Pre-Lie algebras, rooted trees and related algebraic structures

March 23, 2004

Definition 1 A pre-Lie algebra is a vector space W with a map $\curvearrowleft : W \otimes W \rightarrow W$ such that

$$(x \land y) \land z - x \land (y \land z)$$

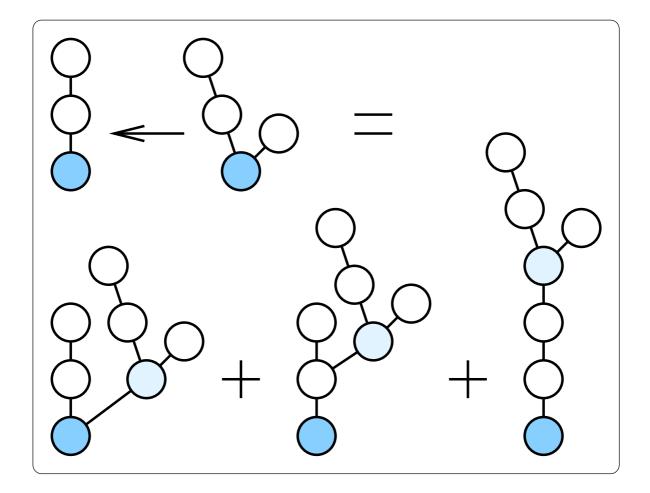
= $(x \land z) \land y - x \land (z \land y).$ (1)

Example 2 All associative algebras are also pre-Lie algebras.

Example 3 The vector space of polynomial vector fields on affine space \mathbb{A}^n .

$$\sum_{i} P(x)\partial_{x_{i}} \frown \sum_{j} Q(x)\partial_{x_{j}}$$
$$= \sum_{i} \sum_{j} Q(x) \left(\partial_{x_{j}} P(x)\right) \partial_{x_{i}}.$$
(2)

Theorem 4 (CL) The free pre-Lie algebra on a single generator has a basis indexed by rooted trees. The pre-Lie product is given by the sum over all possible graftings.



Corollary 5 For a given polynomial vector field P, there exists a unique morphism from the free pre-Lie algebra on one generator Oto the pre-Lie algebra of polynomial vector fields which maps O to P. To any rooted tree T, one can associate in this way a vector field T_P .

Example 6 Consider the following vector field (not polynomial, but analytic):

$$V = \exp(x)\partial_x.$$
 (3)

Then for any rooted tree T, one has

$$T_V = |T| \exp(x) \partial_x, \tag{4}$$

where |T| is the number of vertices of T.

Example 7 Find what is T_V for $V = x \partial_x$.

Definition 8 The PreLie operad is the operad describing pre-Lie algebras.

Recall that an operad \mathcal{P} is given by a collection of modules $\mathcal{P}(n)$ over the symmetric groups \mathfrak{S}_n with composition maps

$$\circ_i : \mathcal{P}(m) \otimes \mathcal{P}(n) \to \mathcal{P}(m+n-1),$$
 (5)

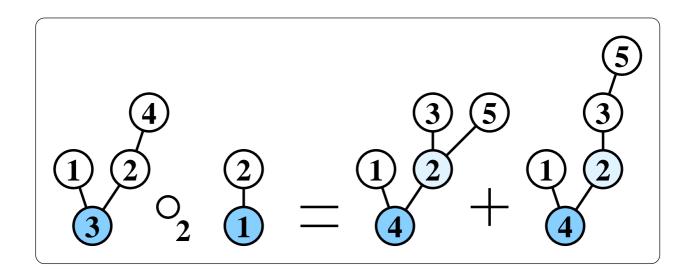
satisfying natural axioms. The standard example is given by

$$\mathcal{P}(n) = \hom(W^{\otimes n}, W) \tag{6}$$

for some fixed vector space W, together with composition of multi-linear operations at position i.

One can reformulate and enhance the description of the free pre-Lie algebras as a description of the PreLie operad.

Theorem 9 (CL) The vector space PreLie(n)has a basis indexed by the set of rooted trees with vertices in bijection with $\{1, ..., n\}$ (labelled rooted trees). The action of \mathfrak{S}_n is by changing the decoration. The composition $T \circ_i T'$ of a tree T' at place i of a tree T is a sum over the set of maps from incoming edges at i to vertices of T'.



For any collection $\mathcal{P}(n)$ of \mathfrak{S}_n -modules, one defines an analytic functor which maps a vector space W to

$$\mathcal{P}(W) = \bigoplus_{n \ge 1} W^{\otimes n} \otimes_{\mathfrak{S}_n} \mathcal{P}(n).$$
(7)

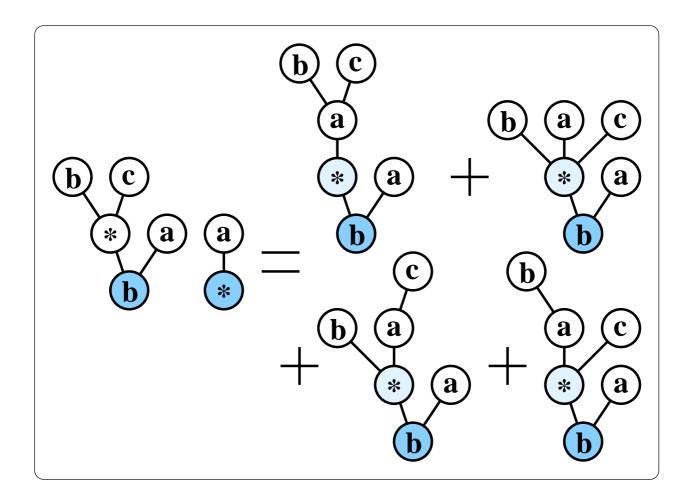
Recall that one can define the derived functor \mathcal{P}' of an analytic functor \mathcal{P} by the formula

$$\mathcal{P}'(W) = \mathcal{P}(W \oplus \mathbb{K}\{*\}). \tag{8}$$

Equivalently, the \mathfrak{S}_n -module $\mathcal{P}'(n)$ is the restriction of the action of \mathfrak{S}_{n+1} on $\mathcal{P}(n+1)$ to the subgroup fixing n+1.

Theorem 10 If \mathcal{P} is an operad, then, for any vector space W, $\mathcal{P}'(W)$ has a natural structure of associative algebra. The product is given by composition \circ_* at the distinguished place *.

Example 11 Let us consider the case of the PreLie operad and a vector space $W = \mathbb{K}\{a, b, c\}$. Then PreLie'(W) has a basis indexed by rooted trees with a map from vertices to the set $\{a, b, c, *\}$ such that * is the image of exactly one vertex, called the distinguished vertex (marked decorated rooted trees).



Theorem 12 The subspace $\mathcal{I}(W)$ spanned by trees where * is not the root is a twosided ideal of PreLie'(W).

The quotient algebra has another description. Recall that the bracket

$$[x,y] = x \curvearrowleft y - y \curvearrowleft x, \tag{9}$$

in a pre-Lie algebra defines a Lie algebra.

Theorem 13 The quotient of PreLie'(W) by $\mathcal{I}(W)$ is isomorphic as an associative algebra to the universal enveloping algebra of the Lie algebra associated to the free pre-Lie algebra on W.

 $\operatorname{PreLie}'(W)/\mathcal{I}(W) \simeq U(\operatorname{PreLie}(W)_{\operatorname{Lie}}).$ (10)

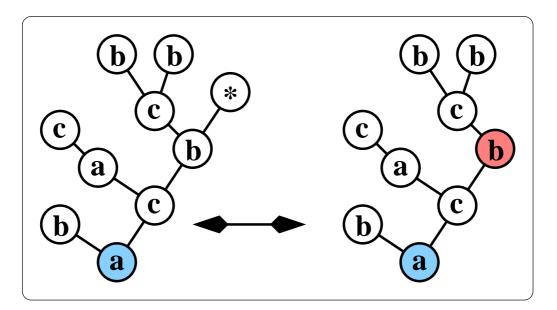
N.B. This enveloping algebra is the dual of the Hopf algebra of rooted trees, see Butcher, Dür, Grossman & Larsson, Connes & Kreimer, Hoffman, Foissy etc.. **Definition 14** A leaf is a vertex without incoming edges.

Theorem 15 The subspace $\mathcal{Q}(W)$ spanned by trees where * is a leaf is a sub-algebra of PreLie'(W).

Definition 16 A vertebrate is a rooted tree with a distinguished vertex called the tail.

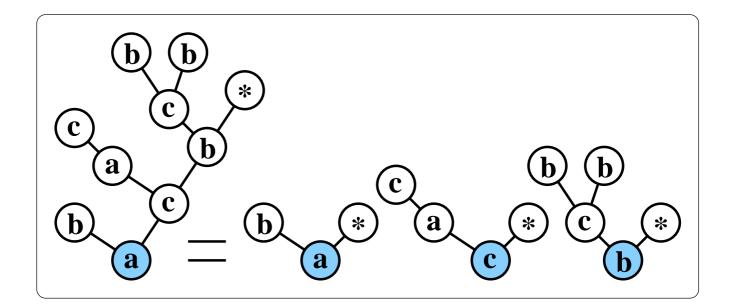
N.B. The tail can be the same as the root.

A rooted tree where * is a leaf can be considered as a vertebrate: the distinguished vertex is removed and the tail is the vertex to which is was grafted.



Theorem 17 The algebra Q(W) is the free associative algebra on the subspace spanned by rooted trees where * is a leaf attached to the root.

When considered as vertebrates, the generators are the vertebrates where the tail is the root. They can be identified with rooted trees.



Theorem 18 (Foissy) The universal enveloping algebra $U(PreLie(W)_{Lie})$ is a free associative algebra.

No explicit description of a subspace $\mathcal{M}(W)$ of generators is known.

Theorem 19 The algebra PreLie'(W) is a free associative algebra on the space of generators $\mathcal{M}(W) \oplus W$, where the generators in the part W are the trees with two vertices whose vertex marked by * is not the root.

Generating functions

To each collection $\mathcal{P}(n)$ of \mathfrak{S}_n -modules, one associates a generating function:

$$P = \sum_{n \ge 0} \dim \mathcal{P}(n) x^n / n!.$$
 (11)

For PreLie, one gets

$$\mathsf{PL} = \sum_{n \ge 1} n^{n-1} x^n / n!, \tag{12}$$

closely related to the Lambert W-function.

Many algebraic theorems on free pre-Lie algebras imply analytic properties of the function PL. For example:

Theorem 20 (CL) The free pre-Lie algebra PreLie(W) is a free module over the universal enveloping algebra $U(PreLie(W)_{Lie})$ over the generators W. Hence one has

$$\mathsf{PL} = x \exp(\mathsf{PL}). \tag{13}$$

From now on, replace the category of vector spaces by the category of chains complexes with vanishing differentials.

Definition 21 A Λ -algebra is a chain complex W with a map $\cap : W \otimes W \to W$ of degree 0 and a map $\langle, \rangle : W \otimes W \to W$ of degree 1 such that \cap is a pre-Lie product, \langle, \rangle is a Lie bracket of degree 1 and the following relation holds

 $\pm \langle x \curvearrowleft y, z \rangle \pm \langle z \curvearrowleft y, x \rangle = \langle z, x \rangle \curvearrowleft y, \ (14)$

where appropriate signs have to be inserted according to the Koszul sign rules.

Many good properties of pre-Lie algebras should generalize to Λ -algebras.

Conjecture 22 The generating series for the analytic functor Λ is given by

$$\Lambda = \sum_{n \ge 1} \left(\prod_{k=1}^{n-1} (n-kt) \right) x^n / n!, \qquad (15)$$

This would follow from the Koszul property for the operad Λ .

These dimensions are known to be upper bounds. Note that one recovers PL when t = 0.

Conjecture 23 The free Λ -algebra $\Lambda(W)$ is free as a Lie algebra and its enveloping algebra is free as an associative algebra.

Conjecture 24 The associative algebra $\Lambda'(W)$ is a free associative algebra.

Conjecture 25 There exists a quotient map of associative algebras

$$\Lambda'(W) \longrightarrow U(\Lambda(W)_{\mathsf{Lie}}). \tag{16}$$