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Abstract. In this paper we go further in the study of cobordism of algebraic
knots associated with Brieskorn polynomials initiated in [3]. We define new
sets of invariants for these cobordism classes. Using these invariants we find
more examples of distinct cobordism classes with distinct exponents.

1. Introduction

A Brieskorn polynomial is a polynomial of the form

P (z) = za1
1 + za2

2 + · · ·+ z
an+1

n+1

with z = (z1, z2, . . . , zn+1), n ≥ 1, where the integers aj ≥ 2, j = 1, 2, . . . , n + 1,
are called the exponents. The complex hypersurface in Cn+1 defined by P = 0 has
an isolated singularity at the origin, which is called a Brieskorn singularity.

To be more precise, let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ
with an isolated critical point at the origin. We denote by D2n+2

ε the closed ball of
radius ε > 0 centred at 0 in Cn+1, and by S2n+1

ε its boundary. According to Milnor
[12], the oriented homeomorphism class of the pair (D2n+2

ε , f−1(0) ∩D2n+2
ε ) does

not depend on the choice of a sufficiently small ε > 0, and by definition it is the
topological type of f . The oriented diffeomorphism class of the pair (S2n+1

ε ,Kf),
with Kf = f−1(0) ∩ S2n+1

ε , is the algebraic knot associated with f , where Kf is a
closed oriented (2n−1)-dimensional manifold. According to Milnor’s cone structure
theorem [12], the algebraic knot Kf determines the topological type of f . In fact,
it is known that the converse also holds.

Definition 1.1. An m-dimensional knot, or a m-knot, is a closed oriented m-
dimensional submanifold of the oriented (m+ 2)-dimensional sphere Sm+2. When
this submanifold is homeomorphic to a sphere we call this a sperical knot. Two
m-knots K0 and K1 in Sm+2 are said to be cobordant if there exists a properly
embedded oriented (m+ 1)-dimensional submanifold X of Sm+2 × [0, 1] such that

(1) X is diffeomorphic to K0 × [0, 1], and
(2) ∂X = (K0 × {0}) ∪ (−K1 × {1}),

where −K1 × {1} denotes the manifold K1 × {1} with the reversed orientation. A
manifold X as above is called a cobordism between K0 and K1 (see Fig. 1).

In this paper, we will study the cobordism classes of algebraic knots associ-
ated with Brieskorn singularities, we will call such knots Brieskorn knots for short.
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Figure 1. A cobordism between K0 and K1

Moreover, our goal is to study these cobordism classes in terms of exponents of the
Brieskorn polynomials. In [3] we proved that when n equals 1 or 2 Brieskorn knots
are cobordant if and only if they have same exponents. Then, we will work with
n ≥ 3.

In [1], for n ≥ 3, necessary and sufficient conditions for two algebraic (2n − 1)-
knots to be cobordant have been obtained in terms of Seifert forms (for the definition
of the Seifert form, see §2). However, the computation of the Seifert form of a given
algebraic knot is very difficult, and an explicit calculation of a Seifert form is known
only for a very limited class of algebraic knots. Furthermore, even if we know the
Seifert forms explicitly, it is still difficult to see if given two such forms satisfy the
algebraic conditions given in [1] or not.

When the knots are spherical, the algebraic condition of cobordism becomes
much more simple. M. Kervaire [9] and J. Levine [10] proved that spherical knot are
cobordant if and only if they have Witt equivalent Seifert forms and J. Levine [11]
gave a complete list of invariants for cobordism classes of spherical knots. (for
details, see §2).

Recall that cobordism does not necessarily imply isotopy for algebraic knots in
general. For details, see the survey article [2].

In this paper, we first associate some spherical Brieskorn knots to a given
Brieskorn knot. Since the set of exponents of such associated spherical knots are
very similar to which of the Brieskorn knot, the study of cobordism classes of these
spherical Brieskorn knots impose conditions on the exponents’ sets of the initial
Brieskorn cobordism class.

The paper is organized as follows. In §2 we give some definitions and classical
results, then in §3 we give a new set of invariants for cobordism classes of Brieskorn
knots.

Throughout the paper we work in the smooth category. All the homology groups
are with integer coefficients unless otherwise specified.

2. Definitions and results on spherical knots cobordism

Let f(z) be a polynomial in Cn+1 with an isolated critical point at the origin.
We denote by Ff the Milnor fiber associated with f , i.e., Ff is the closure of a
fiber of the Milnor fibration ϕf : S2n+1

ε \Kf → S1 defined by ϕf (z) = f(z)/|f(z)|.
According to Milnor [12], Ff is a compact 2n-dimensional submanifold of S2n+1

ε
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Figure 2. Computing a Seifert matrix for the trefoil knot

which is homotopy equivalent to the bouquet of a finite number of copies of the
n-dimensional sphere.

The Seifert form

Lf : Hn(Ff )×Hn(Ff ) → Z

associated with f is defined by

Lf(α, β) = lk(a+, b),

where a and b are n-cycles representing α and β in Hn(Ff ) respectively, a+ is the
n-cycle in S2n+1

ε obtained by pushing a into the positive normal direction of Ff ,
and lk denotes the linking number of n-cycles in S2n+1

ε . See Fig. 2 for a picture
of cycles necessary to compute the trefoil knot’s Seifert from. It is known that the
isomorphism class of the Seifert form is a topological invariant of f . Furthermore,
two algebraic knots Kf and Kg associated with polynomials f and g in Cn+1,
respectively, with isolated critical points at the origin are isotopic in S2n+1

ε if and
only if their Seifert forms Lf and Lg are isomorphic, provided that n ≥ 3.

In fact, algebraic knots are simple fibered knots as follows. We say that an
oriented m-knot K is fibered if there exists a smooth fibration φ : Sm+2 \K → S1

and a trivialization τ : NK → K×D2 of a closed tubular neighborhood NK of K in
Sm+2 such that φ|NK\K coincides with π ◦ τ |NK\K , where π : K × (D2 \ {0}) → S1

is the composition of the projection to the second factor and the obvious projection
D2 \ {0} → S1. Note that then the closure of each fiber of φ in Sm+2 is a compact
(m+1)-dimensional oriented manifold whose boundary coincides with K. We shall
often call the closure of each fiber simply a fiber. Moreover, for m = 2n− 1 ≥ 1 we
say that a fibered (2n− 1)-knot K is simple if each fiber of φ is (n− 1)-connected
and K is (n − 2)-connected. For details we refer the reader to [2]. Note that two
simple fibered (2n−1)-knots are isotopic if and only if they have isomorphic Seifert
forms, provided n ≥ 3 (see [7, 8]).

Definition 2.1. Two bilinear forms Li : Gi × Gi → Z, i = 0, 1, defined on free
abelian groups Gi of finite ranks are said to be Witt equivalent if there exists a
direct summand M of G0 ⊕ G1 such that (L0 ⊕ (−L1))(x, y) = 0 for all x, y ∈ M
and twice the rank of M is equal to the rank of G0 ⊕G1. In this case, M is called
a metabolizer.

2.1. Characterization of spherical Brieskorn knots. We refer to [4] for the
results of this subsection, the reader may consult the book [6] for detailed proofs
as well.
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Let P (z) = za1
1 + za2

2 + · · · + z
an+1

n+1 be a Brieskorn polynomial, we associate to
this polynomial a graph GP . This graph has n + 1 vertices labeled by the letters
a1, . . . , an+1, and two vertices ai and aj are connected with and edge if and only if
gcd(ai, aj) is strictly greater to 1. We denote by Cev,P the connected component
of GP wich contain all odd exponents ; remark that Cev,P may contain some odd

labeled vertices as well. We say that Cev,P fulfills conditionC if it contains an
odd number of vertices and gcd(ai, aj) = 2 for any two distinct points ai and aj in
Cev,P .

Theorem 2.2 ([4]). Let n ≥ 3. The Brieskorn knot associated to P is spherical if

and only if the graph GP contains at least two isolated points or an isolated point

which is odd and the component Cev,P fulfills conditionC.

Let KP be the Brieskorn knot associated to the Brieskorn polynomial

P (z) = za1
1 + za2

2 + · · ·+ z
an+1

n+1 .

Set p and q be two distinct prime numbers such that for all i = 1, . . . , n+1 we have
gcd(p, ai) = gcd(q, ai) = gcd(p, q) = 1. Then we define the following polynomial

Pp,q(z) = za1
1 + za2

2 + · · ·+ z
an+1

n+1 + zpn+2 + zqn+3.

According to Theorem 2.2 and h-cobordism theorem [16], the Brieskorn knot KPp,q

is spherical. Note that KP and KPp,q
are respectively of dimension 2n + 1 and

2n+ 3.

2.2. Levine’s complete invariant set of cobordant isometric structures.

We refer to [11] for all results of this subsection.
In order to study Cn the cobordism group ok knotted n-dimensional spheres in

codimension two, J. Levine introduced isometric structures
(

<,>, T
)

where <,>
is a non degenerate symmetric bilinear form on a finite dimensional vector space
V over Q, and T is an isometry of V . Recall that the group law of Cn is the
connected sum ; two such knots K0 and K1 are cobordant if the oriented connected
sum K0#−K1 is null-cobordant, i.e. cobordant to the trivial embedding, and this
only happens when the associated Seifert forms are Witt-equivalent.

Following [11], an isometric structure
(

<,>, T
)

is null-cobordant when V con-
tains a totally isotropic subspace, invariant under T , of half dimension of V . More-
over, two isometric structures

(

<,>, T
)

and
(

<,>′, T ′
)

are cobordant if the orthog-

onal sum
(

<,>, T
)

⊥
(

− <,>′, T ′
)

is null-cobordant. As in the case of spherical
knots, this equivalence relation gives an abelian group of cobordism classes of iso-
metric structures.

Let ∆T (t) be the characteristic polynomial of T . Levine proved that the group
of cobordism classes of isometric structures

(

<,>, T
)

satisfying ∆T (1)∆T (−1) 6= 0
is isomorphic to the Witt-equivalence group of matrices A satisfying (A− tA)(A+
tA) is non-singular. With this isomorphism we associate the isometric structure
(

A + tA,−A−1 tA
)

to a square matrix A over Q such that (A − tA)(A + tA) is
non-singular. This isomorphism allows to study Witt-equivalence of matrices in
terms of cobordism classes of isometric structures.

Let
(

<,>, T
)

be an isometric over Q. Let Λ = Q[t, t−1] be the ring of Laurent
polynomials over Q. We consider V the vector space on which <,> and T are
defined as a Λ-module, defining the action of t by T .
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Let ∆T (t) =

r
∏

i=1

λi(t)
ei be the factorisation of ∆T (t) with irreducible factors

over Q. To each irreducible factor λi we define Vλi
= Kerλi(t)

N for N a large
integer, such a Vλi

is called a primary component of V . Moreover, V is the direct

sum V =
r

⊕

i=1

Vλi
.

Let λ(t) be a symmetric1 irreducible factor of ∆T , then Levine defined

(1) ελ
(

<,>, T
)

equals to the exponent of λ(t) in ∆T (t) mod 2.

(2) σλ

(

<,>, T
)

equals to the signature of the restriction of <,> to Vλ over R.

(3) µλ

(

<,>, T
)

=
(

−1,−1
)

r(r+3
2

(

det(<,>),−1
)r

S
(

<,>
)

where <,> is of rank 2r, the Hilbert symbol for <,> over R is denoted by
(

,
)

and S
(

<,>
)

is the Hasse symbol over Q

We have the following theorem.

Theorem 2.3 ([11]). Two isometric sturctures α and β are in the same cobordism

class if and only if ελ(α) = ελ(β), σλ(α) = σλ(β) and µλ(α) = µλ(β) for all λ(t)
for which these invariants are defined.

3. Results

3.1. Cobordism classes of Brieskorn knots. First, we prove the following
proposition.

Proposition 3.1. Let KP and KQ be two Brieskorn knots associated with two

polynomials P and Q with n+1 variables. If there exists two distinct prime numbers

p and q such that the spherical Brieskorn knots KPp,q
and KQp,q

are not cobordant,

then KP and KQ are not cobordant.

Proof. Since the polynomial Pp,q is obtained from P by adding a two variables
polynomial of the form zpi +zqi+1, then according to K. Sakamoto [14] we know that
the Seifert form of the Brieskorn knot KPp,q

is obtained by the tensor product of
the Seifert form of KP with a square matrix Ap,q. By Durfee [7] we know that Ap,q

is a matrix with only 0 and ±1 coefficents which are only determined by p and q.
If two Brieskorn knotsKP andKQ are cobordant, then they have witt-equivalent

Seifert formsAKP
and AKQ

defined on Z-modulesGP andGQ. LetM , a submodule
of GP ⊕ GQ, be a metabolizer for AKP

⊕ −AKQ
and let d be the dimension of

the square matrix Ap,q. Then the submodule

d
⊕

i=1

Mi of

d
⊕

i=1

GP,i ⊕ GQ,i , where

Mi is a copy of M and GP,i ⊕ GQ,i is a copy of GP ⊕ GQ, is a metabolizer for
(

AKP
⊗Ap,q

)

⊕
(

−AKQ
⊗Ap,q

)

.
Hence the two Seifert forms AKP

⊗ Ap,q and AKQ
⊗ Ap,q are Witt-equivalent.

Since the Brieskorn knots KPp,q
and KQp,q

are spherical, we know that they are
cobordant. We have proved the proposition by contraposition. �

Proposition 3.2. The Brieskorn knots KP and KQ associated to the polynomials

P (z) =

n+1
∑

j=1

z
aj

j and Q(z) =

n+1
∑

j=1

z
bj
j

1i.e., such that λ(t) = ±t
deg(λ)

λ(t−1).
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are cobordant if and only if the Brieskorn knots KP+ and KQ+ associated to the

polynomials

P+(z) = z2n+2 +
n+1
∑

j=1

z
aj

j and Q+(z) = z2n+2 +
n+1
∑

j=1

z
bj
j

are cobordant.

Proof. According to [14] the knots KP and KP+ have same Seifert forms and the
same is true for KQ and KQ+ . Since the cobordism class of fibered knots is com-
pletely determined by the algebraic cobordism class of its Seifert form (see [1]) we
have that KP and KQ have algebraically cobordant Seifert forms if and only if
the same holds for KP+ and KQ+ . Then, the Brieskorn knots KP and KQ are
cobordant if and only if the Brieskorn knots KP+ and KQ+ are cobordant. �

Recall that if A is a Seifert matrix of a Brieskorn knots KP associated with a
Brieskorn polynomial P (z) = za1

1 +za2
2 +· · ·+z

an+1

n+1 , then its Alexander polynomials

is defined by ∆K(t) = det
(

t A+(−1)n tA
)

. Since Brieskorn knots are fibered knots,
we know that the Alexander polynomial is the characteristic polynomial of the
monodromy.

Remark 3.3. The knots KP and KP+ have same Seifert forms, hence they have
same Alexander polynomials.

Proposition 3.4. The set of irreducible factors of the Alexander polynomial over

Q of a Brieskorn knot is an invariant of its cobordism class.

Proof. By the monodromy theorem proved by E. Brieskorn [5] the Alexander poly-
nomial of Brieskron knots are some products of cyclotomic polynomials. Moreover,
Alexander polynomials of Brieskorn knots has been computed by F. Pham [13] and

E. Brieskorn [4]. More precisely, let P be the polynomial P (z) =
n+1
∑

j=1

z
aj

j , then

Brieskorn gave the following factorization over C for the alexander polynomial of
the Brieskorn knots KP

∆KP
(t) =

∏

0<ik<ak

(

t− ζi1a1
. · · · .ζinan

)

(∗)

where ζak
= e

2πi
ak .

Let KP and KQ be two Brieskorn knots with distinct irreducible factors in
their Alexander polynomial, then they have roots aver C which are distinct. The
Brieskorn knots KPp,q

and KQp,q
are defined with the same integers p and q which

are distinct prime numbers and both are coprime with all exponents of P and Q.
Then, according to (∗) the Alexander polynomials of KPp,q

and KQp,q
have distinct

irreducible factors since the do not have the same complex roots.
Moreover, proposition 2.2 implies that KPp,q

and KQp,q
are spherical Brieskorn

knots.
According to [7], if A is the Seifert form associated to the Milnor fibration, then

its intersection form is defined by the relation S = A+(−1)n tA and its monodromy
is defined by the relation h = (−1)n−1A−1 tA. Moreover by proposition 3.2 one can
suppose that (−1)n = 1. Hence we have that

(

S, h
)

is an isometric structure on
Hn(F,Q) where F is the Milnor fiber of the isolated singularity at 0 of a Brieskorn
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polynomial, S is the intersection form and h is the monodromy. On top of that,
up to invertible element, the characteristic polynomial of h is the Alexander poly-
nomial defined using the Seifert form which is a product of symmetric cyclotomic
polynomials.

Finally, according to theorem 2.3, the two spherical Brieskorn knots KPp,q
and

KQp,q
cannot be cobordant since they do not have the same list of invariants. �

In [3] we proved that cobordant Brieskorn knots must have same exponents, up
to order, provided no exponent is a multiple of another one. Now, we have the
following result which is an immediate corollary of proposition 3.4.

Corollary 3.5. Let KP and KQ be the Brieskorn knots associated to the polyno-

mials

P (z) =

n+1
∑

j=1

z
aj

j and Q(z) =

n+1
∑

j=1

z
bj
j .

Let PP and PQ be the sets of distinct irreducible factors of each polynomial P

and Q. If PP 6=PQ, then the knots KP and KQ are not cobordant.

Proof. Set ζak
= e

2πi
ak , as before we have the following factorizations

∆KP
(t) =

∏

0<ik<ak

(

t− ζi1a1
. · · · .ζinan

)

and

∆KQ
(t) =

∏

0<ik<bk

(

t− ζi1b1 . · · · .ζ
in
bn

)

.

When PP 6=PQ the polynomials ∆KP
and ∆KQ

admit distinct complex roots.
Hence they do not have the same irreducible factors over Q. By proposition 3.4
the knots KP and KQ are not cobordant. �

In the following, for each Brieskorn knot, we will define a list of integers which
only depends on its exponents. Since these integers are related to the factorization
of the Alexander polynomial of as a product of cyclotomic polynomials, then we
will get an invariant of cobordism classes of Brieskorn knots.

In the following, when α and β are two integers, we denote by α∧β the greatest
common divisor of α and β and we denote by [α, β] the lowest common multiple of
α and β.

Let k and d be two integers. Set µk(d) be the greatest divisor of k ∧ d which is
coprime with k

k∧d
.

Then, we associate to the couple of integer (k, d) a set of integers defined as
follows

Ψk(d) =















{

[k,d]
l

, if l is a divisor of k µk(d)
k∧d

}

\ {k} if µk(d) ≤ 2

{

[k,d]
l

, if l is a divisor of k µk(d)
k∧d

}

else

Definition 3.6. When KP is a Brieskorn knot associated with the polynomial

P (z) =

n+1
∑

j=1

z
aj

j , for all distinct prime numbers p and q which are both coprime to

each a1, . . . , an+1 we define the set ΞKP ,p,q as follows.
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(1) Ξ0
KP ,p,q = {pq}

(2) for i = 1 to n+ 1 we set Ξi
KP ,p,q =

{

Ψαj
(ai) | αj ∈ Ξi−1

KP ,p,q

}

(3) ΞKP ,p,q = Ξn+1
KP ,p,q

We will prove that ΞKP ,p,q is invariant in a cobordism class of Brieskorn knots.

Proposition 3.7. Let KP be a Brieskorn knot associated with the polynomial

P (z) =

n+1
∑

j=1

z
aj

j . Let p and q be two distinct prime numbers which are both coprime

to a1, . . . , an+1, then the set of integers ΞKP ,p,q is an invariant of its cobordism

class

Proof. When P (z) is a Brieskorn polynomial with z = (z1, z2, . . . , zn+1) and n ≥ 1 ;
I. Savel’ev [15] compute the Alexander polynomial of Q(z, zn+2) = P (z) + zdn+2

where d is an integer.
Let Φn(t) be the n-th cyclotomic polynomial. If the Alexander polynomial of

P (z) is

∆P (t) =

N
∏

l=1

Φkl
(t)τl , with τl > 0,

then

∆Q(t) =

N
∏

l=1

(

∏

ν|λkl,d

Φ [kl,d]

ν

(t)ϕ(µkl
(d))

Φkl
(t)

)τl
(⋆)

where λkl,d =
dµkl

(d)

kl∧d
. We see that {Φk1 , . . . ,ΦkN

} is the set of irreducible factors of

∆P (t) and
{

ΦΨαj
(d) | αj ∈ {k1, . . . , kN}

}

is the set of irreducible factors of ∆Q(t).

According to [4], the Alexander polynomial of the Brieskorn knot Kxp+yq is

∆p,q(t) =
(t

pq
r − 1)r(t− 1)

(tp − 1)(tq − 1)

where r = p ∧ q. If p and q are distinct prime numbers, then we have

∆p,q(t) =
Φpq(t)Φp(t)Φq(t)Φ1(t)

2

Φp(t)Φq(t)Φ1(t)2
= Φpq(t).

When µkl
(d) ≤ 2, then ϕ(µkl

(d)) equals 1 and Φkl
is no longer a factor of

∆Q in (⋆). Hence ΞKP ,p,q is the set of irreducible factors of ∆Pp,q
. According

to proposition 3.4, when p and q are two distinct prime numbers which are both
coprime to each a1, . . . , an+1, the set ΞKP ,p,q is an invariant of the cobordism class
of KP . �

Remark 3.8. The last proposition is just a reformulation of proposition 3.4. But it
gives a computable list of integers which is an invariant of the cobordism class of a
Brieskorn knot.

3.2. Examples. Recall that Alexander polynomials of cobordant knots must sat-
isfy a Fox-Milnor relation. In [2] we only use this property to determine if knots
cannot be cobordant. Moreover, in the same paper, example 3.8 gave the examples
of Brieskorn knots Kf and Kg where n > 3, p1, p2, . . . , pn−3 ≥ 2 and

f(z) = zp1

1 + zp2

2 + · · ·+ z
pn−3

n−3 + z8n−2 + z8n−1 + z4n + z4n+1



COBORDANT ALGEBRAIC KNOTS DEFINED BY BRIESKORN POLYNOMIALS 9

and
g(z) = zp1

1 + zp2

2 + · · ·+ z
pn−3

n−3 + z6n−2 + z6n−1 + z6n + z6n+1

for wich it was unknown if they are in the same cobordism class since the product
of the Alexander polynomials fulfills a Fox-Milnor relation.

With proposition 3.4 we have a new method to determine if such Brieskorn
knots lies in the same cobordism class or not. More precisely, if 3 is coprime with
all p1, . . . , pn−3, then the set of prime factors of the exponents of the polynomials
f and g are distinct.

Recall that when P (z) =

n+1
∑

j=1

z
aj

j we have ∆KP
(t) =

∏

0<ik<ak

(

t − ζi1a1
. · · · .ζinan

)

.

Hence, the polynomials ∆Kf
and ∆Kg

have not the same set of complex roots. By
proposition 3.4 we see that in this case the Brieskorn knots Kf and Kg are not
cobordant.

3.3. Conjecture. We found more examples of Brieskorn knots for which distinct
exponents imply distinct cobordism classes. Moreover, according to proposition 3.7
it seems difficult to find examples of Brieskorn knots which are cobordant and have
distinct exponents up to order. Hence, we formulate the following conjecture.

Conjecture 3.9. The Brieskorn knots associated to the polynomials

P (z) =

n+1
∑

j=1

z
aj

j and Q(z) =

n+1
∑

j=1

z
bj
j

are cobordant if and only if aj = bj, j = 1, 2, . . . , n+ 1, up to order.

Remark that if this conjecture is true, then the multiplicity of a Brieskorn knot
will be an invariant of its cobordism class.
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