Contents

Preface page 1
Frequently Used Notation 7
1 Distribution modulo one 10
1.1 Weyl's Criterion 10
1.2 Metrical results 14
1.3 Discrepancy 18
1.4 Distribution functions 20
1.5 The multidimensional case 21
1.6 Exercises 22
1.7 Notes 23
2 On the fractional parts of powers of real numbers 24
2.1 Thue, Hardy, Pisot, and Vijayaraghavan 25
2.2 On some exceptional pairs (ξ, α) 31
2.3 On the powers of real numbers close to 1 37
2.4 On the powers of some transcendental numbers 42
2.5 A theorem of Furstenberg 46
2.6 A conjecture of de Mathan and Teulié 49
2.7 Exercises 51
2.8 Notes 53
3 On the fractional parts of powers of algebraic num- bers 58
3.1 The integer case 59
3.2 Mahler's Z-numbers 60
3.3 On the fractional parts of powers of algebraic numbers 63
3.4 On the fractional parts of powers of Pisot and Salem numbers 67
3.5 The sequence $\left(\left\|\xi \alpha^{n}\right\|\right)_{n \geq 1}$ 71
3.6 Constructions of Pollington and of Dubickas 78
3.7 Waring's problem 82
3.8 On the integer parts of powers of algebraic numbers 83
3.9 Exercises 84
3.10 Notes 85
4 Normal numbers 88
4.1 Equivalent definitions of normality 89
4.2 The Champernowne number 96
4.3 Normality and uniform distribution 99
4.4 Block complexity and richness 101
4.5 Rational approximation to Champernowne-type numbers 102
4.6 Exercises 106
4.7 Notes 106
5 Further explicit constructions of normal and non- normal numbers 112
5.1 Korobov's and Stoneham's normal numbers 112
5.2 Absolutely normal numbers 121
5.3 Absolutely non-normal numbers 122
5.4 On the random character of arithmetical constants 124
5.5 Exercises 125
5.6 Notes 126
6 Normality to different bases 128
6.1 Normality to a prescribed set of integer bases 128
6.2 Normality to non-integer bases 133
6.3 On the expansions of a real number to two different bases 141
6.4 On the representation of an integer in two different bases 145
6.5 Exercises 145
6.6 Notes 146
7 Diophantine approximation and digital properties 149
7.1 Exponents of Diophantine approximation 150
7.2 Prescribing simultaneously the values of all the exponents v_{b} 154
7.3 Badly approximable numbers to integer bases 157
7.4 Almost no element of the middle third Cantor set is very well approximable 163
7.5 Playing games on the middle third Cantor set 166
7.6 Elements of the Cantor set with prescribed irra- tionality exponent 168
7.7 Normal and non-normal numbers with prescribed Diophantine properties 171
7.8 Hausdorff dimension of sets with missing digits 173
7.9 Exercises 176
7.10 Notes 177
8 Digital expansion of algebraic numbers 181
8.1 A transcendence criterion 182
8.2 Block complexity of algebraic numbers 184
8.3 Zeros in the b-ary expansion of algebraic numbers 187
8.4 Number of digit changes in the b-ary expansion of algebraic numbers 192
8.5 On the b-ary expansion of e and some other transcendental numbers 195
8.6 On the digits of the multiples of an irrational number 196
8.7 Exercises 200
8.8 Notes 202
$9 \quad$ Continued fraction expansions and β-expansions 206
9.1 Normal continued fractions 206
9.2 On the continued fraction expansion of an algebraic number 212
9.3 On β-expansions 217
9.4 Exercises 221
9.5 Notes 221
10 Conjectures and open questions 226
Appendix A Combinatorics on words 235
Appendix B Some elementary lemmata 243
Appendix C Measure theory 246
Appendix D Continued fractions 253
Appendix E Diophantine approximation 258
Appendix F Recurrence sequences 265
References 269
Index 310

