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Many partial orders on Catalan objects

Many combinatorial objects are counted by the Catalan numbers,
and some of them are naturally partially ordered.

This gives different partial orders with Catalan-many elements :

→ (A) noncrossing partitions for refinement (Kreweras),
→ (B) binary trees and rotation moves (Tamari),
→ (C) binary trees under left-arm rotation order (Pallo),
→ (D) Dyck paths for inclusion,
→ (E) Dyck paths and Tamari sliding moves (equivalent to (B)),
→ (F) Dyck paths and total sliding moves,
and still others by restriction from the symmetric groups.

Today, introduce yet another one :
→ Dyck paths and dexter sliding moves.
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Informal motivation (diagonals of associahedra Kn)

These new posets appear in diagonals of the associahedra, useful
in algebraic topology to define tensor products of A∞-algebras.

Recall that there is one associahedra in each dimension.

in dimension 2:

diagonal of associahedra = Hasse diagram of poset of Tamari intervals

Pairs of binary trees (S ,T ) with S ≤ T (in the Tamari order)
Partial order : (S ,T ) ≤ (S ′,T ′) iff S ≤ S ′ and T ≤ T ′.

Note the natural (visual) partition into cells
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Informal motivation (Catalan-many cells)

In this picture, unique cell containing the top ' Tamari lattice

the unique top cell

and the cells below its vertices

Claim: every vertex of this cell is the top element of a cell !

This gives Catalan-many cells (among many more cells A0139).
→ induced partial order on the bottom elements of these cells
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Direct combinatorial description of Dexter posets

One can give an explicit description of this partial order.
Similar to the description of the Tamari lattice on Dyck paths

→

sliding a sub-Dyck path towards the North-West

For the Tamari lattice: slide any sub-Dyck path (after a descent)
by one NW step
For the Dexter poset: slide any sub-Dyck path (after a descent)
not followed by a descent by one or several NW steps

→ Every dexter sliding move is like a sequence of Tamari sliding
moves, so something like a shortcut in the Tamari lattice
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More examples of sliding moves

not a dexter slidable subpath, because followed by a descent.

This would be a valid move in the Tamari lattice.

→

one single dexter sliding move.

This would be two consecutive moves in the Tamari lattice.
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Comparison between Tamari and Dexter

Dexter on the left and Tamari on the right

Tamari has strictly more relations than Dexter.
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Picture of the next full Dexter poset

Back

Can you see the hidden pentagon ?
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Properties of the Dexter posets

→ the dexter sliding moves are the covering relations

→ unique minimal element :
→ number of maximal elements = Motzkin number
(with an explicit combinatorial description)

Theorem

The dexter poset Dn is a meet-semilattice.

→ every pair of elements has a unique common lower bound.
(not the same as in the Tamari lattice)
Proof ' closing a zipper from left to right.

Corollary

Every interval in Dn is a lattice.
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Enumeration of intervals (closed formula)

Theorem

The number of intervals in the poset Dn is 1 for n = 0 and

3
2n−1(2n)!

n!(n + 2)!
for n ≥ 1.

→ sequence A257 : 1, 1, 3, 12, 56, 288, 1584, 9152, . . . (Tutte)
→ (A) numbers of rooted bicubic planar maps on 2n vertices
→ (B) numbers of rooted Eulerian planar maps with n edges
→ (C) numbers of modern intervals in the Tamari lattices
→ (D) numbers of new intervals in the Tamari lattices
Bijection between (A) and (B) is classical (Tutte).
Rognerud has given a simple bijection between (C) and (D).
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About the proof (bijections and formulas)

The proof uses a recursive bijective description of all the intervals.

The good catalytic parameter turns out to be the number of
blocks (returns to zero) of the minimum of the interval.
→ functional equation

f = 1 + st + st(f − 1)

(
1 +

sf − f |s=1

s − 1

)
+ t(f − 1)f |s=1.

Using the general method of Bousquet-Mélou and Jehanne, one
obtains an algebraic equation

16g2t2 − g(8t2 + 12t − 1) + t2 + 11t − 1

for the generating series g = f |s=1

→ the known algebraic equation for the sequence A257
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A very special interval

General picture of the dexter order looks like the union of some
polyhedra. Show What are these polyhedra ?

Let us concentrate on one specific interval between

and

Exercise: they are indeed comparable in the dexter order !

Call Fn the set of elements in this interval (with n little peaks).
This is a lattice (because all intervals are).
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The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of
polytopes, called the Hochschild polytopes
used to make combinatorial cellular models of free loops spaces

→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval Fn ' the Hochschild polytope of dimension n.
The number of elements of Fn is 2n−2(n + 3).

namely 2, 5, 12, 28, 64, 144, 320, . . . .
The h-vector should be nice too : (x + 1)n−2(x2 + (n + 1)x + 1)
Not graded, hence not distributive. Maybe a trim lattice ?



The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of
polytopes, called the Hochschild polytopes
used to make combinatorial cellular models of free loops spaces
→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval Fn ' the Hochschild polytope of dimension n.
The number of elements of Fn is 2n−2(n + 3).

namely 2, 5, 12, 28, 64, 144, 320, . . . .
The h-vector should be nice too : (x + 1)n−2(x2 + (n + 1)x + 1)
Not graded, hence not distributive. Maybe a trim lattice ?



The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of
polytopes, called the Hochschild polytopes
used to make combinatorial cellular models of free loops spaces
→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval Fn ' the Hochschild polytope of dimension n.
The number of elements of Fn is 2n−2(n + 3).

namely 2, 5, 12, 28, 64, 144, 320, . . . .

The h-vector should be nice too : (x + 1)n−2(x2 + (n + 1)x + 1)
Not graded, hence not distributive. Maybe a trim lattice ?



The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of
polytopes, called the Hochschild polytopes
used to make combinatorial cellular models of free loops spaces
→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval Fn ' the Hochschild polytope of dimension n.
The number of elements of Fn is 2n−2(n + 3).

namely 2, 5, 12, 28, 64, 144, 320, . . . .
The h-vector should be nice too : (x + 1)n−2(x2 + (n + 1)x + 1)

Not graded, hence not distributive. Maybe a trim lattice ?



The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of
polytopes, called the Hochschild polytopes
used to make combinatorial cellular models of free loops spaces
→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval Fn ' the Hochschild polytope of dimension n.
The number of elements of Fn is 2n−2(n + 3).

namely 2, 5, 12, 28, 64, 144, 320, . . . .
The h-vector should be nice too : (x + 1)n−2(x2 + (n + 1)x + 1)
Not graded, hence not distributive. Maybe a trim lattice ?



Bonus tracks (conjectures, remarks, speculations)

→ Counting edges in the Hasse diagrams of Dn

With no colors: same h-vector as the associahedra (Narayana
numbers)
Colors according to the type of sliding move (full or not): refined
symmetry

→ not clear if the m-analogues of Dn are so nice
There are large prime numbers in the numbers of intervals !
→ the diameter of Fn seems to be n
(for those among you who like computing diameters)
→ values at −1 and −2 of the zeta polynomials of Dn

intriguing appearance of A7852 Antichains in rooted plane trees
on n nodes
→ the dexter lattice Dn is not derived equivalent to the Tamari
lattice
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Questions ?


