 4 c are equivalent.
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1.2 Definition of the free quasisymmetric bialgebra F (V )

Let V be a K-module. The group Sn acts on the n-th tensor power V ⊗n; the submodule of
invariants, that is, the space of symmetric tensors, is denoted by TS

n(V ). We may form the
tensor product of V ⊗n by kSn. To distinguish this tensor product from those used to build
the tensor power V ⊗n, we denote it with a sharp symbol. We denote the result (V ⊗n)#(KSn)
by Fn(V ). The actions defined by

π ·
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
=

[
(vπ−1(1) ⊗ vπ−1(2) ⊗ · · · ⊗ vπ−1(n))#(πσ)

]

and
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
· π =

[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#(σπ)

]

endow Fn(V ) with the structure of a KSn-bimodule, where (v1, v2, . . . , vn) ∈ V n and π ∈ Sn.
For instance, Fn(K) is the (left and right) regular KSn-module.

Our aim now is to endow the space F (V ) =
⊕

n≥0 Fn(V ) with the structure of a graded
bialgebra. We define the product of two elements α ∈ Fn(V ) and α′ ∈ Fn′(V ) of the form

α =
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
and α′ =

[
(v′1 ⊗ v′2 ⊗ · · · ⊗ v′n′)#σ′

]

by the formula

α ∗ α′ = x(n,n′) ·
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ v′1 ⊗ v′2 ⊗ · · · ⊗ v′n′)#(σ × σ′)

]
.

(This formula can be made more concrete by noting that x(n,n′) (σ × σ′) is the sum in the
group algebra KSn+n′ of all permutations π such that σ is the standardization of the word
π(1)π(2) · · ·π(n) and σ′ is the standardization of the word π(n+1)π(n+2) · · ·π(n+n′).) We
extend this definition by multilinearity to an operation defined on the whole space F (V ) and
call this latter the external product.

We define the coproduct of an element α =
[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
of Fn(V ) as

∆
(
(v1⊗v2⊗· · ·⊗vn)#σ

)
=

n∑

n′=0

[
(v1⊗v2⊗· · ·⊗vn′)#πn′

]
⊗

[
(vn′+1⊗vn′+2⊗· · ·⊗vn)#π′

n−n′

]
,

where πn′ ∈ Sn′ is the inverse of the standardization of the word σ−1(1) σ−1(2) · · · σ−1(n′)
and π′

n−n′ ∈ Sn−n′ is the inverse of the standardization of the word σ−1(n′ + 1) σ−1(n′ +
2) · · · σ−1(n). In other words, πn′ and π′

n−n′ are such that the two sequences of letters
(πn′(1), πn′(2), . . . , πn′(n′)) and (n′ + π′

n−n′(1), n′ + π′
n−n′(2), . . . , n′ + π′

n−n′(n − n′)) appear
in this order in the word σ(1)σ(2) · · ·σ(n). We call the map ∆ : F (V ) → F (V ) ⊗ F (V ) the
coproduct of F (V ).

We define the unit of F (V ) as the injection of the graded component F0(V ) = K into
F (V ); we define the counit of F (V ) as the projection of F (V ) onto F0(V ) = K.

We now give an example to illustrate these definitions. Given six elements v1, v2, v3, v4,
v′1, v′2 in V , the product of α =

[
(v1⊗v2)#e2

]
and α′ =

[
(v′2⊗v′1)#21

]
= (21) ·

[
(v′1⊗v′2)#e2

]

is

α ∗ α′ = (1243 + 1342 + 1432 + 2341 + 2431 + 3421) ·
[
(v1 ⊗ v2 ⊗ v′1 ⊗ v′2)#e4

]

=
[
(v1 ⊗ v2 ⊗ v′2 ⊗ v′1)#1243

]
+

[
(v1 ⊗ v′2 ⊗ v2 ⊗ v′1)#1342

]
+

[
(v1 ⊗ v′2 ⊗ v′1 ⊗ v2)#1432

]
+

[
(v′2 ⊗ v1 ⊗ v2 ⊗ v′1)#2341

]
+

[
(v′2 ⊗ v1 ⊗ v′1 ⊗ v2)#2431

]
+

[
(v′2 ⊗ v′1 ⊗ v1 ⊗ v2)#3421

]
,
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and the coproduct of α =
[
(v3 ⊗ v1 ⊗ v2 ⊗ v4)#2314

]
= (2314) ·

[
(v1 ⊗ v2 ⊗ v3 ⊗ v4)#e4

]
is

∆(α) =
[
()#e0

]
⊗ α +

[
(v3)#1

]
⊗

[
(v1 ⊗ v2 ⊗ v4)#123

]
+

[
(v3 ⊗ v1)#21

]
⊗

[
(v2 ⊗ v4)#12

]
+

[
(v3 ⊗ v1 ⊗ v2)#231

]
⊗

[
(v4)#1

]
+ α ⊗

[
()#e0

]

=
[
()#e0

]
⊗ α +

[
(v3)#e1

]
⊗

[
(v1 ⊗ v2 ⊗ v4)#e3

]
+

+ (21) ·
[
(v1 ⊗ v3)#e2

]
⊗

[
(v2 ⊗ v4)#e2

]

+ (231) ·
[
(v1 ⊗ v2 ⊗ v3)#e3

]
⊗

[
(v4)#e1

]
+ α ⊗

[
()#e0

]
.

Theorem 1 The unit, the counit, and the operations ∗ and ∆ endow F (G) with the structure
of a graded bialgebra.

Proof. It is clear that the four operations respect the graduation. The associativity of ∗ follows
immediately from Equation (2). A moment’s thought suffices to check the coassociativity of
∆ and the axioms for the unit and the counit. It remains to show the pentagon axiom, which
asks that ∆ be multiplicative with respect to the product ∗.

Following Malvenuto and Reutenauer’s method [23], we first recall a classical construction
in the theory of Hopf algebras. Let A be a set, let 〈A 〉 denote the set of words on A , and
let K〈A 〉 be the free K-module with basis 〈A 〉. The shuffle product of two words w and w′

of length n and n′ respectively is the sum

w x w′ =
∑

ρ∈X(n,n′)

bρ−1(1)bρ−1(2) · · · bρ−1(n+n′),

where the word b1b2 · · · bn+n′ is the concatenation of the words w and w′. This operation x is
then extended bilinearly to a product on K〈A 〉. The deconcatenation is the coproduct δ on
K〈A 〉 such that

δ(w) =
n∑

n′=0

a1a2 · · · an′ ⊗ an′+1an′+2 · · · an

for any word w = a1a2 · · · an. It is known that the operations x and δ endow K〈A 〉 with the
structure of a bialgebra (see Proposition 1.9 in [31] for a proof).

We are now ready to show the pentagon axiom in the case where the K-module V is
free. We take a basis B of V and we set A = Z>0 × B. We observe that the elements
(b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ form a basis of Fn(V ), where (b1, b2, . . . , bn) ∈ Bn and σ ∈ Sn. We
may thus define linear maps jk : F (G) → K〈A 〉 (depending on the choice of a non-negative
integer k) by mapping an element α =

[
(b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ

]
to jk(α) = a1a2 · · · an, where

ai = (k + σ−1(i), bi). In the other direction, we define a linear map s : K〈A 〉 → F (V )
as follows: given a word w = a1a2 · · · an with letters in A , we write ai = (pi, bi) and set
s(w) = (b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ, where σ is the inverse of the standardization of the word
p1p2 · · · pn.

One easily checks that s ◦ jk = idF (G) and that (s ⊗ s) ◦ δ = ∆ ◦ s. Moreover, let
w = a1a2 · · · an and w′ = a′1a

′
2 · · · a

′
n′ be two words with letters in A . If we write ai = (pi, bi)

and a′i = (p′i, b
′
i), then s(w x w′) = s(w) ∗ s(w′) as soon as every integer pi is strictly smaller

than every integer p′i.
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We now take α ∈ Fn(G) and α′ ∈ Fn′(G). We compute:

∆(α ∗ α′) = ∆
[

s
(
j0(α)

)
∗ s

(
jn(α′)

)]

=
(
∆ ◦ s

)(
j0(α)x jn(α′)

)

= (s ⊗ s)
[

δ
(
j0(α)x jn(α′)

)]

= (s ⊗ s)
[

δ
(
j0(α)

)x δ
(
jn(α′)

)]

=
[
(s ⊗ s) ◦ δ ◦ j0(α)

]
∗

[
(s ⊗ s) ◦ δ ◦ jn(α′)

]

=
[
∆ ◦ s ◦ j0(α)

]
∗

[
∆ ◦ s ◦ jn(α′)

]

= ∆(α) ∗ ∆(α′).

This relation proves the pentagon axiom for F (V ) in the case where V is a free K-module.
In the general case, we may find a free K-module Ṽ and a surjective morphism of K-modules
f : Ṽ → V . Then f induces a surjective map from F (Ṽ ) onto F (V ) which is a morphism of
algebras and of coalgebras. Since the operations ∗ and ∆ on Ṽ satisfy the pentagon axiom,
their analogues on V satisfy also the pentagon axiom. This completes the proof of the theorem.
¤

We note that the assignment V Ã F (V ) is a covariant functor from the category of
K-modules to the category of N-graded bialgebras over K.

The algebras F (V ) were also indirectly defined by Novelli and Thibon; in [27], they denote
our F (Kl) by FQSym(l) and state that it is a free associative algebra, whence the name ‘free
quasisymmetric bialgebras.’

Remark 2. Given a K-module V , one can endow the direct sum
⊕

n≥0 V ⊗n with two struc-
tures of a graded bialgebra: the tensor algebra, denoted by T(V ), and the cotensor algebra,
sometimes denoted by Tc(V ). (The bialgebra K〈A 〉 used in the proof of Theorem 1 is indeed
the cotensor algebra on the free K-module KA with basis A .) One checks easily that the
maps

ι : T(V ) → F (V ), v1 ⊗ v2 ⊗ · · · ⊗ vn 7→
∑

σ∈Sn

σ · (v1 ⊗ v2 ⊗ · · · ⊗ vn#en)

and
p : F (V ) → T

c(V ), (v1 ⊗ v2 ⊗ · · · ⊗ vn#σ) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vn

are morphisms of graded bialgebras. Moreover the composition p ◦ ι is the symmetrization
map

T(V ) → T
c(V ), v1 ⊗ v2 ⊗ · · · ⊗ vn 7→

∑

σ∈Sn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n).

For details and applications of this construction, we refer the reader to [26] and [32].

1.3 The descent subbialgebras Σ(W )

In this section, we investigate a class of graded subalgebras of F (V ), called the descent
algebras. We find a criterion for a descent algebra to be a subbialgebra of F (V ) and give a
couple of examples.
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We fix here a K-module V . To any graded submodule W =
⊕

n≥0 Wn of the tensor algebra
T(V ) =

⊕

n≥0 V ⊗n, we associate the subalgebra Σ(W ) of F (V ) generated by all elements of
the form (t#en) with t ∈ Wn. We call such a subalgebra Σ(W ) a descent algebra. A descent
algebra is necessarily graded, for it is generated by homogeneous elements.

Proposition 3 Assume that V is flat and that each module Wn is free of finite rank. For
each n ≥ 1, pick a basis Bn of Wn. Then Σ(W ) is the free associative algebra on the elements
(b#en), where n ≥ 1 and b ∈ Bn.

Proof. By the way of contradiction, we assume that there exists a finite family (ui)i∈I con-

sisting of distinct finite sequences ui =
((

c
(i)
1 , b

(i)
1

)
,
(
c
(i)
2 , b

(i)
2

)
, . . . ,

(
c
(i)
ki

, b
(i)
ki

))
of elements in

⋃

n≥1

(
{n} × Bn

)
and a finite family (λi)i∈I of elements of K \ {0} such that

∑

i∈I

λi

[(

b
(i)
1 #e

c
(i)
1

)

∗
(

b
(i)
2 #e

c
(i)
2

)

∗ · · · ∗
(

b
(i)
ki

#e
c
(i)
ki

)]

= 0. (3)

Using the graduation, we may suppose without loss of generality that all the sequences ci =

(c
(i)
1 , c

(i)
2 , . . . , c

(i)
ki

) are compositions of the same integer n. Then (3) yields

∑

i∈I

λi xci ·
[
(b

(i)
1 ⊗ b

(i)
2 ⊗ · · · ⊗ b

(i)
ki

)#en

]
= 0. (4)

We choose a maximal element c = (c1, c2, . . . , ck) among the set {ci | i ∈ I} with respect
to the refinement order, we set J = {i ∈ I | ci = c}, and we choose a permutation σ ∈ Sn

whose descent composition is c. Then for any i ∈ I,

σ ∈ Xci ⇐⇒ c 4 ci ⇐⇒ i ∈ J.

Taking the image of (4) by the linear map p : Fn(V ) → V ⊗n defined by

p
(
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#ρ

)
=

{

vρ(1) ⊗ vρ(2) ⊗ · · · ⊗ vρ(n) if ρ = σ,

0 otherwise,

we obtain ∑

i∈J

λi b
(i)
1 ⊗ b

(i)
2 ⊗ · · · ⊗ b

(i)
k = 0. (5)

By assumption however, the sequences (b
(i)
1 , b

(i)
2 , . . . , b

(i)
k ) are distinct when i runs over J .

Therefore the elements b
(i)
1 ⊗ b

(i)
2 ⊗· · ·⊗ b

(i)
k are linearly independent in Wc1 ⊗Wc2 ⊗· · ·⊗Wck

,
for Bc1 ⊗Bc2 ⊗ · · · ⊗Bck

is a basis of this module. Since V and the Wci are flat modules, the

images of the elements b
(i)
1 ⊗ b

(i)
2 ⊗ · · · ⊗ b

(i)
k in V ⊗n are linearly independent. We then reach

a contradiction with Equation (5). ¤

Before we look for a condition on W that would ensures that Σ(W ) is a subbialgebra of
F (V ), we introduce a piece of notation that will be needed later, especially in Section 3.3.
Let c = (c1, c2, . . . , ck) be a composition (possibly with parts equal to zero)1 of n. Since

1It is convenient in this context to allow compositions to have parts equal to zero. We could use a special
terminology, following for example Reutenauer who coined in [31] the word pseudocomposition for that purpose.
To limit the advent of new words, we will however simply say ‘composition (possibly with parts equal to zero).’
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V ⊗n = V ⊗c1 ⊗V ⊗c2 ⊗ · · ·⊗V ⊗ck , each tensor t ∈ V ⊗n can be written as a linear combination
of products t1 ⊗ t2 ⊗ · · · ⊗ tk, where ti ∈ V ⊗ci for each i. We denote such a decomposition by

t =
∑

(t) t
(c)
1 ⊗ t

(c)
2 ⊗ · · · ⊗ t

(c)
k . In this equation, the symbol t

(c)
i is meant as a place-holder for

the actual elements ti. With this notation, the coproduct of an element of the form t#en is

∆(t#en) =
n∑

n′=0

[

t
((n′,n−n′))
1 #en′

]

⊗
[

t
((n′,n−n′))
2 #en−n′

]

. (6)

Let us now return to our study of the descent algebras. We introduce the following
condition on a graded submodule W =

⊕

n≥0 Wn of T(V ):

(A) There holds Wn ⊆ Wc1 ⊗Wc2 ⊗ · · · ⊗Wck
for any composition (possibly with parts equal

to zero) c = (c1, c2, . . . , ck) of a positive integer n.2

In other words, for any composition c = (c1, c2, . . . , ck) of a positive integer n and any t ∈ Wn,

we may assume that in the writing t =
∑

(t) t
(c)
1 ⊗ t

(c)
2 ⊗ · · · ⊗ t

(c)
k , all the elements of V ⊗ci

represented by the place-holder t
(c)
i can be picked in Wci . We can now find a sufficient condition

for Σ(W ) to be a subbialgebra of F (V ).

Proposition 4 If W satisfies Condition (A), then Σ(W ) is a graded subbialgebra of F (V ).

Proof. We have already seen that Σ(W ) is a graded subalgebra of F (V ). It remains to prove
the inclusion

Σ(W ) ⊆ {x ∈ F (V ) | ∆(x) ∈ Σ(W ) ⊗ Σ(W )}.

The set E on the right of the symbol ⊆ above is a subalgebra of F (V ), because ∆ is a
morphism of algebras and Σ(W )⊗Σ(W ) is a subalgebra. Moreover, Equation (6) shows that
if W satisfies Condition (B), then E contains all the elements t#en with t ∈ Wn. Since these
elements generate Σ(W ) as an algebra, it follows that E contains Σ(W ). ¤

Besides the trivial choice W = T(V ), there are two main examples. The first one occurs
with W = TS(V ), the space of all symmetric tensors on V .3 We call the corresponding
subbialgebra Σ(W ) the Novelli-Thibon bialgebra and we denote it by NT(V ). One may notice
that the assignment V Ã NT(V ) is functorial.

The second interesting example concerns the case where V is the underlying space of a
coalgebra. We first fix two rather standard notations that are convenient for dealing with
coalgebras; we will use them not only in the presentation below, but also later in Section 3.3
with the comultiplicative structure of F (V ). Let C be a coalgebra with its coassociative
coproduct δ and its counit ε. We define the iterated coproducts δn : C → C⊗n by setting
δ0 = ε, δ1 = idC , δ2 = δ, and

δn =
(
δ ⊗ (idC)⊗n−2

)
◦

(
δ ⊗ (idC)⊗n−3

)
◦ · · · ◦ δ

for all n ≥ 3. The Sweedler notation proposes to write the image of an element v ∈ C by δn

as
δn(v) =

∑

(v)

v(1) ⊗ v(2) ⊗ · · · ⊗ v(n);

2We abusively confuse Wc1 ⊗ Wc2 ⊗ · · · ⊗ Wck
with its image in V

⊗c1 ⊗ V
⊗c2 ⊗ · · · ⊗ V

⊗ck = V
⊗n. Of

course no ambiguity arises when K is a field or V is torsion-free module over a p.i.d.
3Condition (A) holds for W = TS(V ) as soon as V is projective or K is a field or a Dedekind ring. We do

not know if these restrictions can be lifted.
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in this writing, the symbol v(i) is a place-holder for an actual element of C which varies from
one term to the other.

Now we assume that the module V on which the free quasisymmetric algebra F (V ) is
constructed is endowed with a structure of a coalgebra, with a coproduct δ and a counit ε. In
this case, we may consider the image Wn of the iterated coproduct δn : V → V ⊗n and we may
set W =

⊕

n≥0 Wn. For any composition (possibly with parts equal to zero) c = (c1, c2, . . . , ck)
of n and any element v ∈ V , the coassociativity of δ implies

δn(v) =
∑

(v)

δc1(v(1))
︸ ︷︷ ︸

(δn(v))
(c)
1

⊗ δc2(v(2))
︸ ︷︷ ︸

(δn(v))
(c)
2

⊗ · · · ⊗ δck
(v(k))

︸ ︷︷ ︸

(δn(v))
(c)
k

, (7)

which shows that Condition (B) holds. Therefore Σ(W ) is a subbialgebra of F (V ). We
call it the Mantaci-Reutenauer bialgebra of the coalgebra V and we denote it by MR(V ).
The assignment V Ã MR(V ) is a covariant functor from the category of K-coalgebras to the
category of N-graded bialgebras over K. As we will see in Section 3.3, this construction is
mainly useful when V is a projective K-module and the coproduct of V is cocommutative; in
this case, MR(V ) is a subbialgebra of NT(V ).

For convenience, we introduce the following special notation for the generators of the
Mantaci-Reutenauer bialgebra MR(V ): given any positive integer n and any element v ∈ V ,
we set yn,v =

[
δn(v)#en

]
. Equations (6) and (7) entail that the coproduct of yn,v is given by

∆(yn,v) =
∑

(v)

n∑

n′=0

yn′,v(1)
⊗ yn−n′,v(2)

. (8)

Moreover, Proposition 3 implies that if V is a free K-module, then the associative algebra
MR(V ) is freely generated by the elements yn,v, where n ≥ 1 and v is chosen in a basis of V .

2 Duality

The main result of this section says that the dual bialgebra F (V )∨ of the free quasisymmetric
bialgebra on V is the free quasisymmetric bialgebra F (V ∨) on the dual module V ∨. This
result is neither deep nor difficult, but has many interesting consequences, as we will see in
Sections 4 and 5. We begin by a general and easy discussion of duality for K-modules and
K-bialgebras.

2.1 Perfect pairings

We define the duality functor ?∨ as the contravariant endofunctor HomK(?, K) of the category
of K-modules. In particular, this functor maps a morphism f : M → N to its transpose
f∨ : N∨ → M∨. Restricted to the full subcategory consisting of finitely generated projective
K-modules, the duality functor is an anti-equivalence of categories.

Given two K-modules M and N , there is a canonical isomorphism (M ⊕N)∨ ∼= M∨⊕N∨

and a canonical map N∨⊗M∨ → (M ⊗N)∨; the latter is an isomorphism as soon as M or N
is finitely generated and projective. Given a K-module M , there is a canonical homomorphism
M → M∨∨, which is an isomorphism if M is finitely generated and projective.

Let H be a K-bialgebra whose underlying space is finitely generated and projective. Then
the dual H∨ of H is also a bialgebra: the multiplication, the coproduct, the unit and the
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counit of H∨ are the transpose of the coproduct, the multiplication, the counit and the unit
of H, respectively.

A pairing between two K-modules M and N is a bilinear form ̟ : M × N → K. It gives
rive to two linear maps ̟♭ :

(
M → N∨, x 7→ ̟(x, ?)

)
and ̟# :

(
N → M∨, y 7→ ̟(?, y)

)
.

The pairing ̟ is called perfect if the maps ̟♭ and ̟# are isomorphisms. A pairing on
a K-module M is a pairing between M and itself; such a pairing ̟ is called symmetric if
̟♭ = ̟#.

In the case where the K-modules M and N are finitely generated and projective, we may
identify M and N with their respective biduals, and for any pairing ̟ between M and N , it
holds ̟# = (̟♭)∨. If moreover M and N are bialgebras, then M∨ and N∨ are also bialgebras;
in this situation, a pairing ̟ between M and N such that ̟♭ and ̟# are morphisms of
bialgebras is called a pairing of bialgebras.

The above constructions concerning biduality or bialgebras are only valid with finitely
generated projective modules. We can however relax the requirement of finite generation by
working with N-graded modules. In this situation, we must adapt the definition for the dual
module: the dual of M =

⊕

n≥0 Mn is the graded module M∨ =
⊕

n≥0(Mn)∨, whose graded
components are the dual modules in the previous sense of the graded components of M . We
must also make the further assumptions that the morphisms preserve the graduation and
that pairings make graded components of different degrees orthogonal to each other. Then
everything works as before, and biduality and duality of bialgebras go smoothly as soon as
the modules are projective with finitely generated homogeneous components.

2.2 Duality and the functor F

The following proposition examines the relationship between the functor F and duality.

Proposition 5 There is a natural transformation from the contravariant functor F (?∨) to
the contravariant functor F (?)∨, which is an isomorphism when the domain of these functors
is restricted to the full subcategory of finitely generated projective K-modules.

In other words, for any K-module V , we can define a morphism of graded algebras cV :
F (V ∨)

≃
−→ F (V )∨, the construction being such that the assignment V Ã cV is natural in

V , and that cV is an isomorphism of bialgebras if V is finitely generated and projective.

Proof. Let V be a K-module. With the help of the canonical duality bracket 〈?, ?〉 : V ×V ∨ →
K between V and V ∨, we define for each n ≥ 0 a pairing 〈?, ?〉n between Fn(V ) and Fn(V ∨)
by the following formula:

〈[
(v1 ⊗ v2 ⊗ · · · ⊗ vn)#σ

]
,
[
(f1 ⊗ f2 ⊗ · · · ⊗ fn)#π

]〉

n
=

{∏n
i=1〈vσ(i), fi〉, if σ = π−1,

0 otherwise,
(9)

where (v1, v2, . . . , vn) ∈ V n, (f1, f2, . . . , fn) ∈ (V ∨)n, and σ and π are elements of Sn. If V
is assumed to be finitely generated and projective, the canonical duality between V and V ∨

is perfect and extends to a perfect pairing between V ⊗n and (V ∨)⊗n, which implies that the
pairing 〈?, ?〉n is perfect.

We combine these pieces to define a pairing 〈?, ?〉tot between F (V ) and F (V ∨) by setting

〈α, ξ〉tot =
∑

n≥0

〈αn, ξn〉n

12



for all α =
∑

n≥0 αn and ξ =
∑

n≥0 ξn, where αn ∈ Fn(V ) and ξn ∈ Fn(V ∨). The map

cV : F (V ∨) → F (V )∨, x 7→ 〈?, x〉tot

is a morphism of K-modules; it is even an isomorphism if V is finitely generated and projective.
A straightforward verification shows that the product ∗ and the coproduct ∆ of F (V ) are

adjoint to the coproduct ∆ and to the product ∗ of F (V ∨) with respect to the pairing 〈?, ?〉tot.
Together with a similar statement about the unit and the counits, this implies that cV is a
morphism of algebras, and even of bialgebras if F (V ) is projective with finitely generated
homogeneous components. One checks also easily the commutativity of the diagram

F (V ∨)

cV

F (W∨)

cW

F (f∨)

F (V )∨ F (W )∨
F (f)∨

for any K-linear map f : V → W of K-modules. This means that the assignment V Ã cV is
a natural transformation from F (?∨) to F (?)∨, which completes the proof. ¤

Using the precise definition of the maps cV given in the proof of Proposition 5, one may
check the following additional property: the two compositions

F (V ) −→ F (V ∨∨)
c(V ∨)
−−−→ F (V ∨)∨ and F (V ) −→ F (V )∨∨

(cV )∨

−−−→ F (V ∨)∨

are equal. Abusing the notations, we will write the above equality as c(V ∨) = (cV )∨.
Now suppose that ̟ is a pairing between two K-modules V and W . We can then define a

pairing ̟tot between F (V ) and F (W ) by the equality ̟tot
♭ = cW ◦ F (̟♭); in other words,

we set
̟tot(x, y) =

(
cW ◦ F (̟♭)

)
(x)(y),

where x ∈ F (V ) and y ∈ F (W ). Then

̟tot
# = (̟tot

♭)∨ = F (̟♭)∨ ◦ (cW )∨ = F (̟♭)∨ ◦ c(W∨) = cV ◦ F
(
(̟♭)∨

)
= cV ◦ F (̟#).

The equalities ̟tot
♭ = cW ◦ F (̟♭) and ̟tot

# = cV ◦ F (̟#) show that ̟tot is a pairing of
bialgebras. Moreover if ̟ is perfect, then so is ̟tot. In the case V = W , one can also see
that the symmetry of ̟ entails that of ̟tot.

2.3 Orthogonals and polars

Let M be a finitely generated projective K-module. We view it as an ‘ambient’ space and
identify it with its bidual M∨∨. We define the orthogonal of a submodule S of M as the
submodule S⊥ = {f ∈ M∨ | f

∣
∣
S

= 0} of M∨. Then S⊥ is canonically isomorphic to (M/S)∨.

Likewise, the orthogonal of a submodule T of M∨ is a submodule T⊥ of M .
Let S be the set of all submodules S of M such that M/S is projective, or in other words,

that are direct summands of M . If S ∈ S , then both S and M/S are finitely generated
projective K-modules. Likewise, let T be the set of all submodules T of M∨ that are direct
summands of M∨. We endow both S and T with the partial order given by the inclusion of
submodules. The following results are well-known in this context:
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• The maps
(
S → T , S 7→ S⊥

)
and

(
T → S , T 7→ T⊥

)
are mutually inverse, order

decreasing bijections.

• For any S ∈ S , there is a canonical isomorphism S∨ ∼= M∨/S⊥. Moreover for each
submodule S′ ⊆ S, there is a canonical isomorphism (S/S′)∨ ∼= S′⊥/S⊥.

• Let S and S′ be two elements in S . We always have (S + S′)⊥ = S⊥ ∩ S′⊥ and S⊥ +
S′⊥ ⊆ (S ∩ S′)⊥. If moreover S + S′ belongs to S , then so does S ∩ S′, and the equality
(S ∩ S′)⊥ = S⊥ + S′⊥ holds.

• Assume that M is endowed with the structure of a bialgebra. Then a submodule S ∈ S

is a subbialgebra of M if and only if S⊥ is a biideal of M∨, and a submodule T ∈ T is a
subbialgebra of M∨ if and only if T⊥ is a biideal of M .

Given two submodules S ∈ S and T ∈ T , we have then sequences of canonical maps

T/(S⊥ ∩ T ) ∼= (S⊥ + T )/S⊥ = (S⊥ + T⊥⊥)/S⊥ →֒ (S ∩ T⊥)⊥/S⊥ ∼=
(
S/(S ∩ T⊥)

)
∨,

S/(S ∩ T⊥) ∼= (S + T⊥)/T⊥ = (S⊥⊥ + T⊥)/T⊥ →֒ (S⊥ ∩ T )⊥/T⊥ ∼=
(
T/(S⊥ ∩ T )

)
∨.

(10)

In other words, there is a canonical pairing between S/(S ∩ T⊥) and T/(S⊥ ∩ T ), which is
perfect as soon as (S + T⊥) ∈ S and (S⊥ + T ) ∈ T .

We assume now that the module M is endowed with a symmetric and perfect pairing ̟.
Then to any submodule S of M we can associate its polar P ◦ =

(
̟♭

)
−1

(
S⊥

)
with respect to

̟. Using ̟♭, one can deduce properties for polar submodules analogous to the properties for
orthogonals recalled above.

One can also adapt these results to the case where the projective module M is not finitely
generated, provided it is graded with finitely generated homogeneous components.

This material will prove useful in Sections 4.3 and 5, where we will meet instances of
the following situation. Here V is a finitely generated projective K-module, endowed with a
symmetric and perfect pairing ̟. Then F (V ) is a projective K-module, graded with finitely
generated homogeneous components, and endowed with the perfect and symmetric pairing
̟tot. Let moreover S be a graded subbialgebra of F (V ), assumed to be a direct summand
of the graded K-module F (V ). We have then the following commutative diagram of graded
bialgebras,

F (V )
≃

F (V )∨

S F (V )/S◦ ≃
S∨.

S/(S ∩ S◦)
(
S/(S ∩ S◦)

)
∨

(11)

Here the horizontal arrows are induced by ̟tot
♭; the one at the bottom line is the pairing on

S/(S ∩ S◦) defined by the sequences (10) with the choice T = ̟tot
♭(S).

To conclude this section, we show that the framework above is general enough to accomo-
date the case of a Mantaci-Reutenauer bialgebra, viewed as a submodule in a free quasisym-
metric bialgebra.

Proposition 6 For any K-coalgebra V , the submodule MR(V ) is a direct summand of F (V ).
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Proof. We will show two facts:

a) The submodule Σ(T(V )) has a graded complement in F (V ).

b) The Mantaci-Reutenauer bialgebra MR(V ) has a graded complement in Σ(T(V )).

Let n be a positive integer. The map

KSn ⊗ V ⊗n → Fn(V ), σ ⊗ t 7→ σ · (t#en),

where σ ∈ Sn and t ∈ V ⊗n, is an isomorphism of K-modules. The submodule Fn(V ) ∩
Σ(T(V )) is spanned by elements of the form

xc · (t#en) =
∑

σ∈Sn

D(σ)4c

σ · (t#en),

where c is a composition of n. Therefore the submodule of Fn(V ) spanned over K by the
elements (σ − π) · (t#en), where t ∈ V ⊗n and σ and π are two permutations in Sn with
D(σ) = D(π), is complementary to Fn(V ) ∩ Σ(T(V )). This proves Claim a).

Let us now denote the coproduct and the counit of V by δ and ε, respectively. Let n be a
positive integer. We denote the image of the iterated coproduct δn : V → V ⊗n by Wn. The
short exact sequence

0 → V
δn−→ V ⊗n → V ⊗n/Wn → 0

splits, because the map V ⊗n ε⊗n−1⊗idV−−−−−−−→ K
⊗n−1⊗V ∼= V is a retraction of δn. Therefore we can

find a complementary submodule Zn of Wn in V ⊗n. Given a composition c = (c1, c2, . . . , ck)
of n, we set

Wc = Wc1 ⊗ Wc2 ⊗ · · · ⊗ Wck
and Zc =

k∑

i=1

Vc1 ⊗ · · ·Vci−1 ⊗ Zci ⊗ Vci+1 ⊗ · · · ⊗ Vck
,

so that V ⊗n = Wc ⊕ Zc. Then

Fn(V ) ∩ Σ(T(V )) =
⊕

c|=n

[
xc · (V

⊗n#en)
]

=
⊕

c|=n

[
xc · (Wc#en)

]

︸ ︷︷ ︸

Fn(V )∩MR(V )

⊕
⊕

c|=n

[
xc · (Zc#en)

]
,

which shows Claim b) and completes the proof. ¤

3 The internal product

In this section, we consider the case where V is the underlying space of an algebra A. This
affords a new structure on F (A), called the internal product. We study ways to construct
subalgebras of F (A) for the internal product and clarify the situation that arises when A is
a symmetric algebra, that is, an algebra endowed with a symmetric, associative and perfect
pairing.
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3.1 The twisted group ring Fn(A)

So let A be a K-algebra. Then the group Sn acts on the tensor power A⊗n by automorphisms of
algebra, which allows to construct a twisted group ring, which we denote by (A⊗n)#(KSn).
(In the language of Hopf algebras, one says that A⊗n is a KSn-module algebra, and then
the twisted group ring (A⊗n)#(KSn) is viewed as a particular case of the smash product
construction; see for instance [25].) This twisted group ring is our KSn-bimodule Fn(A)
endowed additionally with the structure of an algebra. The associative product is given by
the rule

[
(a1 ⊗ a2 ⊗ · · · ⊗ an)#σ

]
·
[
(b1 ⊗ b2 ⊗ · · · ⊗ bn)#τ

]

=
[(

a1bσ−1(1) ⊗ a2bσ−1(2) ⊗ · · · ⊗ anbσ−1(n)

)
#

(
στ

)]
(12)

and the unit is 1⊗n#en. The structure map
(
K → A⊗n, λ 7→ λ1⊗n

)
gives rise to an embedding

of the group algebra KSn = Fn(K) into Fn(A), which allows to represent the two-sided action
of KSn on Fn(A) with the help of the product of Fn(A).

It is convenient to extend this product to the whole F (A) by linearity: if α =
∑

n≥0 αn

and α′ =
∑

n≥0 α′
n with αn and α′

n in Fn(A), we define α · α′ =
∑

n≥0 αn · α′
n. This ‘internal

product’ as it is called lacks a unit element.
More generally, given two K-modules V and W , the composition

(V ⊗n#KSn) ⊗ (W⊗n#KSn) ։ (V ⊗n#KSn) ⊗KSn (W⊗n#KSn)
≃

−→ (V ⊗ W )⊗n#KSn

defines a canonical morphism of KSn-modules from Fn(V )⊗Fn(W ) into Fn(V ⊗W ). Taking
the direct sum over all n ≥ 0, one can define an ‘internal product’ F (V )⊗F (W ) → F (V ⊗W )
which is natural in (V, W ). Given a third K-module X and a linear map m : V ⊗ W → X,
we obtain an internal product F (V )⊗F (W ) → F (X) by composition with F (m). We will
not pursue this way for want of application, but it is worth noticing that even the apparently
simple case where V or W is the ground ring K is not empty. We leave it to the reader to
generalize the results of Section 3.3 to this wider context.

To conclude this section, we introduce two pieces of terminology that will prove convenient
in Section 3.4. Let S and M be two graded submodules of F (A), and set Sn = S ∩ Fn(A)
and Mn = M ∩ Fn(A). We say that S is a subalgebra of F (A) for the internal product if
each Sn is a subalgebra of Fn(A). In this case, we say further that M is a left (respectively,
right) internal S-submodule of F (A) if S · M ⊆ M (respectively, M · S ⊆ M).

3.2 Double cosets in the symmetric group

In this section, we translate to the case of the symmetric group a theorem of Solomon valid
in the more general context of Coxeter groups. The result will prove crucial in the proof of
the splitting formula in Section 3.3.

To begin with, let
(
W, (si)i∈I

)
be a Coxeter system. Given a subset J ⊆ I, the parabolic

subgroup WJ is the subgroup of W generated by the elements sj with j ∈ J . In each left coset
wWJ , there is a unique element with minimal length, called the distinguished representative of
that coset. We denote by XJ the set of distinguished representatives of the left cosets modulo
WJ . Given a second subset K ⊆ I, there is likewise a unique element with minimal length
in each double coset WJwWK , unsurprisingly called the distinguished representative of the
double coset. The set of distinguished representatives of the double cosets modulo WJ and
WK is (XJ)−1 ∩ XK . The following statement is a rephrasing of Theorem 2 of [33].

16



Theorem 7 Given a double coset C ∈ WJ\W/WK , we set

LC = {k ∈ K | ∃j ∈ J, x−1sjx = sk},

where x ∈ C ∩ (X−1
J ∩XK) is the distinguished representative of C. Then XLC

is the disjoint
union of the sets XJw, where w ∈ C ∩ XK .

We now translate this proposition in a combinatorial language more adapted to the case of
the symmetric group Sn. Let c = (c1, c2, . . . , ck) and d = (d1, d2, . . . , dl) be two compositions
of n, and set ti = c1 + c2 + · · ·+ ci and uj = d1 + d2 + · · ·+ dj . We denote by Mc,d the set of
all matrices M = (mij) with non-negative integral entries in k rows and l columns and with
row-sum c and column-sum d, that is,

ci =

l∑

j=1

mij for all i and dj =

k∑

i=1

mij for all j.

There is a well-known bijection from Mc,d onto the double quotient Sc\Sn/Sd that maps a
matrix M = (mij) to the double coset

C(M) =
{
σ ∈ Sn

∣
∣ ∀(i, j), mij =

∣
∣ [ti−1 + 1, ti] ∩ σ([uj−1 + 1, uj ])

∣
∣
}
.

Finally, we associate to a matrix M ∈ Mc,d its column-reading composition

cr(M) = (m11, m21, . . . , mk1, m12, m22, . . . , mk2, . . . , m1l, m2l, . . . , mkl).

With these notations, Theorem 7 translates to the following statement.

Corollary 8 For any matrix M ∈ Mc,d, the set Xcr(M) is the disjoint union of the sets Xcσ,
where σ ∈ C(M) ∩ Xd.

Proof. We set I = {1, 2, . . . , n− 1}. For each i ∈ I, we call si be the transposition in Sn that
exchanges i and i + 1. Endowed with the family (si)i∈I , the group Sn becomes a Coxeter
system W .

Set J = I \ {t1, t2, · · · , tk−1} and K = I \ {u1, u2, . . . , ul−1}. Then the Young subgroups
Sc and Sd coincide with the parabolic subgroups WJ and WK , respectively; moreover the
sets Xc and Xd are the sets of distinguished representatives XJ and XK .

We now fix a matrix M ∈ Mc,d. We define a permutation ρ ∈ Sn by the following rule:
for each a ∈ [1, n], we determine the index j ∈ [1, l] such that a ∈ [uj−1 + 1, uj ] and then the
index i ∈ [1, k] such that a − uj−1 ∈ [m1j + m2j + · · · + mi−1,j + 1, m1j + m2j + · · · + mij ],
and we set

ρ(a) = a − (uj−1 + m1j + m2j + · · · + mi−1,j) + (ti−1 + mi1 + mi2 + · · · + mi,j−1).

One checks without difficulty that ρ ∈ C(M) ∩ (Xc)
−1 ∩ Xd, which implies that ρ is the

distinguished representative of the double coset C(M) ∈ Sc\Sn/Sd.
Moreover, let a ∈ [1, n] and determine the indices i and j as above. One checks easily that

a−uj−1 ∈ [m1j +m2j + · · ·+mi−1,j +1, m1j +m2j + · · ·+mij −1] ⇐⇒







a ∈ K,

ρ(a) ∈ J,

ρ(a + 1) = ρ(a) + 1.
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(The ket point here is to observe that if a = uj−1 + m1j + m2j + · · · + mij and a ∈ K, then
the inequalities ρ(a + 1) > ti ≥ ρ(a) hold.)

For any j ∈ J , the permutation ρ−1sjρ is the transposition that exchanges ρ−1(j) and
ρ−1(j + 1), with necessarily ρ−1(j) < ρ−1(j + 1) because ρ−1 ∈ XJ . The definition

LC(M) = {k ∈ K | ∃j ∈ J, ρ−1sjρ = sk}

translates therefore to the equality

LC(M) =
l⋃

j=1

k⋃

i=1

[uj−1 + m1j + m2j + · · · + mi−1,j + 1, uj−1 + m1j + m2j + · · · + mij − 1],

or, in other words, to

LC(M) = I \ {f1, f1 + f2, . . . , f1 + f2 + · · · + fm−1}

if the parts of cr(M) form the sequence (f1, f2, · · · , fm). This implies that the sets XL(C) and
Xcr(M) coincide.

This completes the dictionary that allows to deduce the corollary from Theorem 7. ¤

3.3 The splitting formula

The splitting formula, due to Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [13] in the
case of F (K) and to Novelli and Thibon [27] in the general case, is the tool that enables to
show that certain graded subbialgebras Σ(W ) of Section 1.3 are subalgebras of F (A) for the
internal product. We begin with a lemma.

Lemma 9 Let V be a projective K-module,4 let n be a positive integer, let c = (c1, c2, . . . , ck)
and d be two compositions of n, and for each i ∈ [1, k], let ai ∈ TS

ci(V ) be a symmetric
tensor of degree ci. The i-th line of a matrix M = (mij) in Mc,d can be seen as a composition
(possibly with parts equal to zero) of ci. According to the decomposition

TS
ci(V ) ⊆ TS

mi1(V ) ⊗ TS
mi2(V ) ⊗ · · · ⊗ TS

mil(V ),

we write ai as a linear combination
∑

(ai)
a

(M)
i1 ⊗ a

(M)
i2 ⊗ · · · ⊗ a

(M)
il with a

(M)
ij ∈ TS

mij (V ).
Then in the KSn-bimodule Fn(V ), there holds

xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#xd

]

=
∑

M∈Mc,d

∑

(a1), (a2), ..., (ak)

xcr(M) ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
k1

⊗a
(M)
12 ⊗ a

(M)
22 ⊗ · · · ⊗ a

(M)
k2 ⊗ · · ·

⊗ a
(M)
1l ⊗ a

(M)
2l ⊗ · · · ⊗ a

(M)
kl

)

#en

]

. (13)

4The assuption that V is projective guarantee the existence of decompositions ai =
P

(ai)
a
(M)
i1 ⊗ a

(M)
i2 ⊗

· · · ⊗ a
(M)
il below, as mentioned in the footnote 3.
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Proof. We set ti = c1 + c2 + · · · + ci and uj = d1 + d2 + · · · + uj . We take M ∈ Mc,d and
σ ∈ Sn. If σ belongs to the double coset C(M), then for each j, the set σ([uj−1 + 1, uj ]) has
m1j elements in [1, t1], m2j elements in [t1 + 1, t2], . . . , mkj elements in [tk−1 + 1, tk]. On the
other hand, if σ belongs to Xd, then it is an increasing map on the interval [uj−1 + 1, uj ].
Therefore, if σ belongs to C(M) ∩ Xd, the mij elements of the set

σ([uj−1 + m1j + m2j + · · · + mi−1,j + 1, uj−1 + m1j + m2j + · · · + mij ])

belong to [ti−1 + 1, ti], so that

(a1⊗a2⊗· · ·⊗ak)#σ =
∑

(a1), (a2), ..., (ak)

σ ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
k1

⊗a
(M)
12 ⊗ a

(M)
22 ⊗ · · · ⊗ a

(M)
k2 ⊗ · · ·

⊗ a
(M)
1l ⊗ a

(M)
2l ⊗ · · · ⊗ a

(M)
kl

)

#en

]

,

because each ai is symmetric. Using the notations of Section 3.2, we decompose Xd as the
disjoint union

∐

M∈Mc,d

(
C(M) ∩ Xd

)
. Then

xc ·
[
(a1 ⊗ a2 ⊗ · · ·⊗ak)#xd

]

=
∑

M∈Mc,d

∑

σ∈C(M)∩Xd

xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#σ

]

=
∑

M∈Mc,d

∑

σ∈C(M)∩Xd

∑

(ai)

(xcσ) ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
kl

)

#en

]

=
∑

M∈Mc,d

∑

(ai)

xcr(M) ·
[(

a
(M)
11 ⊗ a

(M)
21 ⊗ · · · ⊗ a

(M)
kl

)

#en

]

,

the last equality coming from Corollary 8. This calculation proves Lemma 9. ¤

In the remainder of this section, the letter A denotes a K-algebra, whose underlying module
is projective. We now state and prove the splitting formula.

Theorem 10 Let y be an element in NT(A) and z1, z2, . . . , zl be elements in F (A). Then

y · (z1 ∗ z2 ∗ · · · ∗ zl) =
∑

(y)

(y(1) · z1) ∗ (y(2) · z2) ∗ · · · ∗ (y(l) · zl). (14)

Proof. By linearity, it is sufficient to prove Formula (14) for elements y of the form

y = (a1#ec1) ∗ (a2#ec2) ∗ · · · ∗ (ak#eck
) = xc ·

[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#en

]
,

where c = (c1, c2, . . . , ck) is a composition of a positive integer n and where a1, a2, . . . , ak

are symmetric tensors on A of degree c1, c2, . . . , ck, respectively. By Formula (6), the l-th
iterated coproduct of the element (ai#ei) is

∆l(ai#eci) =
∑

f

∑

(ai)

(
(ai)

(f)
1 #ef1

)
⊗

(
(ai)

(f)
2 #ef2

)
⊗ · · · ⊗

(
(ai)

(f)
l #efl

)
,

19



where the first sum runs over all compositions f = (f1, f2, . . . , fl) of ci in l parts (possibly
equal to zero). Multiplying these expressions for i = 1, 2, . . . , k and expanding, we obtain

∆l(y) =
∑

g

∑

M∈Mc,g

∑

(a1), (a2), ..., (ak)

[(

a
(M)
11 #em11

)

∗
(

a
(M)
21 #em21

)

∗ · · · ∗
(

a
(M)
k1 #emk1

)]

⊗
[(

a
(M)
12 #em12

)

∗
(

a
(M)
22 #em22

)

∗ · · · ∗
(

a
(M)
k2 #emk2

)]

⊗ · · ·

⊗
[(

a
(M)
1l #em1l

)

∗
(

a
(M)
2l #em2l

)

∗ · · · ∗
(

a
(M)
kl #emkl

)]

,

(15)

where the first sum runs over all compositions (possibly with zero parts) g of n in l parts
and where for each matrix M ∈ Mc,g, the tensors ai are decomposed as in the statement of
Lemma 9.

Now let d = (d1, d2, . . . , dl) be a composition (possibly with parts equal to zero) of n and
consider the equality proved in Lemma 9. The left-hand side of (13) is equal to

xc ·
[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#en

]
· (1⊗n#xd) = y · (1⊗n#xd). (16)

On the other hand, Equation (15) joint to Formula (1) shows that the right-hand side of (13)
is equal to

∑

(y)

(
y(1) · (1

⊗d1#ed1)
)
∗

(
y(2) · (1

⊗d2#ed2)
)
∗ · · · ∗

(
y(l) · (1

⊗dl#edl
)
)
. (17)

We conclude that the quantities (16) and (17) are equal.
By linearity, we may assume that the elements zj are of the form zj = (bj#σj), where bj ∈

A⊗dj and σj ∈ Sdj
. For degree reasons, both sides of (14) vanish unless n = d1 +d2 + · · ·+dl.

We may therefore assume without loss of generality that d = (d1, d2, . . . , dl) is a composition of
n. We now multiply both (16) and (17) on the right by

[
(b1⊗b2⊗· · ·⊗bl)#(σ1×σ2×· · ·×σl)

]
,

using the internal product. These multiplications yield the left-hand and the right-hand side
of (14), respectively. The theorem follows. ¤

As a first application of this formula, we consider the two following conditions for a graded
submodule B =

⊕

n≥0 Bn of T(A).

(B) Each Bn is a subalgebra of A⊗n.

(C) Each space Bn consists of symmetric tensors, that is, B ⊆ TS(A).

Corollary 11 For any graded submodule B of T(A) satisfying Conditions (A), (B) and (C),
the descent bialgebra Σ(B) is a subalgebra of F (A) for the internal product.

Proof. We have to prove that for any elements y and z in Σ(B), the product y · z belongs
to Σ(B). We first consider the case where z is of the form (b#en), where b ∈ Bn. The
homogeneous components of y whose degree are different from n do not contribute to the
product y · z; they can therefore be put aside. We then write y as a linear combination of
products (a1#ec1) ∗ (a2#ec2) ∗ · · · ∗ (ak#eck

), where c = (c1, c2, . . . , ck) is a composition of
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n and a1 ∈ Bc1 , a2 ∈ Bc2 , . . . , ak ∈ Bck
. By Condition (A), we may find a decomposition

b =
∑

(b) b
(c)
1 ⊗ b

(c)
2 ⊗ · · ·⊗ b

(c)
k for each composition c that arises in the expression of y, where

the elements represented by the place-holder b
(c)
i belong to Bci . Therefore y ·(b#en) is a linear

combination of elements of the form

(
xc ·

[
(a1 ⊗ a2 ⊗ · · · ⊗ ak)#en

])
·
[
(b1 ⊗ b2 ⊗ · · · ⊗ bk)#en

]

= xc ·
[
((a1b1) ⊗ (a2b2) ⊗ · · · ⊗ (akbk))#en

]

= (a1b1#ec1) ∗ (a2b2#ec2) ∗ · · · ∗ (akbk#eck
).

Since each element aibi appearing here belongs to Bci by Condition (B), y · (b#en) is in Σ(B).
In the general case, we may write z as a linear combination of products z1 ∗ z2 ∗ · · · ∗ zl,

where each zj is of the form bj#edj
, where dj is a positive integer and bj ∈ Bdj

. We apply the
splitting formula (14). Since Σ(B) is a subcoalgebra of F (A) (Proposition 4), we may require
that in the decomposition ∆l(y) =

∑

(y) y(1) ⊗ y(2) ⊗ · · · ⊗ y(l) used, all elements represented
by the placeholders y(j) belong to Σ(B). By the first case, each product y(j) · zj belongs to
Σ(B), which entails that y · (z1 ∗ z2 ∗ · · · ∗ zl) belongs to Σ(B). We conclude that y · z belongs
to Σ(B). ¤

Again there are two main examples to which Corollary 11 can be applied. The first one is
the case of the Novelli-Thibon algebra: the sequence Bn = TS

n(A) satisfies Conditions (A),
(B) and (C), so the submodule NT(A) is a subalgebra of F (A) for the internal product.

The second example arises when A is a cocommutative bialgebra. Each iterated coproduct
δn : A → A⊗n is a morphism of algebras, therefore its image is a subalgebra Bn of A⊗n. The
submodule B =

⊕

n≥0 Bn therefore satisfies Condition (B). It also satisfies Conditions (A)
and (C), because the coproduct of A is coassociative and cocommutative. It thus follows from
Corollary 11 that the submodule Σ(B), which is of course the Mantaci-Reutenauer bialgebra
MR(A), is a subalgebra of F (A) for the internal product.

The following corollary gives the rule to compute internal products in a Mantaci-Reute-
nauer algebra. It generalizes Corollary 6.8 and Theorem 6.9 of [24].

Corollary 12 Let A be a cocommutative bialgebra with coproduct δ, let n be a positive integer,
let c = (c1, c2, . . . , ck) and d = (d1, d2, . . . dl) be two compositions of n, and let a1, a2, . . . , ak,
b1, b2, . . . , bl be elements of A. Then

(yc1,a1 ∗yc2,a2 ∗· · ·∗yck,ak
) ·(yd1,b1 ∗yd2,b2 ∗· · ·∗ydl,bl

) =
∑

(ai),(bj)

∑

M∈Mc,d





l∏

j=1

k∏

i=1

ymij ,ai(j)bj(i)



 ,

where the first summation symbol on the right comes from the Sweedler notation for writing
the iterated coproducts δl(ai) and δk(bj), where the two successive symbols

∏
stand for the

external product, and where the factors of this external product are formed by reading column
by column the entries of the matrix M = (mij).

Proof. An easy induction based on Formula (8) implies that

∆l(yci,ai) =
∑

(ai)

∑

f

yf1,ai(1)
⊗ yf2,ai(2)

⊗ · · · ⊗ yfl,ai(l)
,
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where the second sum runs over all compositions (possibly with zero parts) f = (f1, f2, . . . , fl)
of ci in l parts. Setting y = yc1,a1 ∗ yc2,a2 ∗ · · · ∗ yck,ak

, it follows that

∆l(y) = ∆l(yc1,a1) ∗ ∆l(yc2,a2) ∗ · · · ∗ ∆l(yck,ak
)

=
∑

(a1), (a2), ..., (ak)

∑

M

(
k∏

i=1

ymi1,ai(1)

)

⊗

(
k∏

i=1

ymi2,ai(2)

)

⊗ · · · ⊗

(
k∏

i=1

ymil,ai(l)

)

, (18)

where the second sum is over all matrices M with non-negative integral entries in k rows and
l columns and with row-sum c.

We now use the splitting formula

y · (yd1,b1 ∗ yd2,b2 ∗ · · · ∗ ydl,bl
) =

∑

(y)

(y(1) · yd1,b1) ∗ (y(2) · yd2,b2) ∗ · · · ∗ (y(l) · ydl,bl
) (19)

and substitute in it the expression for the iterated coproduct ∆l(y) found in (18). For degree
reasons, each term in (18) that yields a non-zero contribution to the right-hand side of (19)
corresponds to a matrix M whose column sum is equal to d, so that we may restrict the
sum to the matrices M in Mc,d. The result of the substitution is a sum of products; in each
product, the j-th factor is

y(j)· ydj ,bj

=
[
(ym1j ,a1(j)

) ∗ (ym2j ,a2(j)
) ∗ · · · ∗ (ymkj ,ak(j)

)
]
· ydj ,bj

= x(m1j ,m2j ,...,mkj) ·
[(

δm1j (a1(j)) ⊗ δm2j (a2(j)) ⊗ · · · ⊗ δmkj
(ak(j))

)
#edj

]
·
[
δdj

(bj)#edj

]

=
∑

(bj)

x(m1j ,m2j ,...,mkj) ·
[(

δm1j (a1(j)bj(1)) ⊗ δm2j (a2(j)bj(2)) ⊗ · · · ⊗ δmkj
(ak(j)bj(k))

)
#edj

]

=
∑

(bj)

ym1j ,a1(j)bj(1)
∗ ym2j ,a2(j)bj(2)

∗ · · · ∗ ymkj ,ak(j)bj(k)
.

The corollary follows immediately. ¤

3.4 Frobenius structures

In this section, we put together the structures defined in Sections 2.2 and 3.1.
We begin by recalling some terminology. Let A be an associative K-algebra with unit. A

pairing ̟ on A is said associative if ̟(ab, c) = ̟(a, bc) for all (a, b, c) ∈ A3. A trace form
on A is a linear map τ : A → K such that τ(ab) = τ(ba) for all (a, b) ∈ A2. The data of
a symmetric and associative pairing is equivalent to the data of a trace form: to the trace
form τ corresponds the pairing ̟ : (a, b) 7→ τ(ab), and conversely τ is given by τ = ̟♭(1).
One says that an algebra A is a Frobenius algebra if it can be endowed with an associative
and perfect pairing; if one can choose this pairing symmetric, then one calls A a symmetric
algebra.

Now let A be a such a symmetric algebra, endowed with a symmetric, associative and
perfect pairing ̟. Then the graded bialgebra F (A) is endowed with the symmetric and
perfect pairing ̟tot (Section 2.2) and each graded piece Fn(A) is an associative algebra for
the internal product · (Section 3.1).
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Proposition 13 For any degree n, the pairing ̟tot

∣
∣
Fn(A)×Fn(A)

is associative and endows

Fn(A) with the structure of a symmetric algebra.

Proof. We denote the linear form ̟♭(1) by τ and define a linear form τtot : F (A) → K by
setting

τtot

(
(a1 ⊗ a2 ⊗ · · · ⊗ an)#σ

)
=

{∏n
i=1 τ(ai) if σ = en,

0 otherwise,

for any n ∈ N, any (a1, a2, . . . , an) ∈ An and any σ ∈ Sn. A straightforward verification
based on Formula (9) shows that ̟tot(x, y) = τtot(x · y) for any (x, y) ∈ F (A)2. It follows in
particular that the pairing ̟tot

∣
∣
Fn(A)×Fn(A)

is associative. Since this pairing is also symmetric

and perfect, the algebra Fn(A) is a symmetric algebra. ¤

We add to these ingredients the data of a graded subbialgebra S of F (A), assumed to be
a subalgebra of it for the internal product. The polar S◦ of S satisfies

̟tot(S, S · S◦) = ̟tot(S · S, S◦) ⊆ ̟tot(S, S◦) = 0,

so that S · S◦ ⊆ S◦. A similar argument shows the inclusion S◦ · S ⊆ S◦, and we conclude
that S◦ is a two-sided internal S-submodule of F (A). Assuming that A is a projective K-
module and that S is a direct summand of the graded K-module F (A), we construct the
diagram (11), with F (V ) replaced by F (A); beside being a diagram of graded bialgebras, it
is then a diagram of two-sided internal S-submodules.

3.5 The case of a group algebra

Group algebras are at the same time cocommutative bialgebras and symmetric algebras. They
give therefore examples to which the constructions of Sections 3.3 and 3.4 can be applied. We
study this situation here.

So let Γ be a finite group. We endow the algebra KΓ with the pairing ̟ defined by

̟(γ, δ) =

{

1 if γ = δ−1,

0 otherwise.

This pairing is associative, symmetric and perfect; the corresponding trace form τ = ̟♭(1) is
the linear form that maps an element γ ∈ Γ to 1 if γ is the unit and to 0 otherwise. (One may
observe that the familiar trace map of KΓ, i.e. the regular character of Γ, is a scalar multiple
of τ .)

We now construct the graded bialgebra F (KΓ) and endow it with the pairing of bialgebras
̟tot. By Proposition 13, each graded component Fn(KΓ) is a symmetric algebra for the
pairing ̟tot

∣
∣
Fn(KΓ)×Fn(KΓ)

. This property can also be explained in the following way.

Let us first recall that the wreath product Γ ≀Sn is the semidirect product Γn
⋊Sn for the

usual permutation action of Sn on Γn. Thus an element Γ ≀ Sn can always be written as the
product of an element of Sn and an element of Γn, and the commutation rule between these
two kinds of elements is

σ · (γ1, γ2, . . . , γn) = (γσ−1(1), γσ−1(2), . . . , γσ−1(n)) · σ.

23



A comparison with Equation (12) which defines the product in the twisted group ring
Fn(KΓ) = (KΓ)⊗n#(KSn) shows the existence of an isomorphism of algebras

K
[
Γ ≀ Sn

]
→ Fn(KΓ),

[
(γ1, γ2, . . . , γn) · σ

]
7→

[
(γ1 ⊗ γ2 ⊗ · · · ⊗ γn)#σ

]
.

Now the group algebra K
[
Γ ≀ Sn

]
has a standard structure of a symmetric algebra, whose

trace form τn is given by

τn

[
(γ1, γ2, . . . , γn) · σ

]
=

{

1 if γ1, γ2, . . . , γn are equal to the unit of Γ and σ = en,

0 otherwise.

Under the previous isomorphism, this trace form coincides with the linear form τtot

∣
∣
Fn(KΓ)

used in the proof of Proposition 13. We conclude that the pairing ̟tot

∣
∣
Fn(KΓ)×Fn(KΓ)

on

Fn(KΓ) corresponds to the usual associative, symmetric and perfect pairing on the group
algebra K

[
Γ ≀ Sn

]
.

4 A Solomon descent theory for the wreath products G ≀ Sn

In this section, we study a particular case of the following problem, inspired by Solomon’s
article [33]: given a finite group H, is it possible to find a subalgebra of the group algebra
KH of which the representation ring of H is a quotient? More precisely, we use the theory
developed in in the previous sections to give a positive answer in the case where the group H
is the wreath product G ≀ Sn of the symmetric group with a finite abelian group G.

4.1 Representation rings

We first set up the notation we plan to use concerning representation rings. Let H be a finite
group. We denote the algebra of complex-valued functions on H by C

H . The Z-submodule
of C

H spanned by the characters of H is called the ring of complex linear representations of
H and is denoted by R(H). The involutive map f 7→ f∗ which sends a function in C

H to its
complex-conjugate leaves R(H) stable. The assignment H Ã R(H) is a contravariant functor
from the category of finite groups to the category of commutative rings with involution.

Elements of R(H) are usually called virtual characters. The set Irr(H) of irreducible
characters of H is a basis of the Z-module R(H). A virtual character is called effective if all
its coordinates with respect to the basis Irr(H) are positive.

The linear form on C
H that maps a function f to the complex number 1

|H|

∑

h∈H f(h)

restricts to a Z-valued additive form ϕ on R(H), which is called the fundamental linear form
on R(H). Its value at an irreducible character ζ ∈ Irr(H) is 1 if ζ is the trivial character
of H and 0 otherwise. We define the fundamental bilinear form β : R(H) × R(H) → Z by
β(f, g) = ϕ(fg) for any (f, g) ∈ R(H)2. The usual inner product of characters is the bilinear
form (f, g) 7→ β(f, g∗). Given two irreducible characters ζ and ψ in Irr(H), the number β(ζ, ψ)
is thus 1 if ζ = ψ∗ and 0 otherwise. As a consequence, the fundamental bilinear form β is
an associative, symmetric and perfect pairing; endowed with it, R(H) becomes a symmetric
commutative algebra.

We conclude this section with a proposition which is probably well-known.

Proposition 14 The representation ring R(H) has trivial Jacobson radical.
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Proof. Let L be a number field big enough to contain all the roots of unity of order |H| in C,
and let O be the integral closure of Z in L. Let X the set of maximal ideals of O. Since O is
a Dedekind ring, there holds

⋂

m∈X

m = {0}.

For any h ∈ H, the evaluation ζ(h) of a virtual character ζ ∈ R(H) at h belongs to O. The
image of the evaluation map evh : ζ 7→ ζ(h) is therefore a subring of O, over which O is
integral. This implies that for any m ∈ X, the intersection (im evh)∩m is a maximal ideal in
(im evh), and thus that the inverse image ev−1

h (m) is a maximal ideal of R(H). The desired
result now follows from the equality

⋂

h∈H

⋂

m∈X

ev−1
h (m) =

⋂

h∈H

[

ev−1
h

(
⋂

m∈X

m

)]

=
⋂

h∈H

ker evh = {0},

because the Jacobson radical of R(H) is the intersection of all its maximal (left) ideals. ¤

4.2 The characters of the wreath products G ≀ Sn

Let G be a finite group, not necessarily abelian. We present in this section Specht’s results
about the characters of the wreath products G ≀ Sn. Our presentation follows the appendix
of [21], Appendix B of Chap. I in [22] and and §7 in [36], to which we refer the reader for the
proofs.

The wreath product G ≀ Sn is the semidirect product Gn
⋊ Sn for the usual permutation

action of Sn on Gn. (By convention, the notation G ≀S0 denotes the group with one element.)
An element of G ≀ Sn can always be written in two ways as the product of an element of Sn

and an element of Gn, namely

σ · (g1, g2, . . . , gn) = (gσ−1(1), gσ−1(2), . . . , gσ−1(n)) · σ.

Given a CG-module V , we construct a complex representation ηn(V ) of G ≀ Sn on the
space V ⊗n by letting a product (g1, . . . , gn) · σ act on a pure tensor v1 ⊗ · · · ⊗ vn ∈ V ⊗n by

((g1, g2, . . . , gn) · σ) · (v1 ⊗ v2 ⊗ · · · ⊗ vn) = (g1 · vσ−1(1)) ⊗ (g2 · vσ−1(2)) ⊗ · · · ⊗ (gn · vσ−1(n)).

The character of ηn(V ) does not depend actually on V but only of its character; if ζ denotes
the latter, then we will denote the former by ηn(ζ). Two particular cases are worth mentioning.

• If γ is a linear character of G, that is, a character of degree 1, then ηn(γ) is the linear
character

(
(g1, g2, . . . , gn) · σ

)
7→ γ(g1g2 · · · gn) of G ≀ Sn.

• If ζ is the regular character of G, then ηn(ζ) is the character induced from the trivial
representation of the subgroup Sn to G ≀ Sn.

Let c = (c1, c2, . . . , ck) be a composition of n. The Young subgroup Sc of Sn acts on
Gn, and the semidirect product Gn

⋊ Sc can be seen as the subgroup of G ≀ Sn generated
by Gn and Sc. By analogy, we denote it by G ≀ Sc and we call it a Young subgroup of
G ≀ Sn. The natural isomorphism Sc1 × Sc2 × · · · × Sck

∼= Sc gives rise to an isomorphism
(G ≀ Sc1) × (G ≀ Sc2) × · · · × (G ≀ Sck

) ∼= (G ≀ Sc).
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A partition is an infinite non-increasing sequence λ = (λ1, λ2, . . .) of non-negative integers,
all of whose terms but a finite number vanish. As usual, we denote the sum of the parts of λ
by |λ|; if |λ| = n, then we say that λ is a partition of n. To a partition λ of n, we associate in
the usual way an irreducible complex representation Sλ of Sn, the so-called Specht module.
Thus for instance the characters of S(n) and S(1,1,...,1) (with n terms equal to 1) are the trivial
and signature characters of Sn, respectively.

An Irr(G)-partition is a family λ = (λγ)γ∈Irr(G) indexed by Irr(G) of partitions. The size
of an Irr(G)-partition λ is the number ‖λ‖ =

∑

γ∈Irr(G) |λγ |. We define the dual of λ as the

Irr(G)-partition λ∗ =
(
γ 7→ λγ∗

)
.

Given an Irr(G)-partition λ of size n, one constructs a complex representation of G ≀ Sn

as follows. One enumerates the irreducible characters γ1, γ2, . . . , γr of G and picks up CG-
modules V1, V2, . . . , Vr that afford them. Let us set ci = |λi|. Since Sci is a quotient of
G ≀Sci , we may view the Specht module Sλγi

as a representation of G ≀Sci and we may then
multiply it by ηci(Vi). The outer product

(
Sλγ1

⊗ ηc1(V1)
)
⊗

(
Sλγ2

⊗ ηc2(V2)
)
⊗ · · · ⊗

(
Sλγr

⊗ ηcr(Vr)
)

is then a representation of (G ≀ Sc1) × (G ≀ Sc2) × · · · × (G ≀ Scr)
∼=

(
G ≀ S(c1,c2,...,cr)

)
, which

we can induce to G ≀ Sn. The result of this induction does not depend up to isomorphism on
the choice of the enumeration γ1, γ2, . . . , γr. Its character depends therefore only of λ; we
denote it by χλ. The map λ 7→ χλ affords a bijection from the set of Irr(G)-partitions of size
n onto the set Irr

(
G ≀ Sn

)
. The complex-conjugate of the character χλ is the character χλ

∗
.

Each representation ring R(G ≀ Sn) is a ring endowed with its fundamental linear and
bilinear forms ϕ and β, this latter being an associative, symmetric and perfect pairing. Con-
sidering all n at the same time yields however extra structures. We consider therefore the
direct sum Rep(G) =

⊕

n≥0 R(G ≀ Sn).
We define the induction product ψ ∗ ψ′ of two characters ψ of G ≀Sn and ψ′ of G ≀Sn′ as

the induction
ψ ∗ ψ′ = Ind

G≀Sn+n′

(G≀Sn)×(G≀Sn′ )

(
ψ ⊗ ψ′

)
,

where (G ≀ Sn) × (G ≀ Sn′) is viewed as the subgroup G ≀ S(n,n′) of G ≀ Sn+n′ . The bilinear
extension of the external product to Rep(G) × Rep(G) endows the space Rep(G) with the
structure of a graded associative and commutative algebra.

Likewise, the restriction coproduct ∆(ψ) of a character ψ of G ≀ Sn is defined to be the
sum over n′ ∈ {0, 1, . . . , n} of the restrictions

ResG≀Sn

(G≀Sn′ )×(G≀Sn−n′ )

(
ψ

)
.

This notation implicitely identifies characters of the group (G≀Sn′)×(G≀Sn−n′) with elements
of Repn′(G) ⊗ Repn−n′(G), so that ∆(ψ) ∈ Rep(G) ⊗ Rep(G). The linear extension of ∆ to
the whole space Rep(G) endows the latter with the structure of a graded coassociative and
cocommutative coalgebra. Mackey’s subgroup theorem implies that (Rep(G), ∗, ∆) is a graded
commutative cocommutative bialgebra.

In order to make the situation more alike to the structures seen in Sections 2 and 3, we
extend the product and the fundamental linear and bilinear forms ϕn and βn defined on each
R(G ≀ Sn) to operations defined on the whole space Rep(G) by setting

fg =
∑

n≥0

fngn, ϕtot(f) =
∑

n≥0

ϕn(fn) and βtot(f, g) = ϕtot(fg) =
∑

n≥0

βn(fn, gn)
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for any f =
∑

n≥0 fn and g =
∑

n≥0 gn, where fn and gn in R(G ≀ Sn). Then βtot is a
perfect symmetric pairing on Rep(G), with respect to which the induction product ∗ and the
restriction coproduct ∆ are adjoint to each other by Frobenius reciprocity. Moreover, Mackey’s
tensor product theorem (more precisely, the particular case stated in Corollary (10.20) of [11])
implies the following splitting formula: for any f , g1, g2, . . . , gl in Rep(G), there holds

f(g1 ∗ g2 ∗ · · · ∗ gl) =
∑

(f)

(f(1)g1) ∗ (f(2)g2) ∗ · · · ∗ (f(l)gl). (20)

We denote by Λ the ring of symmetric functions. This is indeed a graded bialgebra (see
I, 5, Ex. 25 in [22]). As is well-known, the complete symmetric functions hn are algebraically
independent generators of the commutative Z-algebra Λ. On the other hand, the Schur func-
tions sλ, where λ is a partition, is a basis of the Z-module Λ. Let Λ(Irr(G)) be the tensor
product of a family (Λ(γ))γ∈Irr(G) of copies of Λ. For any γ ∈ Irr(G), we denote by P (γ) the
element in the tensor factor Λ(γ) that corresponds to the symmetric function P ∈ Λ. Given
an Irr(G)-partition λ = (λγ)γ∈Irr(G), we set

sλ =
∏

γ∈Irr(G)

sλγ (γ).

Then the elements hn(γ) are algebraically independent generators of the commutative Z-
algebra Λ(Irr(G)), where n ≥ 1 and γ ∈ Irr(G), and the elements sλ form a basis of the
Z-module Λ(Irr(G)), where λ is an Irr(G)-partition. Finally we endow the graded bialgebra
Λ(Irr(G)) with a perfect symmetric pairing 〈?, ?〉 defined on the basis of Schur functions by

〈sλ, sλ
′〉 =

{

1 if λ′ = λ∗,

0 otherwise.

Our interest in Λ(Irr(G)) is that it gives a model that allows to calculate in Rep(G). More

precisely, there is an isomorphism of graded bialgebras ch : Rep(G)
≃

−→ Λ(Irr(G)), called the
Frobenius characteristic, such that

ch
(
ηn(γ)

)
= hn(γ) and ch

(
χλ

)
= sλ

for any n ≥ 1, any γ ∈ Irr(G) and any Irr(G)-partition λ. Moreover ch is compatible in the
obvious sense with the perfect symmetric pairings βtot on Rep(G) and 〈?, ?〉 on Λ(Irr(G)).

What precedes implies that

Rep(G) ∼=
⊗

γ∈Irr(G)

Z
[
η1(γ), η2(γ), . . .

]
.

The following proposition, which will be used in Section 4.5, explains how to find the expression
of ηn(ζ) as a polynomial in the ηn(γ) when the effective character ζ is not irreducible. In
order to state it, we introduce a last notation: viewing the signature character sgn of Sn as a
character of G ≀Sn through the quotient map (G ≀Sn) → Sn, we denote the product sgn ·ηn(ζ)
in the ring R(G ≀ Sn) by εn(ζ).

Proposition 15 There exists a morphism of groups H : R(G) →
(
Rep(G)[[u]]

)×
such that

H(ζ) =
∑

n≥0

ηn(ζ)un and H(−ζ) =
∑

n≥0

(−1)nεn(ζ)un (21)

for all effective characters ζ.
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Proof. We extend the Frobenius characteristic ch to an isomorphism of rings from Rep(G)[[u]]
onto Λ(Irr(G))[[u]]. Since R(G) is a free Z-module with basis Irr(G), there exists an homo-

morphism of abelian group H : R(G) →
(
Rep(G)[[u]]

)×
such that for each γ ∈ Irr(G),

H(γ) =
∑

n≥0

ηn(γ)un.

Now let ζ =
∑

γ∈Irr(G) aγγ be an effective character of G. A slight modification of the
calculation made in Appendix B of Chap. I, (8.3) in [22] yields

ch




∑

n≥0

ηn(ζ)un



 =
∏

γ∈Irr(G)




∑

n≥0

hn(γ)un





aγ

and

ch




∑

n≥0

(−1)nεn(ζ)un



 =
∏

γ∈Irr(G)




∑

n≥0

(−1)nen(γ)un





aγ

=
∏

γ∈Irr(G)




∑

n≥0

hn(γ)un





−aγ

, (22)

where en ∈ Λ is the symmetric elementary function of degree n. It follows that

ch




∑

n≥0

ηn(ζ)un



 =
∏

γ∈Irr(G)




∑

n≥0

ch
(
ηn(γ)

)
un





aγ

= ch




∏

γ∈Irr(G)




∑

n≥0

ηn(γ)un





aγ




= ch
(
H(ζ)

)
,

and likewise ch
(
∑

n≥0(−1)nε(ζ)un
)

= ch
(
H(−ζ)

)
. We conclude that (21) holds, as required.

¤

4.3 The Solomon homomorphism

The representation theory presented in Section 4.2 allows the use of the model Λ(Irr(G))
to compute the character tables of all the groups G ≀ Sn and to study the inductions and
the restrictions with respect to the Young subgroup. However Λ(Irr(G)) does not make the
computation of the ring structure of R(G ≀Sn) particularly easy. In this section, we construct
explicitly a surjective ring homomorphism from a subring of Z

[
G≀Sn

]
onto R(G≀Sn). However,

we must restrict ourselves to the case where G is abelian. As usual, it is convenient to do this
simultaneously for all n.

In this section and in the following one, K is the ring Z. Some variants are indeed possible,
but this choice simplifies slightly the notation. The letter G denotes a finite abelian group.
The dual group of G, denoted by G∧ or by Γ, is the set Irr(G) endowed with the ordinary
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product of characters. Although G and Γ are isomorphic as abstract groups, we do not identify
them. On the other hand, we observe that the group ring ZΓ coincides with the representation
ring R(G); indeed even the pairings and the trace forms which turn these rings into symmetric
Z-algebras agree.

We construct the graded bialgebra F (ZΓ) with its external product ∗ and its coproduct
∆; it is further endowed with the internal product ·, the linear form τtot and the pairing ̟tot

(see Section 3.5). On the other hand, we have the graded bialgebra Rep(G) with the induction
product ∗ and the coproduct ∆, with also the fundamental linear and bilinear forms ϕtot and
βtot; moreover the graded components R(G ≀Sn) of Rep(G) are symmetric algebras. Our aim
now is to show that Rep(G) is a subquotient of F (ZΓ).

Since ZΓ is a cocommutative bialgebra, the Mantaci-Reutenauer subbialgebra MR(ZΓ) of
F (ZΓ) is defined. This is a graded subbialgebra, whose homogeneous component of degree n,
say, will be denoted by MRn(ZΓ). By Corollary 11, each MRn(ZΓ) is a subalgebra of Fn(ZΓ)
for the internal product. Moreover, it follows from Proposition 3 that with respect to the
external product, the associative algebra MR(ZΓ) is freely generated by the elements yn,γ ,
where n ≥ 1 and γ ∈ Γ. Thus there is a unique morphism of algebras θG : MR(ZΓ) → Rep(G)
that maps yn,γ to ηn(γ). We call this map θG the Solomon homomorphism.

Theorem 16 (i) The Solomon homomorphism θG is a surjective homomorphism of graded
bialgebras with respect to the products ∗ and the coproducts ∆ on MR(ZΓ) and Rep(G); its
kernel is the ideal generated by the elements (ym,γ ∗ yn,δ − yn,δ ∗ ym,γ), where m ≥ 1, n ≥ 1,
and (γ, δ) ∈ Γ2.

(ii) For every degree n, the restriction of the Solomon map θG : MRn(ZΓ) → R(G ≀ Sn) is a
surjective homomorphism of rings; its kernel is the Jacobson radical of the ring MR(ZΓ).

(iii) The Solomon homomorphism is compatible with the linear and bilinear forms τtot and
̟tot on MR(ZΓ) and ϕtot and βtot on R(G ≀ Sn), in the sense that

τtot = ϕtot ◦ θG and ̟tot = βtot

(
θG(?), θG(?)

)
. (23)

The kernel of θG is equal to the kernel MR(ZΓ)∩MR(ZΓ)◦ of the pairing ̟tot

∣
∣
MR(ZΓ)×MR(ZΓ)

,

where the polar MR(ZΓ)◦ is defined in the ambient space F (ZΓ) with respect to the perfect
pairing ̟tot.

Proof. (i) The algebra MR(ZΓ) is the free associative Z-algebra generated by the elements
yn,γ , where n ≥ 1 and γ ∈ Γ, whilst Rep(G) is the free associative commutative Z-algebra
generated by the elements ηn(γ). It follows that θG is surjective and that its kernel is the
ideal generated by the commutators (ym,γ ∗ yn,δ − yn,δ ∗ ym,γ). Moreover θG is graded, for yn,γ

and hn(γ) have both degree n.

It is easy to see that

ResG≀Sn

(G≀Sn′ )×(G≀Sn−n′ )

(
ηn(γ)

)
= ηn′(γ) ⊗ ηn−n′(γ)

for any γ ∈ Γ and any integers n and n′ with 0 ≤ n′ ≤ n, and therefore

∆
(
ηn(γ)

)
=

n∑

n′=0

ηn′(γ) ⊗ ηn−n′(γ) (24)
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in Rep(G). It follows then by comparison with Equation (8) that the set

{x ∈ MR(ZΓ) | ∆ ◦ θG(x) = (θG ⊗ θG) ◦ ∆(x)}

contains the elements yn,γ . Since this set is a subalgebra, it is the whole MR(ZΓ). The
compatibility of θG with the counit is trivial, and we conclude that θG is a morphism of
coalgebras. Assertion (i) is proved.

(ii) We first prove that θG maps the internal product of MRn(ZΓ) to the ordinary product
of characters in R(G ≀ Sn). This fact may be shown by a direct computation using Mantaci
and Reutenauer’s rule (Corollary 12) and Mackey’s tensor product theorem; it may also be
obtained by the following reasoning, that is actually grounded on the same combinatorial
foundations.

A straightforward calculation, based on Equations (14) and (20) and on the fact that θG is a
morphism of bialgebras for the operations ∗ and ∆, shows that

E = {z ∈ MR(ZΓ) | ∀y ∈ MR(ZΓ), θG(y · z) = θG(y)θG(z)}

is a subalgebra of MR(ZΓ) for the external product ∗. On the other hand, every generator yn,δ

of MR(ZΓ) belongs to E. Indeed any element in MRn(ZΓ) is a linear combination of elements
of the form

y = yc1,γ1 ∗ yc2,γ2 ∗ · · · ∗ yck,γk
,

where c = (c1, c2, . . . , ck) is a composition of n and γ1, γ2, . . . , γk are elements of Γ, and for
such a y, Formulas (20) and (24) imply

θG(y · yn,δ) = θG

(
xc ·

[
(γ⊗c1

1 ⊗ γ⊗c2
2 ⊗ · · · ⊗ γ⊗ck

k )#en

]
· (δ⊗n#en)

)

= θG

(
xc ·

[
((γ1δ)

⊗c1 ⊗ (γ2δ)
⊗c2 ⊗ · · · ⊗ (γkδ)

⊗ck)#en

])

= θG

(
yc1,γ1δ ∗ yc2,γ2δ ∗ · · · ∗ yck,γkδ

)

= ηc1(γ1δ) ∗ ηc2(γ2δ) ∗ · · · ∗ ηck
(γkδ)

=
(
ηc1(γ1)ηc1(δ)

)
∗

(
ηc2(γ2)ηc2(δ)

)
∗ · · · ∗

(
ηck

(γk)ηck
(δ)

)

=
∑

(ηn(δ))

(
ηc1(γ1)(ηn(δ))(1)

)
∗

(
ηc2(γ2)(ηn(δ))(2)

)
∗ · · · ∗

(
ηck

(γk)(ηn(δ))(k)

)

=
(
ηc1(γ1) ∗ ηc2(γ2) ∗ · · · ∗ ηck

(γk)
)

ηn(δ)

= θG(y) θG(yn,δ).

Therefore E = MR(ZΓ). Observing moreover that θG maps the unit element of MRn(ZΓ),
namely (1⊗n#en) = yn,1, to the unit of R(G ≀ Sn), namely the trivial character ηn(1) of
G ≀Sn, we conclude that the degree n part of θG is an homomorphism of rings from MRn(ZΓ)
to R(G ≀ Sn).

Assertion (i) implies that this homomorphism is surjective, which entails that the Jacobson
radical of MRn(ZΓ) is contained in the preimage by θG

∣
∣
MRn(ZΓ)

of the Jacobson radical of

R(G ≀ Sn). By Proposition 14), this translates readily into the inclusion radMRn(ZΓ) ⊆
ker θG

∣
∣
MRn(ZΓ)

.
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To prove the reverse inclusion, we will use the result stated in Assertion (iii). (Though its
validity has not yet been established, no vicious circle arises in the reasoning.) So let us
suppose that some element x ∈ MRn(ZΓ) belongs to the kernel of θG. This element x acts
by left multiplication on the algebra Fn(ZΓ). Since this latter is a free Z-module, this action
can be represented by a matrix with entries in Z. For any positive integer k, the k-th power
of this matrix represents the action of the left multiplication by xk and therefore its trace is

rkFn(ZΓ) τtot(x
k)

by the interpretation of τtot given at the end of Section 3.5. However our assumption that
x ∈ ker θG and Assertion (iii) yield

τtot(x
k) = ̟tot(x, xk−1) = βtot

(
θG(x), θG

(
xk−1

))
= 0

for all k ≥ 1. It follows that our matrix is nilpotent, and therfore that x itself is nilpotent.
This argument shows that all elements of the ideal ker θG

∣
∣ MRn(ZΓ) of MRn(ZΓ) are nilpo-

tent. This kernel is thus contained in the radical of MRn(ZΓ), which completes the proof of
Assertion (ii).

(iii) Elements of the form
x = yc1,γ1 ∗ yc2,γ2 ∗ · · · ∗ yck,γk

span the Z-module MR(ZΓ). Putting n = c1 +c2 + · · ·+ck and c = (c1, c2, . . . , ck), we observe
that

τtot(x) = τtot

(
xc ·

[
(γ⊗c1

1 ⊗ γ⊗c2
2 ⊗ · · · ⊗ γ⊗ck

k )#en

])

is 1 if all the elements γi are equal to 1 and is 0 otherwise. On the other hand, Frobenius
reciprocity implies that

ϕtot ◦ θG(x) = dim HomG≀Sn

(
ηc1(γ1) ∗ ηc2(γ2) ∗ · · · ∗ ηck

(γk), 1G≀Sn

)

= dim HomG≀Sn

(
IndG≀Sn

G≀Sc

(
ηc1(γ1) ⊗ ηc2(γ2) ⊗ · · · ⊗ ηck

(γk)
)
, 1G≀Sn

)

= dim HomG≀Sc

(
ηc1(γ1) ⊗ ηc2(γ2) ⊗ · · · ⊗ ηck

(γk), 1G≀Sc

)
.

The character ηc1(γ1)⊗ηc2(γ2)⊗· · ·⊗ηck
(γk) of G≀Sc is one-dimensional. Therefore ϕtot◦θG(x)

is 1 if this character is trivial, that is, if all the elements γi are equal to 1, and is 0 otherwise.
The equality τtot(x) = ϕtot ◦ θG(x) being valid for each x in a spanning set for MR(ZΓ), we
conclude that τtot = ϕtot ◦ θG. In turn, this implies that

̟tot(x, y) = τtot(x · y) = ϕtot ◦ θG(x · y) = ϕtot(θG(x)θG(y)) = βtot(θG(x), θG(y))

for any (x, y) ∈ MR(ZΓ)2.

An immediate consequence of this last equality is that ker θG is contained in the kernel
MR(ZΓ)∩MR(ZΓ)◦ of the symmetric pairing ̟tot

∣
∣
MR(ZΓ)×MR(ZΓ)

. The reverse inclusion holds

also because θG is surjective and βtot is a perfect pairing on Rep(G). Assertion (iii) is proved.
¤

Assertion (ii) of Theorem 16 says that the representation ring R(G ≀ Sn) can be obtained
as a quotient of the subring MRn(ZΓ) of Fn(ZΓ) ∼= Z

[
Γ ≀Sn

]
. Since Γ and G are isomorphic,

this entails that the representation ring of the group G ≀ Sn can be realized as a quotient
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of a subring of its group algebra. In other words, there exists a Solomon descent theory for
the wreath product G ≀ Sn. However it is not canonical, for it depends on the choice of an
isomorphism between G and its dual.

The notation used above suggests the existence of some kind of functoriality. In order to
state a precise statement, we define a category V . Objects of V are N-graded abelian groups
A =

⊕

n≥0 An; each graded piece An is further endowed with the structure of a ring, and the
whole space A is endowed with the structure of a graded Z-bialgebra through another, graded
product, a unit, a coproduct and a counit. Morphisms in V are maps that respect the N-
graduation, all products with their units and the coproduct with its counit. In the statement
below, we denote the dual of a finite abelian group G by G∧; the assignment G Ã G∧ is a
contravariant endofunctor of the category of finite abelian groups.

Proposition 17 The assignments G Ã F (Z[G∧]), G Ã MR(Z[G∧]) and G Ã Rep(G) are
contravariant functors from the category of finite abelian groups to the category V . The as-
signment G Ã θG is a natural transformation from MR(Z[?∧]) to Rep(?).

We leave the proof as a (rather tedious) exercise. The naturality of G Ã θG means that
for each morphism f : G → G′ between two finite abelian groups, the diagram

F (Z[G∧]) F (Z[(G′)∧])
F (Z[f∧])

MR(Z[G∧])

θG

MR(Z[(G′)∧])

θG′

MR(Z[f∧])

Rep(G) Rep(G′)
Rep(f)

is commutative.
To conclude this section, let us observe that Formula (23) implies the commutativity of

the diagram

F (ZΓ)
≃

̟tot
♭

F (ZΓ)∨

MR(ZΓ)

θG

MR(ZΓ)∨.

Rep(G)
≃

βtot
♭

Rep(G)∨
(θG)∨

(25)

(The surjectivity of the map F (ZΓ)∨ → MR(ZΓ)∨ comes from Proposition 6.) By Theorem 16,
θG is surjective with kernel MR(ZΓ)∩MR(ZΓ)◦, which implies that θG defines an isomorphism
of graded bialgebras

θG : MR(ZΓ)/(MR(ZΓ) ∩ MR(ZΓ)◦)
≃

−→ Rep(G).
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We can therefore add an horizontal line in the middle of the diagram (25) and get

F (ZΓ)
≃

̟tot
♭

F (ZΓ)∨

MR(ZΓ)

θG

MR(ZΓ)/(MR(ZΓ) ∩ MR(ZΓ)◦)

≃ θG

(
MR(ZΓ)/(MR(ZΓ) ∩ MR(ZΓ)◦)

)
∨

MR(ZΓ)∨.

Rep(G)
≃

βtot
♭

Rep(G)∨

≃

θG
∨

(θG)∨

This is of course an occurence of the diagram (11) with V = ZΓ and S = MR(ZΓ). As a bonus,
we see that the pairing induced by ̟tot on S/(S ∩ S◦) is perfect in the present situation.

Remark 18. In this remark, we consider the case G = Z/rZ. Hiver, Novelli and Thibon [15]
have found an embodiment of the lower half of the diagram (25) in terms of the represen-
tation theory of a suitable limit at q = 0 of the Ariki-Koike algebra Hn,r(q). More pre-
cisely, these authors propose to identify as Z-modules the degree n components MRn(ZΓ) and
MRn(ZΓ)∨ with the Grothendieck groups K0(Hn,r(0)) and G0(Hn,r(0)), respectively. They
claim that in this identification, the map θ∨G ◦ θG coincides with the Cartan homomorphism
c : K0(Hn,r(0)) → G0(Hn,r(0)), which describes the Jordan-Hölder multiplicities of the simple
modules in a projective module. They also assert that the maps θG and θ∨G can be interpreted
as arrows in a Cartan-Brauer cde triangle

K0(Hn,r(0))
c

e

G0(Hn,r(0))

K0(Hn,r(q))

d

,

the bottom vertex being the Grothendieck group of the semisimple category of finitely gen-
erated Hn,r(q)-modules, where q is generic. Yet the fact, apparent in our constructions, that
the Cartan map c is a morphism of K0(Hn,r(0))-bimodules is missing in this picture.

4.4 Symmetry property of the Solomon homomorphism

Given any finite group H, the data of a complex-valued function on H is the same thing as
the data of a Z-linear map from ZH into C; we can therefore evaluate an element of R(H) on
an element of ZH. Applying this remark to the case of the group G ≀ Sn, we can evaluate an
element θG(y) with y ∈ MRn(ZΓ) on an element of Z

[
G ≀ Sn

]
= Fn(ZG), and in particular

on an element x of MRn(ZG). Now G and Γ play symmetric roles, so that the problem of
comparing θG(y)(x) and θΓ(x)(y) arises.

Theorem 19 For any n ≥ 1, x ∈ MRn(ZG) and y ∈ MRn(ZΓ), there holds θG(y)(x) =
θΓ(x)(y).

Proof. In order to better put in evidence the symmetry between G and Γ, we denote the
evaluation of a character γ ∈ Γ at a point g ∈ G by a bracket 〈γ, g〉; the same notation can
then also be used to denote the evaluation of g, viewed as a character of Γ, at the point γ.
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We check the property asserted by the theorem for x = yc1,g1 ∗ yc2,g2 ∗ · · · ∗ yck,gk
and

y = yd1,γ1 ∗ yd2,γ2 ∗ · · · ∗ ydk,γk
, where c = (c1, c2, . . . , ck) and d = (d1, d2, . . . , dl) are two

compositions of n, (g1, g2, . . . , gk) ∈ Gk and (γ1, γ2, . . . , γl) ∈ Γl. Let us set

g̃ = g̃1 ⊗ g̃2 ⊗ · · · ⊗ g̃n = (g⊗c1
1 ) ⊗ (g⊗c2

2 ) ⊗ · · · ⊗ (g⊗ck

k ),

γ̃ = γ̃1 ⊗ γ̃2 ⊗ · · · ⊗ γ̃n = (γ⊗d1
1 ) ⊗ (γ⊗d2

2 ) ⊗ · · · ⊗ (γ⊗dl

l ).

We first compute θG(y)(x). Let ρ ∈ Xc. Noting that the composed map

Sn →֒ G ≀ Sn ։ (G ≀ Sn)/(G ≀ Sd)

induces a bijection from Sn/Sd onto (G ≀ Sn)/(G ≀ Sd) and setting uj = d1 + d2 + · · · + dj ,
we compute

θG(y)(ρ · (g̃#en)) = IndG≀Sn

G≀Sd

(
ηd1(γ1) ⊗ ηd2(γ2) ⊗ · · · ⊗ ηdl

(γl)
)(

ρ · (g̃#en)
)

=
∑

π∈Sn/Sd

π−1ρπ∈Sd

(
ηd1(γ1) ⊗ ηd2(γ2) ⊗ · · · ⊗ ηdl

(γl)
)(

π−1ρ · (g̃#en) · π
)

=
∑

π∈Sn/Sd

π−1ρπ∈Sd

l∏

j=1

〈γj , g̃π(uj−1+1)g̃π(uj−1+2) · · · g̃π(uj)〉

=
∑

π∈Xd

ρπSd=πSd

〈γ̃1, g̃π(1)〉〈γ̃2, g̃π(2)〉 · · · 〈γ̃n, g̃π(n)〉.

Taking the sum for all ρ ∈ Xc, we find

θG(y)(x) =
∑

ρ∈Xc

θG(y)(ρ · (g̃#en)) =
∑

ρ∈Xc, π∈Xd

ρπSd=πSd

〈γ̃1, g̃π(1)〉〈γ̃2, g̃π(2)〉 · · · 〈γ̃n, g̃π(n)〉. (26)

In Section 3.2, we have parametrized double cosets C ∈ Sc\Sn/Sd by matrices M ∈ Mc,d:
to the matrix M = (mij) corresponds the double coset C(M). We aim now at splitting the
sum in the right-hand side of (26) according to the double coset C containing π. For that, we
set

F(c,d, M) =
{
(ρ, π) ∈ Xc × (Xd ∩ C(M))

∣
∣ ρπSd = πSd

}

and we observe that

〈γ̃1, g̃π(1)〉〈γ̃2, g̃π(2)〉 · · · 〈γ̃n, g̃π(n)〉 =
k∏

i=1

l∏

j=1

〈gi, γj〉
mij

if π ∈ C(M). Then (26) reads

θG(y)(x) =
∑

M∈Mc,d

[

∣
∣F(c,d, M)

∣
∣

k∏

i=1

l∏

j=1

〈gi, γj〉
mij

]

,
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and by symmetry,

θΓ(x)(y) =
∑

N∈Md,c

[

∣
∣F(d, c, N)

∣
∣

l∏

j=1

k∏

i=1

〈γj , gi〉
nji

]

=
∑

M∈Mc,d

[

∣
∣F(d, c, MT )

∣
∣

k∏

i=1

l∏

j=1

〈gi, γj〉
mij

]

,

where MT denote the transpose of the matrix M . Observing now that the double coset
C(MT ) ∈ Sd\Sn/Sc is equal to C(M)−1 = {π−1 | π ∈ C(M)}, we deduce from Theorem 1.2
and Corollary 2.2 of [8], applied to the group Sn, that

∣
∣F(c,d, M)

∣
∣ =

∣
∣F(d, c, MT )

∣
∣

for each matrix M ∈ Mc,d. The theorem follows. ¤

This kind of question was first investigated by Jöllenbeck and Reutenauer in [17]; their
result corresponds to the (already non-trivial) case where G is the group with one element. A
similar symmetry result holds also for the original Solomon descent algebra and the original
Solomon homomorphism of an arbitrary finite Coxeter group (see [8]); the critical point in the
proof above is a theorem from this latter work.

4.5 The particular case G = Z/2Z

In this section, we apply our results to the case where G = {±1} is the group with two elements.
The peculiarity of this case is that Wn = G ≀ Sn is then the Coxeter group of type Bn. Thus

Solomon’s constructions [33] can be applied to it: there is a certain subring Σ̃ of the group
ring ZWn and a certain homomorphism of rings θ̃ from Σ̃ to the representation ring R(Wn).
This map θ̃ is not surjective, but Bonnafé and Hohlweg [10] manage to correct the situation.
They notice that the subring Σ̃ of ZWn

∼= Fn(ZG) is contained in the Mantaci-Reutenauer
algebra MRn(ZG) and show how to extend θ̃ to MRn(ZG). The resulting map, still denoted
by θ̃, is a surjective homomorphism of rings from MRn(ZG) onto R(Wn). The situation now
looks like our Theorem 16 (ii), which says that the homomorphism θG is a surjective ring
homomorphism from MRn(ZΓ) onto R(G ≀Sn) = R(Wn). Indeed we may identify G and Γ in
the present case G = {±1}, because there is a unique isomorphism between G and Γ. Then
both θ̃ and θG are surjective ring homomorphisms from MRn(ZΓ) onto R(Wn); our aim in
this section is to explain the relationship between them.

We begin by setting the notation, following [10]. Let n be a non-negative integer. We set
G = {±1} and Wn = G ≀Sn. The group Wn contains Sn as a subgroup; it is generated by the
transpositions si ∈ Sn (see the proof of Corollary 8) and the element (−1, 1, 1, . . . , 1) ∈ Gn.
Endowed with this system of generators, Wn becomes a Coxeter system.

We agree to denote the subgroup Sn of Wn by the somewhat strange convention W−n.
Likewise, we denote the trivial subgroup with one element of Gc by G−c, for any positive
integer c. We define a signed composition of n as a finite sequence C = (c1, c2, . . . , ck) of non-
zero integers such that |c1| + |c2| + · · · + |ck| = n; then the sequence C+ = (|c1|, |c2|, . . . , |ck|)
is a composition of n. Given such a sequence C, we observe that the Young subgroup SC+ of
Sn, acting on Gn, leaves stable the subgroup GC = Gc1 ×Gc2 × · · · ×Gck . We can thus make
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the semidirect product WC = GC
⋊ SC+ ; this is a subgroup of Gn

⋊ SC+ = G ≀ SC+ , hence
of Wn. For instance, W(−n) = Sn = W−n.

Let C be a signed composition of n. By Proposition 2.8 of [10], each left coset wWC of Wn

modulo WC contains a unique element of minimal length, called the distinguished representa-
tive of this coset. Following [10], we denote the set of all these distinguished representatives
by XC and we define the element x̃C =

∑

w∈XC
w in the group ring ZWn.

The dual group Γ of G has also two elements, namely the trivial character t and the sign
character s. Since Γ is canonically isomorphic to G, the group ring Z

[
Γ ≀ Sn

]
= Fn(ZΓ)

is canonically isomorphic to ZWn. The elements x̃C can therefore be viewed as elements in
Fn(ZΓ). To complete the notation, we set

zn = (s, s, . . . , s
︸ ︷︷ ︸

n times

) · [n(n − 1) · · · 1]

for any n ≥ 1, where [n(n− 1) · · · 1] is the longest permutation in Sn, and we agree that x̃(0),
y0,s, y0,t and z0 are all equal to the unit of F0(ZΓ) = Z.

Proposition 20 (i) We have the following relations:

x̃(n) = yn,t, (27)

x̃(−n) =
n∑

i=0

zi ∗ yn−i,t, (28)

n∑

i=0

(−1)i zi ∗ yn−i,s =

n∑

i=0

(−1)i yn−i,s ∗ zi =

{

1 if n = 0,

0 if n > 0,
(29)

x̃C = x̃(c1) ∗ x̃(c2) ∗ · · · ∗ x̃(ck). (30)

for any non-negative integer n and any signed composition C = (c1, c2, . . . , ck) of n.

(ii) The elements x̃C form a basis of MRn(ZΓ), where C is a signed composition of n.

Proof. (i) Formula (27) holds because both members are equal to the unit of the ring ZWn,
by definition.

By Example 2.23 in [10], we know that X(−n) is the set of all elements w ∈ Wn of the form

w = σ · (−1,−1, . . . ,−1
︸ ︷︷ ︸

i times

, 1, 1, . . . , 1
︸ ︷︷ ︸

n−i times

),

where σ ∈ Sn is decreasing on the interval [1, i] and increasing on the interval [i + 1, n]. This
entails Formula (28), since in the identification of G with Γ, the elements 1 and −1 correspond
to t and s, respectively.

Let n be a positive integer. The set of all compositions of n is a ranked poset when en-
dowed with the refinement order 4; here the rank function is the map which associates to a
composition d its number of parts l(d). The equality

xc =
∑

d|=n

d4c

∑

σ∈Sn

D(σ)=d

σ,
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valid for each composition c of n, entails by Möbius inversion

∑

σ∈Sn

D(σ)=c

σ =
∑

d|=n

d4c

(−1)l(c)−l(d) xd. (31)

Taking c = (1, 1, . . . , 1) (n times) in Formula (31) and multiplying by (s, s, . . . , s), we obtain

zn =
∑

d|=n

d=(d1,d2,...,dl)

(−1)n−l yd1,s ∗ yd2,s ∗ · · · ∗ ydl,s.

From there, one deduces easily Formula (29).

Finally Formula (30) is Example 5.3 in [10].

(ii) Formula (29) implies that each element zn belongs to MR(ZΓ). Using Formulas (27),
(28) and (30), we then deduce that each element x̃C belongs to MR(ZΓ), where C is a signed
composition. In other words, the submodule MR

′ of F (ZΓ) spanned over Z by the elements
x̃C is contained in MR(ZΓ). Formula (30) shows furthermore that MR

′ is a subalgebra for
the external product ∗. Observing then that MR

′ contains all the elements yn,t and x̃(−n),
an easy induction based on Formulas (28) and (29) shows that each zn and each yn,s is in
MR

′. This implies that MR
′ contains MR(ZΓ) because the latter is generated as an algebra

by the elements yn,t and yn,s. It follows that the Z-module MR(ZΓ) = MR
′ is spanned by the

elements x̃C .

Now Proposition 3 (or more precisely, its consequence stated at the end of Section 1.3) implies
that MRn(ZΓ) is a free Z-module whose rank r is equal to the number of words yc1,γ1 ∗
yc2,γ2 ∗ · · · ∗ yck,γk

, where (c1, c2, . . . , ck) is a composition of n and each γi ∈ {t, s}. Then any
generating family of MRn(ZΓ) with r elements is a basis thereof. We conclude that the family
of elements x̃C , where C is a signed composition of n, is a basis of MRn(ZΓ).
¤

Bonnafé and Hohlweg call the submodule spanned by the elements x̃C the ‘generalized
descent algebra’ and observe that it coincides with the Mantaci-Reutenauer algebra MRn(ZΓ)
(see §3.1 in [10]). Assertion (ii) of Proposition 20 is roughly equivalent to this observation,
and indeed our proof follows closely the analysis in [10].

The associative algebra MR(ZΓ) is freely generated by the elements yn,t and yn,s, where
n ≥ 1. On the other side, we have defined in Section 4.2 the characters ηn(t) and εn(s). Thus
there exists a unique morphism of algebras θ̃ : MR(ZΓ) → Rep(G) that maps yn,t and yn,s to
ηn(t) and εn(s), respectively.

Proposition 21 (i) The map θ̃ enjoys all the properties stated in Theorem 16 for the map θG.

(ii) For any signed composition C of a positive integer n, θ̃(x̃C) is the character of Wn induced
from the trivial character of WC .

Proof. (i) The graded bialgebra Λ of symmetric functions has a canonical involution ω, which
exchanges the complete symmetric function hn with the elementary symmetric function en of
the same degree (see I, (2.7) in [22]). Now Λ(Irr(G)) is the tensor product Λ(t)⊗Λ(s) of two
copies of Λ, so that idΛ(t) ⊗ ω(s) is an involutive automorphism of Λ(Irr(G)). Equation (22)
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shows that the Frobenius characteristic ch maps εn(s) to the element en(s) of Λ(Irr(G)).
Therefore the homomorphism ch ◦ θ̃ maps the two elements yn,t and yn,s to hn(t) and en(s),
respectively, while ch ◦ θG maps these elements to hn(t) and hn(s). Thus the diagram

Rep(G)
≃
ch

Λ(Irr(G))

idΛ(t)⊗ω(s)MR(ZΓ)

θG

θ̃

Rep(G)
≃
ch

Λ(Irr(G))

is commutative. Since ch and idΛ(t) ⊗ ω(s) are isomorphisms of graded bialgebras, θ̃ inherits
from θG the properties stated in Assertion (i) of Theorem 16. The proof of Assertions (ii)
and (iii) of Theorem 16 presented in Section 4.3 can be repeated with evident adjustments to
the case of θ̃; the main difference lies in the proof of the multiplicativity of θ̃ with respect to
the internal product of MRn(ZΓ) and the ordinary product of R(Wn), where one must use the
equalities ηn(t)εn(s) = εn(s) and εn(s)εn(s) = ηn(t).

(ii) Let u be an indeterminate. Applying θ̃ to Formulas (28) and (29) and summing over n,
we find




∑

n≥0

θ̃(zn)un



 ∗




∑

n≥0

(−1)n θ̃(yn,s)u
n



 =




∑

n≥0

(−1)n θ̃(yn,s)u
n



 ∗




∑

n≥0

θ̃(zn)un



 = 1,

∑

n≥0

θ̃(x̃(−n))u
n =




∑

n≥0

θ̃(zn)un



 ∗




∑

n≥0

θ̃(yn,t)u
n



 .

In Proposition 15, we have constructed an homomorphism H from the additive group R(G)

into
(
Rep(G)[[u]]

)×
such that

H(t) =
∑

n≥0

ηn(t)un =
∑

n≥0

θ̃(yn,t)u
n,

H(−s) =
∑

n≥0

(−1)nεn(s)un =
∑

n≥0

(−1)nθ̃(yn,s)u
n.

Then

∑

n≥0

θ̃(zn)un =




∑

n≥0

(−1)nθ̃(yn,s)u
n





−1

= H(−s)−1 = H(s),

which implies in turn
∑

n≥0

θ̃(x̃(−n))u
n = H(s) ∗ H(t) = H(t + s) =

∑

n≥0

ηn(t + s)un.

It follows that θ̃(x̃(−n)) = ηn(t+ s). Now the character ηn(t+ s) of G ≀Sn is induced from the

trivial representation of Sn, because t + s is the regular character of G. Therefore θ̃(x̃(−n)) is
the character of Wn induced from the trivial character of W−n.
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On the other side, θ̃(x̃(n)) = θ̃(yn,t) = ηn(t) is the trivial character of Wn. Using the transi-
tivity of induction, we thus find that for any signed composition C = (c1, c2, . . . , ck) of n,

θ̃(x̃C) = θ̃
(
x̃(c1)

)
∗ θ̃

(
x̃(c2)

)
∗ · · · ∗ θ̃

(
x̃(ck)

)

= IndG≀Sn

G≀SC+

(

Ind
W|c1|

Wc1
1 ⊗ Ind

W|c2|

Wc2
1 ⊗ · · · ⊗ Ind

W|ck|

Wck
1
)

= IndWn
WC

1,

taking into account the identifications

G ≀ Sn = Wn, G ≀ SC+
∼= W|c1| × W|c2| × · · · × W|ck| and Wc1 × Wc2 × · · · × Wck

∼= WC .

This concludes the proof.
¤

Assertion (ii) of this proposition says that our homomorphism θ̃ is equal to the homomor-
phism defined by Bonnafé and Hohlweg §3.1 in [10]. It follows then from the results of these
authors that θ̃ extends Solomon’s original homomorphism.

On the contrary, θG does not extend Solomon’s original homomorphism. Indeed we observe
that the parabolic subgroups of the Coxeter system Wn are the subgroups WC , where the
signed composition C = (c1, c2, . . . , ck) has all its parts negative with the possible exception
of c1. Therefore the original Solomon algebra of Wn is the submodule Σ̃ of the group ring
ZWn spanned by the elements x̃C for such signed compositions. Taking n = 2 and using
Relations (27)–(30), we check that the element y2,s = x̃(−1,−1) − x̃(1,−1) + x̃(2) − x̃(−2) belongs

to Σ̃. Its image under ch ◦ θG, namely ch(η2(s)) = h2(s), is different from its image under
ch ◦ θ̃, namely ω(h2(s)) = e2(s); it follows that θG

∣
∣
Σ̃

does not coincide with Solomon’s original

homomorphism θ̃
∣
∣
Σ̃
.

On the other side, our map θG shares with Solomon’s original homomorphism a property
that Bonnafé and Hohlweg’s extension θ̃ does not have, namely the symmetry property of
Theorem 19. Again a counterexample can be found already for n = 2: one can indeed check
that the value of the character θ̃(x̃(−2)) on the element x̃(1,1) is 6, while the value of θ̃(x̃(1,1))
on x̃(−2) is 4.

5 Coloured combinatorial Hopf algebras

In the previous sections, we have presented our main constructions and the applications which
have motivated them. In the case where G is the group with one element, the diagram (25)
is the usual diagram which relates the different kinds of symmetric functions: ordinary, non-
commutative, quasisymmetric, free quasisymmetric. This diagram can be enriched with other
bialgebras: the plactic and the coplactic bialgebras [30], the Loday-Ronco bialgebra [20], the
peak algebra [34], etc.

Here we define analogues of some of the plactic and the coplactic bialgebras and we in-
sert them in (25). The analogue of the coplactic bialgebra presents two interests: first, the
Solomon homomorphism θG can be extended to it in a natural way; second it is related to a
construction already present in the litterature, which we call the Robinson-Schensted-Okada
correspondence.
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5.1 Categorical framework

We start by setting up quickly a clean framework adapted to our goal. We define a category
E as follows. The objects of E are pairs (B, ?∗), where B is a finite set and ?∗ : b 7→ b∗ is an
involutive map from B to B. We generally omit the involution in the notation, writing just
B. Given two objects B and C of E , an homomorphism from B to C is the data of a bijection
ϕ from a subset B′ of B onto a subset C ′ of C.

Any finite group Γ can be considered as an object of E , where the involution ?∗ is the map
γ 7→ γ−1. The set Irr(H) of irreducible characters of a finite group H can also be considered
as an object of E , with the complex conjugation as involution ?∗.

An object (B, ?∗) of E is viewed as the basis of the free K-module KB. We define a pairing
̟ on KB by setting ̟(b, b′) equal to 1 if b′ = b∗ and equal to 0 otherwise; this pairing is
perfect and symmetric, for b 7→ b∗ is involutive. A morphism f : B → C induces a linear map
Kf : KB → KC as follows: if f is defined by the bijection ϕ : B′ → C ′, then Kf maps an
element b of the basis B to ϕ(b) if b ∈ B′ and to 0 otherwise.

Let B be an object of E . We can trace the constructions of Section 1 at the level of bases.
In more details, the group Sn acts by permutation on Bn. We denote the cartesian product
of Bn with Sn by B ≀ Sn and endow it with the following two-sided action of Sn:

π · (b1, b2, . . . , bn; σ) = (bπ−1(1), bπ−1(2), . . . , bπ−1(n)); πσ)

(b1, b2, . . . , bn; σ) · π = (b1, b2, . . . , bn; σπ).

We can view B ≀ Sn as a basis of the free K-module Fn(KB) by identifying the element
(b1, b2, . . . , bn; σ) of B ≀ Sn with the element [(b1 ⊗ b2 ⊗ · · · ⊗ bn)#σ

]
of Fn(KB).

We can then continue the construction and obtain from B the free quasisymmetric graded
bialgebra F (KB) and the Novelli-Thibon algebra NT(KB). Now the construction of the
Mantaci-Reutenauer bialgebra requires additionnally the data of a coalgebra structure. But
given a finite set B, one can always define a structure of a coalgebra on KB by requiring that
the elements of B are group-like; in other words, one agrees that the coproduct δ and the
counit ε are defined by

δ(b) = b ⊗ b and ε(b) = 1

for any b ∈ B. Endowing KB with this structure, we can construct the Mantaci-Reutenauer
bialgebra MR(KB); to translate into the notation the fact that this bialgebra depends on
the choice of the basis B of KB, we denote it by D(B). By Proposition 3, the associative
algebra D(B) is freely generated by the elements yn,b with n ≥ 1 and b ∈ B. The assignments
B Ã F (KB) and B Ã D(B) are covariant functors from the category E to the category of
graded bialgebras.

Finally, given an object B of E , the perfect symmetric pairing ̟ on KB can be extended
to a perfect symmetric pairing ̟tot on F (KB) (see Section 2.2). The basis B ≀ Sn is dual to
itself with respect to ̟tot; more precisely, the basis element dual to α = (b1, b2, . . . , bn; σ) is
α∗ =

[
σ−1 · (b∗1, b

∗
2, . . . , b

∗
n; en)

]
.

5.2 Coloured descent compositions

Let B be an object of E . Since D(B) is a direct summand of F (KB) by Proposition 6, the
dual bialgebra D(B)∨ is canonically isomorphic to the quotient F (KB)/D(B)◦. Our aim is
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to study the subbialgebra D(B) and the quotient bialgebra F (KB)/D(B)◦ of F (KB) on the
level of basis in a combinatorial way.

We begin with definitions. A B-composition is a finite sequence c = ((c1, b1), (c2, b2), . . . ,
(ck, bk)) of elements of Z>0 × B. The size of c is the integer ‖c‖ = c1 + c2 + · · · + ck. The
dual of c is the B-composition c∗ = ((c1, b

∗
1), (c2, b

∗
2), . . . , (ck, b

∗
k)). Given two B-compositions

c = ((c1, b1), (c2, b2), . . . , (ck, bk)) and d = ((d1, b
′
1), (d2, b

′
2), . . . , (dl, b

′
l)) of the same size n, we

say that c is a refinement of d and we write c < d if there holds

(c1, c2, . . . , ck) < (d1, d2, . . . , dl),

(b1, . . . , b1
︸ ︷︷ ︸

c1 times

, b2, . . . , b2
︸ ︷︷ ︸

c2 times

, . . . , bk, . . . , bk
︸ ︷︷ ︸

ck times

) = (b′1, . . . , b
′
1

︸ ︷︷ ︸

d1 times

, b′2, . . . , b
′
2

︸ ︷︷ ︸

d2 times

, . . . , b′k, . . . , b
′
k

︸ ︷︷ ︸

dk times

).

The relation 4 is a partial order on the set of B-compositions of n.
We associate to each element α ∈ B ≀ Sn two B-compositions D(α) and R(α) of size n.

The ‘descent composition’ D(α) is constructed by the following procedure, due to Mantaci and
Reutenauer [24]. We first write α as

(
bσ−1(1), bσ−1(2), . . . , bσ−1(n); σ

)
=

[
σ · (b1, b2, . . . , bn; en)

]
,

as before. Then one decomposes the interval [1, n] into the largest subintervals on which
the map i 7→ bi is constant, and after that, one decomposes each such subinterval into
the largest subsubintervals on which the map i 7→ σ(i) is increasing. Each subsubinter-
val yields a pair formed by its length and the value taken by the map i 7→ bi. Then
D(α) is the ordered list of all these pairs. We define the ‘receding composition’ of α by
the equality R(α) = D(α∗)∗. An example illustrates these definitions. We take a and
b in B, n = 7 and α = (a, a, b, a, b, b, a; 1426735) =

[
1426735 · (a, a, a, b, a, b, b; e7)

]
; then

D(α) = ((2, a), (1, a), (1, b), (1, a), (2, b)) and R(α) = ((2, a), (1, b), (1, a), (1, b), (1, b), (1, a)).
For any i ∈ {1, 2, . . . , n−1}, we denote by si the transposition in Sn that exchanges i and

i + 1. We say that two elements α and α′ of B ≀ Sn are related by an Atkinson relation and
we write α ∼

A
α′ if there exists an index i such that:

• α′ = α · si;

• writing α = (b1, b2, . . . , bn; σ), the map j 7→ bj is not constant on the interval [σ(i), σ(i+1)]
or the inequality |σ(i + 1) − σ(i)| > 1 holds.

(In the case where σ(i+1) < σ(i), the notation [σ(i), σ(i+1)] means the interval [σ(i+1), σ(i)].)
The Atkinson relation is clearly symmetric.

The following proposition explains the relation between these combinatorial definitions
and the maps D(B) →֒ F (KB) and F (KB) ։ F (KB)/D(B)◦.

Proposition 22 Let B be an object of E and let n be a non-negative integer.

(i) The submodule D(B) ∩ Fn(KB) of Fn(KB) is spanned over K by the elements
∑

α∈B≀Sn

D(α)=c

α,

where c is a B-composition.

(ii) Two elements α and α′ in B ≀ Sn have the same receding composition R(α) = R(α′) if
and only if there exists a sequence of elements α1, α2, . . . , αk such that

α = α1 ∼
A

α2 ∼
A
· · · ∼

A
αk = α′.
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(iii) The module D(B)◦ ∩ Fn(KB) is spanned over K by the set

{α − α′ | α and α′ in B ≀ Sn with α ∼
A

α′}.

Proof. (i) We observe that for any B-composition c = ((c1, b1), (c2, b2), . . . , (ck, bk)) of n,

yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
= x(c1,c2,...,ck) · (b

⊗c1
1 ⊗ b⊗c1

2 ⊗ · · · ⊗ b⊗ck

k #en)

=
∑

σ∈Sn

D(σ)4(c1,c2,...,ck)

σ(b⊗c1
1 ⊗ b⊗c1

2 ⊗ · · · ⊗ b⊗ck

k #en)

=
∑

α∈B≀Sn

D(α)4c

α. (32)

Assertion (i) follows easily from (32) and from the fact that D(B)∩Fn(KB) is spanned over
K by such products yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk

.

(ii) For any two elements α and α′ in B ≀ Sn, the relation α∗ ∼
A

α′∗ is equivalent to the

existence of an index i ∈ {1, 2, . . . , n − 1} such that:

• α′ = si · α;

• writing α =
[
σ · (b1, b2, . . . , bn; en)

]
, the map j 7→ bj is not constant on the interval

[σ−1(i), σ−1(i + 1)] or the inequality |σ−1(i + 1) − σ−1(i)| > 1 holds.

An easy verification shows then that D(α) = D(α′) as soon as α∗ ∼
A

α′∗, and therefore as soon

as α∗ and α′∗ are related by a sequence of Atkinson relations.

Let now c = ((c1, b1), (c2, b2), . . . , (ck, bk)) be a B-composition of n and set

(b̃1, b̃2, . . . , b̃n) = (b1, b1, . . . , b1
︸ ︷︷ ︸

c1 times

, b2, b2, . . . , b2
︸ ︷︷ ︸

c2 times

, . . . , bk, bk, . . . , bk
︸ ︷︷ ︸

ck times

).

Each element α in B ≀Sn such that D(α) = c can be written α =
[
σ · (b̃1, b̃2, . . . , b̃n; en)

]
. We

now apply successive Atkinson relations to α∗ to reduce as much as possible the number of
inversions of σ, obtaining eventually an element α∗

0. By the previous paragraph, the descent
composition is preserved at each step of the process, so that D(α0) = c.

We now observe that α0 depends only on c and not on the element α from which we
started or on the choices made during the reduction process. Indeed let us write α0 =

[
σ0 ·

(b̃1, b̃2, . . . , b̃n; en)
]
. The equality D(α0) = c holds, and there is no permutation σ′ ∈ Sn with

smaller number of inversions than σ0 such that α∗ ∼
A

α′∗, where α′ =
[
σ′ · (b̃1, b̃2, . . . , b̃n; en)

]
.

Setting tj = c1 + c2 + · · · + cj for each j ∈ {1, 2, . . . , k − 1}, these constraints imply in turn
the equivalence of the three following assertions for each i ∈ [1, n − 1]:

• there exists an index j ∈ {1, 2, . . . , k − 1} such that i = tj and bj = bj+1;

• σ(i) > σ(i + 1);

• σ(i) = σ(i + 1) + 1.
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The uniqueness of σ0, hence of α0, can be easily derived from this.

Summarizing, we have seen that for any two elements α and α′ in B ≀ Sn:

• If α∗ and α′∗ are related by a sequence of Atkinson relations, then D(α) = D(α′).

• If D(α) = D(α′), then starting from α∗ as well as α′∗, one may reach the same element α∗
0

by applying a sequence of Atkinson relations.

Therefore α∗ and α′∗ are related by a sequence of Atkinson relations if and only if D(α) =
D(α′). This fact is equivalent to Assertion (ii).

(iii) Let x =
∑

α∈B≀Sn
aα α be an element of Fn(KB), where aα ∈ K. Then for any B-

composition c of size n,

̟tot








x,
∑

α∈B≀Sn

D(α)=c

α








=
∑

α∈B≀Sn

D(α)=c

aα∗ =
∑

α∈B≀Sn

R(α)=c∗

aα.

The element x is orthogonal to D(B) if and only if this quantity vanishes for all c. Asser-
tion (iii) is then a direct consequence of Assertion (ii).
¤

The result stated in Proposition 22 (ii) above was first obtained by Atkinson (see [4],
Corollary on p. 352) for the case where B has only one element.

We already mentioned in Section 5.1 that the assignments B Ã F (KB) and B Ã D(B)
are covariant functors from the category E to the category of graded bialgebras. By Proposi-
tion 22 (iii), the biideal D(B)◦ of F (KB) is functorial in B, which implies that B Ã

F (KB)/D(B)◦ is a covariant functor from E to the category of graded bialgebras. One
may also observe that B Ã D(B)∨ is a contravariant functor between the same categories,
and that the two graded bialgebras F (KB)/D(B)◦ and D(B)∨ are isomorphic.

5.3 Tableaux and the Robinson-Schensted-Knuth correspondence

In this section, we recall some classical stuff to fix the notations needed to present the
Robinson-Schensted-Okada correspondence.

Let A be a totally ordered set (an alphabet). An A -weight is a finite multiset of A ,
that is, a map µ : A → N with finite support. Thus for instance a Z>0-weight is an infinite
sequence µ = (µ1, µ2, . . .) of non-negative integers, all of whose terms but a finite number
vanish. The size of a weight µ is the sum of its values; we denote it by |µ|. The weight of a
word w = a1a2 · · · an with letters in A is the A -weight µ such that any letter a ∈ A occurs
µ(a) times in w; we denote it by wt(w).

A semistandard tableau T with entries in A is a Young diagram whose boxes are labelled
by letters in A in such a way that the rows are weakly increasing from left to right and
the columns are strictly increasing from top to bottom. The shape of T is the partition
λ = (λ1, λ2, . . .) such that T has λ1 boxes in the first row, λ2 boxes in the second row, and
so on; we denote it by sh(T ). The weight of T is the A -weight µ such that any letter a ∈ A
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occurs µ(a) times as the label in a box of T ; we denote it by wt(T ). A tableau T filled with
positive integers is said to be standard if its weight is

(1, 1, . . . , 1
︸ ︷︷ ︸

| sh(T )| times

, 0, 0, . . .).

To a word w = a1a2 · · · an with letters in A , the Robinson-Schensted correspondence
associates a pair (P, Q) of tableaux with the same shape, such that wt(P ) = wt(w) and Q
is standard. The insertion tableau P is constructed inductively using the well-known ‘bump’
procedure; the label in a box of the record tableau Q indicate the number of the step at which
this box appears during the making of P .

One says that two words w = a1a2 · · · an and w′ = a′1a
′
2 · · · a

′
n with letters in A and of

the same length are related by a Knuth relation and one writes w ∼
K

w′ if one can find two

decompositions w = xuy and w′ = xu′y of w and w′ as the concatenation of subwords in such
a way that one of the two following conditions holds:

(a) There exist three letters a ≤ b < c in A such that {u, u′} = {acb, cab}.

(b) There exist three letters a < b ≤ c in A such that {u, u′} = {bac, bca}.

The following results can be found in [19].

Proposition 23 (i) Let (P, Q) be the image of the word w = a1a2 · · · an under the Robinson-
Schensted correspondence. Then ai > ai+1 if and only if the box of Q that contains the label
i + 1 appears south or south-west to the box that contains the label i.

(ii) Two words w and w′ with letters in A have the same insertion tableau P under the
Robinson-Schensted correspondence if and only if there exists a sequence of words w1, w2, . . . ,
wk such that

w = w1 ∼
K

w2 ∼
K

· · · ∼
K

wk = w′.

Knuth has extended the scope of the Robinson-Schensted correspondence to a slightly
more general situation, which we recall now. Let B be a second alphabet. Given an A -
weight µ and a B-weight ν, we denote by Mµ,ν the set of matrices M = (mab)(a,b)∈A ×B with
non-negative integral entries and with row-sum µ and column-sum ν, that is,

µa =
∑

b∈B

mab for all a and νb =
∑

a∈A

mab for all b.

(This condition tacitely implies that all but a finite number of entries of M vanish and that
µ and ν have the same size. The notation Mc,d used in Section 3.2 is a particular case of this
one.)

We order the product B × A lexicographically. An element M ∈ Mµ,ν can be seen as a
finite multiset of B×A , whose elements can be listed in increasing order: ((b1, a1), (b2, a2), . . . ,
(bn, an)). In this way, M determines two words wA = a1a2 · · · an and wB = b1b2 · · · bn,
with the obvious property that µ = wt(wA ) and ν = wt(wB). The Robinson-Schensted
correspondence applied to wA yields a pair of tableaux (P, Q̃). Substituting in each box of Q̃
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the label j by the letter bj , we obtain a tableau Q. With these notations, Knuth has shown
in [19] that the map T 7→ (P, Q) is a bijection from Mµ,ν onto

{

(P, Q)

∣
∣
∣
∣
∣

P and Q tableaux with sh(P ) = sh(Q),

wt(P ) = µ and wt(Q) = ν

}

.

Furthermore the transposition of M corresponds to the exchange of P and Q. It is usual to
call this map the RSK correspondence.

5.4 The Robinson-Schensted-Okada correspondence

Let B be an object of E . We define a B-partition as a family λ = (λb)b∈B of partitions. The
size of λ is the integer ‖λ‖ =

∑

b∈B |λb|. The dual of λ is the B-partition λ∗ =
(
b 7→ λb∗

)
.

Let now A be an alphabet. We define a B-tableau with entries in A as a family T =
(Tb)b∈B of tableaux whose boxes are filled by elements of A . The shape of T is the B-partition
sh(T) = (sh(Tb))b∈B. A B-tableau T with entries in Z>0 is said to be standard if

∑

b∈B

wt(Tb) = (1, 1, . . . , 1
︸ ︷︷ ︸

‖ sh(T)‖ times

, 0, 0, . . .).

In other words, all the labels 1, 2, . . . , n are used once and only once to fill the boxes of the
tableaux Tb, where n = ‖ sh(T)‖ is the total number of boxes in T.

Now let w = x1x2 · · ·xn be a word whose letters xi = (ai, bi) belong to A × B. For each

b ∈ B, we form a matrix M (b) =
(

m
(b)
aj

)

(a,j)∈A ×[1,n]
by setting m

(b)
aj equal to 1 if (aj , bj) = (a, b)

and equal to 0 otherwise. From the matrix M (b), the RSK correspondence produces a pair of
tableaux (Pb, Qb) with the same shape. The family P = (Pb)b∈B is a B-tableau with entries
in A such that

∑

b∈B wt(Pb) is the weight of the word a1a2 · · · an; the family Q = (Qb)b∈B

is a standard B-tableau; the tableaux P and Q have the same shape. We say that P and Q

are the insertion and record tableaux of w, respectively, and we call the map w 7→ (P,Q) the
RSO correspondence (for Robinson-Schensted-Okada).

One can adapt the Knuth relations to the RSO correspondence in the following way. We
say that two words w = x1x2 · · ·xn and w′ = x′

1x
′
2 · · ·x

′
n of the same length with letters

xi = (ai, bi) and x′
i = (a′i, b

′
i) are related by a Knuth relation and we write w ∼

K
w′ if there

exists an index i such that one of the following two conditions holds:

(c) bi 6= bi+1, xi = x′
i+1, xi+1 = x′

i, and xj = x′
j for all j 6∈ {i, i + 1}.

(d) bi = bi+1 = bi+2 = b′i = b′i+1 = b′i+2, the two words u = aiai+1ai+2 and u′ = a′ia
′
i+1a

′
i+2

are as in Condition (a) or (b), and xj = x′
j for all j 6∈ {i, i + 1, i + 2}.

Then we have the following analogue of Knuth’s theorem.

Proposition 24 Two words w and w′ with letters in A ×B have the same insertion tableau
P under the RSO correspondence if and only if there exists a sequence of words w1, w2, . . . ,
wk such that

w = w1 ∼
K

w2 ∼
K

· · · ∼
K

wk = w′.
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Proof. Let w = x1x2 · · ·xn be a word with the letters xi = (ai, bi), and let P = (Pb)b∈B be
the insertion tableau of w. For each B ∈ B, we form the word w(b) = aj1aj2 · · · ajk

, where
(j1, j2, . . . , jk) is the list in increasing order of all indices j for which bj = b. By construction,
Pb is the insertion tableau in the RSK image of the matrix M (b), so Pb is the insertion tableau
of the word w(b). We fix an enumeration b1, b2, . . . , bl of the elements of B and we form the
word w = w(b1)w(b2) · · ·w(bl) by concatenation. Obviously w and w are related by a sequence
of Knuth relations of type (c).

Let now w′ be a word with the same length as w. We produce the words w′(b) and
w′ = w′(b1)w′(b2) · · ·w′(bl) in the same way as we formed w(b) and w from w. The words w and
w′ are related by a sequence of Knuth relations of type (c) or (d) if and only if the words w
and w′ are related by a sequence of Knuth relations of type (d). By definition, this happens
if and only if for each b ∈ B, the words w(b) and w′(b) are related by a sequence of Knuth
relations as in Section 5.3. On the other hand, w and w′ have the same insertion tableau P

if and only if for each b ∈ B, the words w(b) and w′(b) have the same insertion tableau. The
desired result now follows directly from Proposition 23 (ii). ¤

We now explain why we have added Okada’s name after those of Robinson and Schensted.
Any element α ∈ B ≀ Sn can be written uniquely in the form α =

[
σ · (b1, b2, . . . , bn; en)

]
,

where σ ∈ Sn and (b1, b2, . . . , bn) ∈ Bn. It thus determines the word

w(α) = (σ(1), b1)(σ(2), b2) · · · (σ(n), bn)

with letters in [1, n] × B. We denote the RSO correspondent of w(α) by (P(α),Q(α)). The
element α can be recovered from the data of w(α); it is therefore characterized by (P(α),Q(α)).
Finally, we define the dual of a B-tableau T = (Tb)b∈B as the B-tableau T∗ =

(
b 7→ Tb∗

)
,

where b 7→ b∗ is the involution on B. The following result is in substance a theorem of
Okada [28].

Proposition 25 The map α 7→ (P(α),Q(α)) is a bijection from B ≀ Sn onto the set of
pairs of standard B-tableaux with the same shape. For any element α of B ≀ Sn, there holds
Q(α∗) = P(α)∗.

As an example, we consider the same situation as in Section 5.2, that is, we take a, b in B,
n = 7 and α =

[
1426735 · (a, a, a, b, a, b, b; e7)

]
. Then the matrices M (a) and M (b) are

M (a) =













1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0













and M (b) =













0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0













,

and we find

Pa = 1 2 7
4

, Qa = 1 2 5
3

, Pb = 3 5
6

, Qb = 4 7
6

.

We will write α ∼
K

α′ whenever the words w(α) and w(α′) are related by a Knuth relation.

Writing α = (b1, b2, . . . , bn; σ), one checks easily that α ∼
K

α′ if and only if α′ = α · si for an

index i such that at least one of the following three conditions is satisfied:
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• bσ(i) 6= bσ(i+1);

• σ(i − 1) ∈ [σ(i), σ(i + 1)] and bσ(i−1) = bσ(i) = bσ(i+1);

• σ(i + 2) ∈ [σ(i), σ(i + 1)] and bσ(i+2) = bσ(i) = bσ(i+1).

(Here again the notation [σ(i), σ(i+1)] means the interval [σ(i+1), σ(i)] if ever σ(i+1) < σ(i).)
It follows then from Proposition 24 that the insertion tableaux P(α) and P(α′) of two elements
α and α′ of B ≀ Sn are equal if and only if there exists a sequence α1, α2, . . . , αk such that

α = α1 ∼
K

α2 ∼
K

· · · ∼
K

αk = α′.

5.5 The plactic and the coplactic bialgebras

In this section, we fix an object B of the category E and we use the Robinson-Schensted-
Okada correspondence to define a subbialgebra and a quotient bialgebra of F (KB), called
respectively the coplactic and the plactic bialgebra.

Given a standard B-tableau T = (Tb)b∈B, we define an element tT of F (KB) by setting

tT =
∑

α∈B≀Sn

Q(α)=T

α,

where n = ‖ sh(T)‖ is the total number of boxes in T. Clearly, the elements tT are linearly
independent and the K-submodule Q(B) that they span is a direct summand of F (KB).
This submodule depends on B and not only on KB. The following result is the analogue of
Proposition 22 (iii).

Proposition 26 Let B be an object of E and let n be a non-negative integer.

(i) The module Q(B)◦ ∩ Fn(KB) is spanned over K by the set

{α − α′ | α and α′ in B ≀ Sn with α ∼
K

α′}.

(ii) The submodules Q(B) and Q(B)◦ are respectively a graded subbialgebra and a graded
biideal of the graded bialgebra (F (KB), ∗, ∆).

(iii) The submodule Q(B) ∩ Q(B)◦ is spanned over K by the set

{tT − tT′ | T and T′ standard B-tableaux with sh(T) = sh(T′)}.

(iv) The submodule Q(B) + Q(B)◦ is a direct summand of F (KB).

Proof. Let x =
∑

α∈B≀Sn
aαα be an element of Fn(KB), where each aα ∈ K. Then for any

standard B-tableau T,

̟tot(x, tT) =
∑

α∈B≀Sn

Q(α∗)=T

aα =
∑

α∈B≀Sn

P(α)=T∗

aα.
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The element x is orthogonal to Q(B) if and only if these quantities vanish for all T. Asser-
tion (i) now follows from Proposition 24, or more precisely, from its consequence explained at
the end of Section 5.4.

Now let α = (b1, b2, . . . , bn; σ) and α′ = (b′1, b
′
2, . . . , b

′
n; σ′) be two elements in B ≀ Sn that

are related by a Knuth relation. Then for each element α′′ = (b′′1, b
′′
2, . . . , b

′′
n′ ; σ′′) in B ≀ Sn′

and each permutation ρ ∈ Xn,n′ , the two elements

ρ · (b1, b2, . . . , bn, b′′1, b
′′
2, . . . , b

′′
n′ ; σ × σ′′) and ρ · (b′1, b

′
2, . . . , b

′
n, b′′1, b

′′
2, . . . , b

′′
n′ ; σ′ × σ′′)

of B ≀ Sn+n′ are related by a Knuth relation, because ρ is increasing on the interval [1, n].
Therefore (α − α′) ∗ α′′, which is equal to the sum

∑

ρ∈Xn,n′

[
ρ · (b1, b2, . . . , bn, b′′1, b

′′
2, . . . , b

′′
n′ ; σ × σ′′) − ρ · (b′1, b

′
2, . . . , b

′
n, b′′1, b

′′
2, . . . , b

′′
n′ ; σ′ × σ′′)

]
,

belongs to Q(B)◦. Since Q(B)◦ is spanned by such differences α−α′, we conclude that Q(B)◦

is a left ideal of F (KB). A similar reasoning shows that Q(B)◦ is a right ideal.
Consider again an element α = (b1, b2, . . . , bn; σ) in B ≀Sn. Given an integer n′ ∈ [0, n], we

denote the standardizations of the words σ−1(1) σ−1(2) · · · σ−1(n′) and σ−1(n′ +1) σ−1(n′ +
2) · · · σ−1(n) by πn′ ∈ Sn′ and π′

n−n′ ∈ Sn−n′ , respectively. A straightforward but tedious
verification shows that whenever α undergoes a Knuth relation, either both of

(b1, b2, . . . , bn′ ; πn′) and (bn′+1, bn′+2, . . . , bn; π′
n−n′)

are left unchanged, or one of them remains the same and the other undergoes a Knuth relation.
This fact implies that the class modulo Q(B)◦ ⊗ F (KB) + F (KB) ⊗ Q(B)◦ of

∆(α) =
n∑

n′=0

(b1, b2, . . . , bn′ ; πn′) ⊗ (bn′+1, bn′+2, . . . , bn; π′
n−n′)

does not change when α undergoes a Knuth relation. We conclude that

∆
(
Q(B)◦

)
⊆ Q(B)◦ ⊗ F (KB) + F (KB) ⊗ Q(B)◦. (33)

Observing then that all homogeneous elements of Q(B)◦ have positive degree, we see that the
counit of F (KB) vanishes on Q(B)◦. Jointly with Equation (33), this means that Q(B)◦ is
a coideal of F (KB).

We have therefore proved that Q(B)◦ is a graded biideal of F (KB). Since Q(B) is a direct
summand of F (KB), this is equivalent to the fact that Q(B) is a subbialgebra of F (KB),
which concludes the proof of Assertion (ii).

Proposition 25 implies that for each positive integer n and each pair (T,T′) of standard
B-tableaux with n boxes,

̟tot(tT, tT′) =
∣
∣{α ∈ B ≀ Sn | Q(α) = T, Q(α∗) = T′}

∣
∣

=
∣
∣{α ∈ B ≀ Sn | Q(α) = T, P(α) = T′∗}

∣
∣

=

{

1 if T and T′ have the same shape,

0 otherwise.
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Assertion (iii) follows easily from this fact.
Given an finite index set I, we denote by MatI(K) the set of matrices with lines and

columns indexed by I and with entries in K. The subspace Matr
I(K) of matrices (mij)(i,j)∈I2

such that all row sums
∑

j∈I mij are equal is a direct summand of MatI(K).

For each B-partition λ = (λb)b∈B, let Tλ be the set of all standard B-tableaux of shape
λ. Let n be a positive integer, and let PartB(n) be the set of B-partitions of size n. Using the
RSO correspondence, we define a linear bijection between Fn(KB) and

∏

λ∈PartB(n) MatTλ
(K)

as follows: an element
∑

α∈B≀Sn
aαα of Fn(KB) corresponds to a family of matrices

(Mλ)λ∈PartB(n) if and only if for each α ∈ B ≀ Sn, the coefficient aα is equal to the entry
in Mλ with row index P(α) and column index Q(α), where λ = sh(P(α)). One checks with-
out much difficulty that

(
Q(B)+Q(B)◦

)
∩Fn(KB) is mapped by this bijection to the product

∏

λ∈PartB(n) Matr
Tλ

(K). Assertion (iv) follows. ¤

The subbialgebra Q(B) is called the coplactic bialgebra. We denote the quotient
F (KB)/Q(B)◦ by P(B) and we name it the plactic bialgebra. Both assignments B Ã Q(B)
and B Ã P(B) are covariant functors from E to the category of graded bialgebras, and more-
over the graded bialgebras P(B) and Q(B)∨ are isomorphic for each B.

Remark 27. It turns out that Q(B) is neither a left nor a right internal D(B)-submodule of
F (KB). Indeed there is the following counterexample in degree 4. The set B does not play
any role here; we take it reduced to one element and abbreviate D(B) and Q(B) to D and

Q, respectively. We consider the standard tableau T = 1 3
2 4

and the elements

tT = 3142+2143 and y = x(1,2,1)−x(3,1)−x(1,3) +x(4) = 3142+2143+4132+4231+3241.

Then tT belongs to Q and y belongs to D . A direct computation yields

y · tT = 4321 + 4231 + 1324 + 1234 + 3421 + 3412 + 4312 + 1423 + 2413 + 2314.

We observe that the permutation 3421 appears with a positive coefficient in y · tT , which is
not the case of the permutation 1432, although they have the same record tableau. Therefore
y · tT does not belong to Q. One checks similarly that tT · y does not either belong to Q.

5.6 An homomorphism onto a bialgebra of coloured symmetric functions

Our aim now is to extend the work of Poirier and Reutenauer [30] to the present framework.
We compare the coplactic bialgebra Q(B) and the plactic bialgebra P(B) with the Mantaci-
Reutenauer algebra D(B) and its dual D(B)∨ ∼= F (KB)/D(B)◦, and we insert them in a
commutative diagram similar to (25).

We need some preparation, and to begin with, we define the descent composition D(T) of a
standard B-tableau T = (Tb)b∈B in the following way. Let n be the total number of boxes in T

and let β : {1, 2, . . . , n} → B the map which sends a label i to the element b such that i appears
in a box of Tb. We decompose the interval [1, n] into the largest subintervals on which the
map β takes a constant value; in turn we decompose each subinterval into the largest possible
subsubintervals, so that for any two numbers i and j located in the same subsubinterval, i < j
if and only if i is located west or south-west to j. For each subsubinterval, we form the pair
consisting of its length c and the value b taken on it by the map β. The ordered list of all these
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pairs is the B-composition D(T). For instance, with B = {a, b}, the descent composition of
the B-tableau T given by

Ta = 1 2 5
3

and Tb = 4 7
6

is D(T) = ((2, a), (1, a), (1, b), (1, a), (2, b)).

Lemma 28 (i) The descent composition of an element α ∈ B ≀Sn coincides with the descent
composition of its record tableau Q(α)

(ii) Let λ = (λb)b∈B be a B-partition and c = ((c1, b1), (c2, b2), . . . , (ck, bk)) be a B-composi-

tion, both of the same size. For each b ∈ B, we define a Z>0-weight µ(b) = (µ
(b)
1 , µ

(b)
2 , . . . , µ

(b)
k ,

0, 0, . . .) by setting µ
(b)
j = cj if bj = b and µ

(b)
j = 0 otherwise. Then the two sets

{

T

∣
∣
∣
∣
∣

T standard B-tableau with

sh(T) = λ and D(T) 4 c

}

and

{

U

∣
∣
∣
∣
∣

U = (Ub)b∈B B-tableau with entries in Z>0

such that sh(U) = λ and ∀b, wt(Ub) = µ(b)

}

are equipotent.

Proof. Assertion (i) is a direct consequence of Proposition 23 (i). Let us prove Assertion (ii).
We set ti = c1 + c2 + · · ·+ ci; we denote the first set by X and the second set by Y . Our aim
is to construct mutually inverse bijections from X onto Y and from Y onto X.

Let first T = (Tb)b∈B be an element of X. For each b, we construct a tableau Ub by
substituting in each box of Tb the label j it contains by the index i such that j ∈ [ti−1 + 1, ti].
Since D(T) 4 c, each index i appears ci times in Ubi

and does not appear in the other tableaux
Ub. Therefore each tableau Ub has µ(b) for weight. It follows that the B-tableau U = (Ub)b∈B,
which has visibly the same shape as T, namely λ, belongs to Y .

In the other direction, let U = (Ub)b∈B be an element of Y . By definition, any label
i ∈ {1, 2, . . . , k} appears ci times in Ubi

. We replace these entries i in the boxes of Ubi
by the

numbers ti−1 + 1, ti−1 + 2, . . . , ti, proceeding in increasing order whilst going south-west to
north-east. These substitutions transform the B-tableau U in a standard B-tableau T. By
construction, T has the same shape as U, namely λ, and satisfies D(T) 4 c; it thus belongs
to X.

Routine verifications show that these correspondences are inverse bijections, which entails
Assertion (ii). ¤

Corollary 29 The inclusion D(B) ⊆ Q(B) holds.

Proof. By Proposition 22 (i), the module D(B) is spanned by elements of the form
∑

α∈B≀Sn

D(α)=c

α,

where n is a positive integer and c is a B-composition of n. By Lemma 28 (i), such a sum
may be rewritten as

∑

α∈B≀Sn

D(α)=c

α =
∑

T standard B-tableau

D(T)=c

∑

α∈B≀Sn

Q(α)=T

α =
∑

T standard B-tableau

D(T)=c

tT. (34)

It belongs therefore to Q(B). The corollary follows. ¤
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Changing slightly the notation used in Section 4.2, we use now the symbol Λ to denote
the algebra of symmetric functions with coefficients in K. It is indeed a bialgebra (see I, 5,
Ex. 25 in [22]). We keep the notation hn and sλ to denote the complete symmetric functions
and the Schur functions, where n is a positive integer and λ is a partition. We consider a
family (Λ(b))b∈B of copies of Λ: given b ∈ B, we denote by P (b) the image in Λ(b) of an
element P ∈ Λ. We carry out the tensor product Λ(B) =

⊗

b∈B Λ(b). Given a B-partition
λ = (λb)b∈B, we set sλ =

∏

b∈B sλb
(b); these elements sλ form a basis of the K-module Λ(B).

The pairing 〈?, ?〉 on Λ(B) defined on this basis by

〈sλ, sλ
′〉 =

{

1 if λ′ = λ∗,

0 otherwise,

is then a perfect and symmetric pairing.
Let ΘB : Q(B) → Λ(B) be the K-linear map such that ΘB(tT) = ssh(T), for each standard

B-tableau T. The following lemma will help us to understand the behaviour of ΘB on the
subspace D(B) of Q(B).

Lemma 30 For any B-composition c = ((c1, b1), (c2, b2), . . . , (ck, bk)), there holds

ΘB(yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
) = hc1(b1)hc2(b2) · · ·hck

(bk).

Proof. It is known (see I, (6.4) in [22] for a proof) that in the ring Λ of symmetric functions,

hµ1hµ2 · · · =
∑

λ partition

∣
∣
∣
∣
∣

{

U

∣
∣
∣
∣
∣

U tableau with entries in Z>0

such that sh(U) = λ and wt(U) = µ

}∣
∣
∣
∣
∣

sλ (35)

for any Z>0-weight µ = (µ1, µ2, . . .).
We fix a B-composition c = ((c1, b1), (c2, b2), . . . , (ck, bk)) as in the statement of the lemma,

of size say n, and we construct a family (µ(b))b∈B of Z>0-weights as in Lemma 28 (ii). Re-
grouping the factors in the product hc1(b1)hc2(b2) · · ·hck

(bk) that correspond to the different
indices b and applying Formula (35), we find

hc1(b1)hc2(b2) · · ·hck
(bk)

=
∑

λ B-partition

∣
∣
∣
∣
∣

{

U

∣
∣
∣
∣
∣

U = (Ub)b∈B B-tableau with entries in Z>0

such that sh(U) = λ and ∀b, wt(Ub) = µ(b)

}∣
∣
∣
∣
∣

sλ.

On the other hand, Equation 32 and Lemma 28 (i) imply that

yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
=

∑

α∈B≀Sn

D(α)4c

α =
∑

T standard B-tableau

D(T)4c

tT,

so that

ΘB(yc1,b1 ∗ yc2,b2 ∗ · · · ∗ yck,bk
) =

∑

λ B-partition

∣
∣
∣
∣
∣

{

T

∣
∣
∣
∣
∣

T standard B-tableau with

sh(T) = λ and D(T) 4 c

}∣
∣
∣
∣
∣

sλ.

The desired result follows now from Lemma 28 (ii). ¤
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We can now state and prove the main properties of ΘB.

Theorem 31 The map ΘB : Q(B) → Λ(B) is a surjective morphism of graded bialgebras,
with kernel Q(B) ∩ Q(B)◦. It is compatible with the pairings ̟tot on Q(B) and 〈?, ?〉 on
Λ(B), in the sense that

̟tot = 〈ΘB(?), ΘB(?)〉.

The restriction of ΘB to D(B) is the unique algebra homomorphism that maps yn,b to hn(b),
where n is a positive integer and b ∈ B; this restriction also is surjective, with kernel D(B) ∩
D(B)◦.

Proof. Lemma 30 implies that the restriction of ΘB to D(B) is a morphism of graded algebras,
for the associative algebra D(B) is generated by the elements yn,b, and that this restriction is
surjective, for the algebra Λ(B) is generated by the elements hn(b). The coproducts of D(B)
and Λ(B) being characterized by the equations

∆(yn,b) =
n∑

n′=0

yn′,b ⊗ yn−n′,b and ∆(hn(b)) =
n∑

n′=0

hn′(b) ⊗ hn−n′(b)

(with the convention that y0,b and h0(b) are the unit of the algebras D(B) and Λ(B), respec-
tively), we also see that ΘB

∣
∣
D(B)

preserves the coproducts. To sum up, ΘB is a surjective

morphism of graded bialgebras.
We have seen in the proof of Proposition 26 (iii) that for each pair (T,T′) of standard

B-tableaux with the same number of boxes, there holds

̟tot(tT, tT′) =

{

1 if sh(T) = sh(T′),

0 otherwise,

which implies that ̟tot(tT, tT′) = 〈ssh(T), ssh(T′)〉 = 〈ΘB(tT), ΘB(tT′)〉. Therefore ΘB is
compatible with the pairings ̟tot and 〈?, ?〉. In turn, this assertion, the fact that 〈?, ?〉 is a
perfect pairing on Λ(B) and the surjectivity of ΘB imply that the kernel of ΘB is equal to
Q(B)∩Q(B)◦. The surjectivity of the restriction ΘB

∣
∣
D(B)

implies likewise that the kernel of

ΘB

∣
∣
D(B)

is equal to D(B) ∩ D(B)◦.

We then arrive at the following commutative diagram of graded bialgebras

D(B)
ΘB

∣
∣
D(B)

Q(B)

Λ(B) D(B)/(D(B) ∩ D(B)◦)
≃≃

Q(B)/(Q(B) ∩ Q(B)◦).

An easy chase in this diagram shows that there exists a unique homomorphism of K-modules
from Q(B) to Λ(B) which factorizes through Q(B)/(Q(B) ∩ Q(B)◦) and which extends
ΘB

∣
∣
D(B)

, and that this homomorphism is a morphism of graded bialgebras. This isomorphism

is of course ΘB, which concludes the proof of the theorem. ¤

Corollary 32 There holds

D(B) ⊆ Q(B) ⊆ D(B) + Q(B)◦ and D(B) ∩ Q(B)◦ = D(B) ∩ D(B)◦.
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Proof. The inclusion D(B) ⊆ Q(B) gives rise to an injective map

D(B)/ ker
(
ΘB

∣
∣
D(B)

)
→֒ Q(B)/ ker ΘB.

This latter is surjective, for the restriction ΘB

∣
∣
D(B)

has the same image as ΘB. Using The-

orem 31, we arrive at the isomorphism D(B)/(D(B) ∩ D(B)◦)
≃

−→ Q(B)/(Q(B) ∩ Q(B)◦).
The corollary follows from this by standard arguments. ¤

We now have a big commutative diagram of graded bialgebras

F (KB)
≃

̟tot
♭

F (KB)∨

Q(B)

ΘB

P(B)
≃

Q(B)∨

D(B) Λ(B)
≃

〈?,?〉♭
Λ(B)∨

ΘB
∨

D(B)∨.

(36)

Given a standard B-tableau T, let us denote by uT the class modulo Q(B)◦ of an α ∈ B≀Sn

such that P(α) = T (this class does not depends on the choice of α). Using the pairings, one
checks rather easily that for any B-partition λ, the map from Λ(B) to P(B) in the diagram
(36) sends an element sλ to

∑

T standard B-tableau

sh(T)=λ

uT.

Finally, one may observe that the sequences (10) of homomorphisms, applied to the case
M = F (KB), S = Q(B) and T = ̟tot

♭(Q(B)), show the existence of a symmetric pairing
on Q(B)/(Q(B) ∩ Q(B)◦), which is perfect thanks to Proposition 26 (iv). This pairing is of
course equal to 〈?, ?〉 under the isomorphism Q(B)/(Q(B) ∩Q(B)◦) ∼= Λ(B) defined by ΘB.

5.7 Consequences for the Solomon descent theory

We now use the construction presented in the previous section to complement the results
of Section 4.3. We consider a finite abelian group G, we call Γ = Irr(G) its dual, and we
view Γ as an object of E as explained in Section 5.1. The Frobenius characteristic ch is an
isomorphism of graded bialgebras from Rep(G) onto Λ(Γ), and there holds ΘΓ

∣
∣
D(Γ)

= ch ◦ θG,

because both members are homomorphisms of algebras which map yn,γ to hn(γ), where n is
a positive integer and γ ∈ Γ. Therefore the diagrams (25) and (36) agree and can be fused
together.

We have recalled in Section 4.2 the construction of the irreducible characters χλ of the
wreath product G ≀ Sn, indexed by the Γ-partitions λ of n. From the diagram

MR(KΓ)

θG

D(Γ) Q(Γ)

ΘΓ

Rep(G)
≃

ch
Λ(Γ),
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we see that the homomorphism of K-modules θ̃G from Q(Γ) to Rep(G), defined by θ̃G(tT) =
χsh(T) for any standard Γ-tableau T, is a graded morphism of bialgebras which extends θG

and which is compatible with the pairings ̟tot on Q(Γ) and βtot on Rep(G).
Let n be a positive integer and c = ((c1, γ1), (c2, γ2), . . . , (ck, γk)) be a Γ-composition of

size n. Set c+ = (c1, c2, . . . , ck) and γ̃ = γ⊗c1
1 ⊗ γ⊗c2

2 ⊗ · · · ⊗ γ⊗ck

k . The character

θG

(
yc1,γ1 ∗ yc2,γ2 ∗ · · · ∗ yck,γk

)
= IndG≀Sn

G≀S
c+

(
ηc1(γ1) ⊗ ηc2(γ2) ⊗ · · · ⊗ ηck

(γk)
)

of G ≀ Sn is induced from a linear character of G ≀ Sc+ . It can therefore be realized by a
representation on the C-vector space with basis (G ≀ Sn)/(G ≀ Sc+). As we saw during the
proof of Theorem 19, this set is in natural bijection with Xc+

∼= {ρ · (γ̃#en) | ρ ∈ Xc+}. After
translation in the notation of Section 5.2, this result means that

θG








∑

α∈Γ≀Sn

D(α)4c

α








is the character of a representation of G ≀ Sn on the C-vector space with basis

{α ∈ Γ ≀ Sn | D(α) 4 c}.

Using a quotient construction, we may substitute equalities to the inequalities D(α) 4 c in
both formulas above. A representation of G ≀ Sn whose character is

θG








∑

α∈Γ≀Sn

D(α)=c

α








is called a descent representation. Descent representations are studied in [1] by Adin, Brenti
and Roichman in the case G = {±1} and in the forthcoming paper [6] by Bagno and Biagioli
in the case G = Z/rZ. Our methods provide alternative proofs for some of their results;
for instance, Formula (34) and the equality θ̃G(tT) = χsh(T) imply the decomposition into
irreducible characters

θG








∑

α∈Γ≀Sn

D(α)=c

α








=
∑

λ Γ-partition

‖λ‖=‖c‖

∣
∣
∣
∣
∣

{

T

∣
∣
∣
∣
∣

T standard Γ-tableau with

sh(T) = λ and D(T) = c

}∣
∣
∣
∣
∣

χλ,

which generalizes Theorems 4.1 and 5.9 in [1].

6 Coloured quasisymmetric functions

Motivated by problems of enumeration of permutations having a given descent type, Gessel
discovered in 1984 a link between Solomon’s descent algebra for the symmetric group and
symmetric functions. More precisely, he introduces in [14] an algebra QSym of ‘quasisymmetric
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functions,’ which are polynomials in a countable and totally ordered set of variables enjoying
a certain symmetry property. The algebra QSym is graded by the degree of polynomials
(that is, the homogeneous components of a quasisymmetric function are quasisymmetric),
which we write QSym =

⊕

n≥0 QSymn. Gessel endows each graded component QSymn with
the structure of a coalgebra and observes that the dual algebra QSym∗

n can be identified
with Solomon’s descent algebra ΣSn for the symmetric group. Gessel observes further that
QSymn contains the set Λn of homogeneous symmetric polynomials of degree n. Now Λn

is isomorphic to its dual thanks to the usual inner product on symmetric polynomials, and
it is also isomorphic to the character ring R(Sn) of the symmetric group Sn thanks to the
characteristic map. The inclusion Λn →֒ QSymn gives then by duality a surjection ΣSn

∼=
QSym∨

n ։ Λ∨
n
∼= R(Sn), which Gessel identifies with the Solomon map θSn .

ZSn

ΣSn

θSn

≃
QSym∨

n QSymn.

R(Sn)
≃

Λ∨
n

∼
Λn

This picture was completed in 1995 by two independent groups of people. On the one
hand, Malvenuto and Reutenauer [23] endow the space F =

⊕

n≥0 ZSn with the structure
of a graded bialgebra by defining the external product and the coproduct. They show that
Σ =

⊕

n≥0 ΣSn is a graded subbialgebra of F . They endow Gessel’s algebra QSym with a
second coproduct, different from Gessel’s one, and they observe that this operation turns the
algebra QSym into a graded bialgebra, which they identify with the graded dual of Σ.

On the other hand, Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [13] introduce a
graded module Sym =

⊕

n≥0 Symn of ‘non-commutative symmetric functions.’ They endow
each graded component Symn with an associative product with unit, which they call the
internal product, and find an explicit isomorphism between the resulting algebra Symn and
Solomon’s descent algebra ΣSn . Defining an external product and a coproduct, they also
endow Sym with the structure of a graded bialgebra, in such a way that Sym can be identified
as a graded bialgebra to Σ and to the graded dual of QSym. The pairing between Sym
and QSym is made explicit through the use of bases; it reminds of the inner product on
the bialgebra Λ of symmetric functions. Finally Λ can be recovered as the quotient of Sym
obtained by making commutative the variables.

We want to generalize these works to the multidimensional case. To this aim, we fix a finite
set B endowed with a linear order. As in Section 5.1, we denote the free K-module with basis
B by KB and define a Mantaci-Reutenauer subbialgebra D(B) in F (KB). In Section 6.1,
we present a realization of the algebra F (KB) in terms of ‘coloured’ free quasisymmetric
functions. The dependence of our realization on the linear order on B may seem cumbersome,
but is a necessary step so that the quotient map F (KB) → F (KB)/D(B)◦ corresponds to
make the variables commutative. In Section 6.2, we show that our construction yields some
of Poirier’s quasisymmetric functions.

We fix for the whole Section 6 an infinite alphabet A and we endow the product A × B
with the lexicographical order.
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6.1 The word realization of F (kΓ)

Let w = x1x2 · · ·xn be a word with letters xi = (ai, bi) in A × B. Denoting by σ ∈ Sn the
standardization of w, we may form the element

stdB(w) = σ · (b1, b2, . . . , bn; en) = (bσ−1(1), bσ−1(2), . . . , bσ−1(n); σ)

of B ≀ Sn; we call it the B-standardization of w. (This element stdB(w) is called ‘standard
signed permutation’ of w by Poirier; see [29], p. 322.) As an example, let B = { ,̄ ¯̄} with
¯ < ¯̄, and let A = {u, v, w, . . .} with the usual alphabetical order. We denote the letters
(u,¯), (u, ¯̄ ), etc. by ū, ¯̄u, etc. Then the standardization of the word w = ūv̄ū¯̄vw̄ ¯̄uv̄ is
stdB(w) =

[
(1426735) · ( ,̄ ,̄ ,̄ ¯̄, ,̄ ¯̄, ;̄ e7)

]
.

We denote the algebra of non-commutative formal power series on the set A × B with
coefficients in K by K〈〈A × B〉〉; thus elements of K〈〈A × B〉〉 are (possibly infinite) linear
combinations of words on the alphabet A ×B. We denote the algebra of commutative formal
power series on the set A × B with coefficients in K by K[[A × B]]; elements of this algebra
may be viewed as (possibly infinite) linear combinations of A ×B-weights. There is an obvious
morphism of K-algebras from K〈〈A × B〉〉 onto K[[A × B]], which maps each word w on the
alphabet A × B to its weight.

We denote by Φ : F (KB) → K〈〈A × B〉〉 the map which sends an element α ∈ (B ≀ Sn)
to the sum of all words w such that α is the B-standardization of w:

Φ(α) =
∑

w∈〈A ×B〉

stdB(w)=α

w.

Theorem 33 (i) The map Φ is an injective morphism of algebras from F (KB) to K〈〈A ×B〉〉.

(ii) Let I be the kernel of the canonical morphism from K〈〈A × B〉〉 onto K[[A × B]]. Then
Φ−1(I) = D(B)◦.

Proof. (i) Let n and n′ be two positive integers and let w and w′ be two words on the alphabet
A ×B of length n and n′, respectively. If we denote by σ ∈ Sn, σ′ ∈ Sn′ and π ∈ Sn+n′ the
standardizations of the words w, w′ and ww′, respectively, then σ is the standardization of the
word π(1)π(2) · · ·π(n) and σ′ is the standardization of the word π(n+1)π(n+2) · · ·π(n+n′);
in other words, there exists ρ ∈ X(n,n′) such that π = ρ(σ × σ′).

Now let α ∈ B ≀ Sn and α′ ∈ B ≀ Sn′ . We write α = σ · (b1, b2, . . . , bn; en), α′ = σ′ ·
(b′1, b

′
2, . . . , b

′
n′ ; en′), w = x1x2 · · ·xn and w′ = x′

1x
′
2 · · ·xn′ . Given a letter x = (a, b) in A ×B,

we say that b is the colour of x. Then

α = stdB(w) and α′ = stdB(w′)

⇐⇒

{

σ is the standardization of w, σ′ is the standardization of w′,

bi is the colour of xi and b′j is the colour of x′
j ,

⇐⇒

{

∃ρ ∈ X(n,n′) such that ρ(σ × σ′) is the standardization of ww′,

bi is the colour of xi and b′j is the colour of x′
j ,

⇐⇒

{

∃ρ ∈ X(n,n′) such that

stdB(ww′) = ρ(σ × σ′) · (b1, b2, . . . , bn, b′1, b
′
2, . . . , b

′
n′ ; en+n′).
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This proves that Φ is a morphism of algebras. The injectivity of Φ is an obvious consequence
of the fact that A was chosen infinite.

(ii) Let n be a positive integer and let α = (b1, b2, . . . , bn; σ) and α′ be two elements in B ≀Sn

such that α ∼
A

α′. Then there exists a simple transposition si ∈ Sn such that α′ = α · si, the

index i ∈ {1, 2, . . . , n−1} enjoying moreover the property that the map j 7→ bj is not constant
on the interval [σ(i), σ(i + 1)] or that the inequality |σ(i + 1) − σ(i)| > 1 holds.

Then in each word w = x1x2 · · ·xn of length n on the alphabet A ×B whose B-standardization
is α, the letters xi and xi+1 differ. The word w′ = x1x2 · · ·xi−1xi+1xixi+2 · · ·xn obtained from
w by exchanging the letters xi and xi+1 has thus α · si = α′ for B-standardization, and the
map w 7→ w′ is a bijective correspondence

{

w

∣
∣
∣
∣
∣

w word on A × B such

that stdB(w) = α

}

≃
−→

{

w′

∣
∣
∣
∣
∣

w′ word on A × B such

that stdB(w′) = α′

}

.

Therefore Φ(α) and Φ(α′) have the same image in K[[A × B]], for w and w′ have the same
weight. By Proposition 22 (iii), this implies that Φ

(
D(B)◦

)
⊆ I.

The morphism Φ defines therefore a map Φ from F (KB)/D(B)◦ to K[[A ×B]]. Assertion (ii)
will then be proved as soon as the injectivity of Φ is established.

We associate a B-composition C(µ) to each (A ×B)-weight µ as follows: we list in increasing
order (a1, b1) < (a2, b2) < · · · < (ak, bk) the elements (a, b) in the support of the multiset
µ, and we then define C(µ) as the sequence ((µ(a1, b1), b1), (µ(a2, b2), b2), . . . , (µ(ak, bk), bk)).
One checks that R(stdB(w)) 4 C(wt(w)) for any word w on the alphabet A × B.

Let z be a non-zero element in F (KB)/D(B)◦. By Proposition 22, z has an antecedent in
F (KB) of the form

∑

j∈J ajαj , where J is a finite index set, aj ∈ K \ {0}, and the elements
αj ∈ B ≀ Sn are such that all B-compositions R(αj) are different. We may then find j0 ∈ J
such that R(αj0) is a minimal element of the set {R(αj) | j ∈ J} with respect to the refinement
order 4, and we may find a word w on the alphabet A × B such that stdB(w) = αj0 and
C(wt(w)) = R(αj0). Then wt(w) appears in Φ(z) with the coefficient aj0 6= 0, which entails
that Φ(z) 6= 0.

Therefore Φ is injective, which completes the proof.
¤

Assertion (i) of Theorem 33 says that we can find a realization of the algebra F (KB)
in terms of free (non-commutative) quasisymmetric functions. Assertion (ii) says that the
quotient map from F (KB) onto F (KB)/D(B)◦ ∼= D(B)∨ is obtained in this realization by
making commutative all words w ∈ 〈A × B〉. This can be translated into the commutative
diagram

F (KB)
Φ

K〈〈A × B〉〉

F (KB)/D(B)◦
Φ

K[[A × B]].

(37)

One can find a similar description of all the algebras that appear in the diagram (36); for
instance, the quotient map from F (KB) onto F (KB)/Q(B)◦ = P(B) amounts to look at
the words w ∈ 〈A × B〉 modulo the Knuth relation ∼

K
of Section 5.4.
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6.2 Poirier’s quasisymmetric functions

Let QSym(B) denote the image in K[[A ×B]] of the map Φ in the diagram (37). In this section,
we describe QSym(B) explicitly and compare it with Poirier’s algebra of quasisymmetric
functions.

By Proposition 22, the class modulo D(B)◦ of an element α ∈ B ≀Sn is determined by its
receding composition R(α). A stronger assertion holds: it is possible to find a combinatorial
description of Φ

(
α + D(B)◦

)
based on the sole data of R(α).

Indeed let c = ((c1, b1), (c2, b2), . . . , (ck, bk)) be a B-composition of size say n, set ti =
c1 + c2 + · · · + ci for each i, and set

(b̃1, b̃2, . . . , b̃n) = (b1, b1, . . . , b1
︸ ︷︷ ︸

c1 times

, b2, b2, . . . , b2
︸ ︷︷ ︸

c2 times

, . . . , bk, bk, . . . , bk
︸ ︷︷ ︸

ck times

).

From c, we construct the set Sc of all n-uples (x1, x2, . . . , xn) ∈ (A × B)n satisfying the
three following conditions: the sequence (x1, x2, . . . , xn) is non-decreasing; xti < xti+1 for
each i ∈ {1, 2, . . . , k− 1}; the second component of xi ∈ A ×B is b̃i. In other words, a n-uple
(x1, x2, . . . , xn) belongs to Sc if and only if each xi can be written (ai, b̃i), where (a1, a2, . . . , an)
is a non-decreasing sequence of elements of A such that

∀i ∈ {1, 2, . . . , k − 1}, bi ≥ bi+1 =⇒ ati < ati+1.

By analogy with Formula (2) on p. 324 in [29], we define the formal series in K[[A × B]]

Fc =
∑

(x1,x2,...,xn)∈Sc

x1x2 · · ·xn.

For instance if B is the set { ,̄ ¯̄} with the order ¯ < ¯̄, then

F((2,¯)) =
∑

(x,y)∈A 2

x≤y

x̄ȳ, F((2,¯̄ )) =
∑

(x,y)∈A 2

x≤y

¯̄x¯̄y, F((1,¯),(1,¯)) =
∑

(x,y)∈A 2

x<y

x̄ȳ,

F((1,¯),(1,¯̄ )) =
∑

(x,y)∈A 2

x≤y

x̄¯̄y, F((1,¯̄ ),(1,¯)) =
∑

(x,y)∈A 2

x<y

¯̄xȳ, F((1,¯̄ ),(1,¯̄ )) =
∑

(x,y)∈A 2

x<y

¯̄x¯̄y.

The following result is a rewriting of Lemma 11 in [29]; it implies that the elements Fc

form a basis of the K-module QSym(B), where c is a B-composition.

Proposition 34 For each element α ∈ B ≀ Sn, there holds FR(α) = Φ
(
α + D(B)◦

)
.

Proof. We take an element α ∈ B ≀ Sn, we write

α = (b̃1, b̃2, . . . , b̃n; σ) and R(α) = ((c1, b1), (c2, b2), . . . , (ck, bk)),

and we set ti = c1 + c2 + · · · + ci for each i. The definition of R(α) implies that

(b̃1, b̃2, . . . , b̃n) = (b1, b1, . . . , b1
︸ ︷︷ ︸

c1 times

, b2, b2, . . . , b2
︸ ︷︷ ︸

c2 times

, . . . , bk, bk, . . . , bk
︸ ︷︷ ︸

ck times

),
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that the permutation σ−1 is increasing on each interval [ti−1 + 1, ti], and that

∀i ∈ {1, 2, . . . , k − 1}, bi = bi+1 =⇒ σ(ti) > σ(ti + 1).

Each sequence (x1, x2, . . . , xn) ∈ SR(α) yields a word w = xσ(1)xσ(2) · · ·xσ(n) with letters
in A × B. The definition of SR(α) is so shaped that the standardization of w is σ; it follows

that the B-standardization of w is σ ·
(
b̃σ(1), b̃σ(2), . . . , b̃σ(n); en

)
= α. Conversely, each word

w with letters in A ×B whose B-standardization is α can be written w = xσ(1)xσ(2) · · ·xσ(n),
where the sequence (x1, x2, . . . , xn) belongs to SR(α).

We conclude that the image of

Φ(α) =
∑

w∈〈A ×B〉

stdB(w)=α

w

under the canonical map from K〈〈A × B〉〉 to K[[A × B]] is equal to
∑

(x1,x2,...,xn)∈SR(α)

xσ(1)xσ(2) · · ·xσ(n) =
∑

(x1,x2,...,xn)∈SR(α)

x1x2 · · ·xn = FR(α).

The proposition follows. ¤

Now let us enumerate the elements of B in increasing order: b̄1, b̄2, . . . , b̄l, where l is the
cardinality of B, and let us review the definitions of a combinatorial nature that are needed to
introduce Poirier’s theory of coloured quasisymmetric functions. Since Poirier made a slight
mistake (in [29], Lemma 8 does not always agree with Formulas (1) and (2) on p. 324), we
will follow Novelli and Thibon’s presentation [27].

A l-partite number is an element of N
l; we view it as a column matrix. Given a positive

integer k, a l-vector composition of length k is a k-uple of non-zero l-partite numbers; it can
be viewed as a sequence of column matrices, or more simply as a matrix with non-negative
integral entries in l rows and k columns which has at least one non-zero element in each
column.

Each l-vector composition I produces a formal power series in K[[A ×B]] called a monomial
quasisymmetric function of level l and defined by

MI =
∑

(a1,a2,...,ak)∈A k

a1<a2<···<ak





l∏

i=1

k∏

j=1

(aj , b̄i)
mij



 ,

where (mij) is the matrix that represents I. For instance in the case where B is the set { ,̄ ¯̄}
with the order ¯ < ¯̄, the monomial quasisymmetric functions of level l = 2 and of degree 2 are

M( 2
0 ) =

∑

x∈A

x̄2, M( 1
1 ) =

∑

x∈A

x̄¯̄x, M( 0
2 ) =

∑

x∈A

¯̄x2,

M( 1 1
0 0 ) =

∑

(x,y)A 2

x<y

x̄ȳ, M( 1 0
0 1 ) =

∑

(x,y)A 2

x<y

x̄¯̄y, M( 0 1
1 0 ) =

∑

(x,y)A 2

x<y

¯̄xȳ,

M( 0 0
1 1 ) =

∑

(x,y)A 2

x<y

¯̄x¯̄y.
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Let I be a l-vector composition, represented by the matrix (mij). We form the list of
all pairs (mij , b̄i), reading columnwise the entries of (mij) from top to bottom and from left
to right. Erasing in this list all the pairs whose first component mij is zero, we obtain a
B-composition, which we call the sequential reading of I and which we denote by sr(I). For
instance with our favorite set B = { ,̄ ¯̄ } with the order ¯ < ¯̄, the l-vector compositions
represented by the matrices

(
1 0 4
3 2 1

)

and

(
1 0 0 4
0 3 2 1

)

have both sequential reading ((1,¯), (3, ¯̄), (2, ¯̄), (4,¯), (1, ¯̄)). We see therefore that the map
I 7→ sr(I) is not injective.

This definition allows us to express each formal power series Fc as a linear combination of
monomial quasisymmetric functions.

Proposition 35 For each B-composition c, there holds

Fc =
∑

I l-vector composition

c4sr(I)

MI.

Proof. Let S be the set of all non-decreasing finite sequences (x1, x2, . . . , xn) of elements of
A × B. We define a map ψ from S to the set of all l-vector compositions by the following
recipe. Let (x1, x2, . . . , xn) in S; write xi = (ai, bi) for each i; let ã1, ã2, . . . , ãk be the
(distinct) elements of {ai | 1 ≤ i ≤ n} enumerated in increasing order. Then ψ(x1, x2, . . . , xn)
is the l-vector composition of length k represented by the matrix (mij), where each mij counts
the number of times that the element (ãj , b̄i) appears in the sequence (x1, x2, . . . , xn).

Given a l-vector composition I, we set TI = ψ−1
(
{I}

)
. Then by definition

MI =
∑

(x1,x2,...,xn)∈TI

x1x2 · · ·xn.

Now let c be a B-composition. Routine arguments show that

∀x ∈ S, x ∈ Sc ⇐⇒ c 4 sr(ψ(x)).

In other words, Sc is the disjoint union of the sets TI, where I is an l-vector composition such
that c 4 sr(I). It follows that

Fc =
∑

(x1,x2,...,xn)∈Sc

x1x2 · · ·xn

=
∑

I l-vector composition

c4sr(I)




∑

(x1,x2,...,xn)∈TI

x1x2 · · ·xn





=
∑

I l-vector composition

c4sr(I)

MI,

which proves the proposition. ¤
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Paraphrasing a construction of Poirier, Novelli and Thibon endow the set of l-vector com-
positions with a partial order ≤ and define for each l-vector composition I the formal power
series

FI =
∑

J l-vector composition

I≤J

MJ,

which they call a quasi-ribbon function of level l. On the other side, one can show quite easily
that for each B-composition c, there exists a unique l-vector composition K(c) such that

{

J

∣
∣
∣
∣
∣

J l-vector composition

such that c 4 sr(J)

}

=

{

J

∣
∣
∣
∣
∣

J l-vector composition

such that K(c) ≤ J

}

.

With these notations, Proposition 35 asserts that the formal power series Fc coincides with
the quasi-ribbon function FK(c).

Let us denote by QSym(l) the submodule of K[[A × B]] spanned by the monomial qua-
sisymmetric functions of level l. Novelli and Thibon claim in [27] that QSym(l) is a subalgebra
of K[[A ×B]], and moreover that QSym(l) has the structure of a graded bialgebra, whose dual
can be identified to the Novelli-Thibon bialgebra NT(KB). In this context, Propositions 34
and 35 imply that QSym(B) is a subalgebra of QSym(l). It is amusing to note here that the
graded algebra QSym(B), which is isomorphic to the dual of the graded bialgebra D(B), can
also be viewed as a quotient of QSym(l), since D(B) is a graded subbialgebra of NT(KB).

We conclude this paper by mentioning that Aval, F. Bergeron and N. Bergeron recently
observed that coloured quasisymmetric functions of level l = 2 appear in a completely different
context. We refer the reader to their paper [5] for additional details.
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