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Plan

1 Some dilogarithm identities can be written in a special
manner.

2 They are related to Y-systems and cluster algebras.

3 The cluster category lurks in the background.
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Dilogarithms

First, the classical dilogarithm (Leonhard Euler)

Li2(x) =
∑
n≥1

xn

n2
= −

∫ x

0
log(1− y)

dy

y
.

Then, the Rogers dilogarithm (Leonard James Rogers)

L(x) = Li2(x) +
1

2
log(x) log(1− x).

see reference book by Leonard Lewin.
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Dilogarithm values and identities

Values of L:

L(0) = 0 and L(1) = ζ(2) = π2/6.

Functional equations for L:

L(x) + L(1− x) = L(1).

and

L(1/(1 + x)) + L(1/(1 + y)) + L(y/(1 + x + y))

+ L(x/(1 + x + y)) + L(xy/(1 + x)(1 + y)) = 2 L(1).

Famous Spence-Abel identity
with hidden cyclic symmetry of order 5.
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Functional equations again

Let us rewrite them in a special form.

L(1/(1 + x)) + L(1/(1 +
1

x
)) = 1 L(1).

and

L(1/(1 + x)) + L(1/(1 + y)) + L(1/(1 +
1 + x

y
))

+ L(1/(1 +
1 + y

x
)) + L(1/1 +

1 + x + y

xy
) = 2 L(1).

First two equations in a family indexed by n ∈ N:∑
f ∈Yn

L(1/(1 + f )) = n L(1),

where Yn is a set of fractions in n variables.
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Y -systems and cluster algebras

∑
f ∈Yn

L(1/(1 + f )) = n L(1),

where
Y1 = {x , 1/x}

and

Y2 = {x , y , 1 + x

y
,

1 + y

x
,

1 + x + y

xy
}.

The sets Yn of fractions are Y -systems associated with some
cluster algebras.

In general, Yn has n +
(n+1

2

)
elements.
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Cluster algebras (13F60)

Have been introduced around 2000 by Sergey Fomin and Andrei
Zelevinsky.

Original motivations were canonical bases of quantum groups
and total positivity in Lie groups, after works of George Lusztig.

Since then, many interactions with other domains, including
Teichmüller theory, Poisson geometry, representation theory, etc.

One important development is the cluster category due to
Buan-Marsh-Reineke-Reiten-Todorov for the general acyclic case
and to Caldero-Ch. in a special case,
with further developments by Claire Amiot.
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Y -systems

Y -systems are sets of algebraic relations on variables yi ,n that arose
in the physics of conformal field theory (Thermodynamic Bethe
Ansatz) in the works of Al. B. Zamolodchikov and many others.

Usually, the index i belongs to a fixed finite set and n ∈ Z.

Sums of dilogarithm of solutions are used to compute central
charges of conformal field theories.

It is necessary that the solutions are periodic in the variable n for
the sum to be finite. This is the origin of Zamolodchikov
periodicity conjectures, now proved in full generality (by
Bernhard Keller).

As shown by Fomin and Zelevinsky, Y -systems are closely related
to cluster algebras.
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Cluster algebras from quivers

Initial data for a cluster algebra: quiver Q = (Q0,Q1)

with no loops and no 2-cycles:

0

1 4

6

7

2

3

5

8

One considers all quivers obtained from the initial one by
mutation of quivers.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Cluster algebras from quivers

Initial data for a cluster algebra: quiver Q = (Q0,Q1)

with no loops and no 2-cycles:

0

1 4

6

7

2

3

5

8

One considers all quivers obtained from the initial one by
mutation of quivers.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Mutation of quivers

One can mutate a quiver Q at any vertex i ∈ Q0.

First step: for every pair of arrows k → i and i → j , add one
arrow k → j .
Second step: reverse all arrows incident to i .

Last step: remove a maximal set of 2-cycles.

This defines a new quiver µi (Q) and µi (µi (Q)) = Q.

0 1

23

0 1

23

0 1

23

0 1

23

Example: mutation at vertex 1.
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Y -systems from quivers

Define a Y -system for a quiver Q with no loops and no 2-cycles.

One introduces a variable yi for every vertex i ∈ Q0.

A Y -seed is a pair consisting of a quiver with a fraction (in the
variables yi ) attached to every vertex.

y0 y1

y2y3

The initial Y -seed

Then consider all the seeds obtained from the initial one by
mutation of Y -seeds.
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Mutation of Y -seeds

Consider a quiver Q and its mutation at vertex i , Q ′ = µi (Q).

Given a Y -seed (yj)j∈Qo for Q, define a Y -seed (y ′j )j∈Q0 for Q ′ as
follows.

y ′j =

{
1/yi if j = i ,

yj
∏

i→j(1 + yi )/
∏

j→i (1 + 1/yi ) if j 6= i .

y0 y1

y2y3

1/y0
y1

1+1/y0

y2(1 + y0)
y3

1+1/y0

Q and µ0(Q)
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Finite Y -systems

The elements of all Y -seeds obtained by iterating mutation from
an initial one are called Y -variables.

When the initial quiver Q is a Dynkin diagram of type A,D,E, the
mutation process closes and there is a finite number of Y -variables.

For example, for the quiver of type A2, with initial seed
(y1, y2) one gets the following set of Y -variables:

y1, y2, y1(1 + y2), (1 + y1 + y1y2)/y2,
y1 + 1

y1y2

and their inverses

1/y1, 1/y2,
1

y1(1 + y2)
,

y2

1 + y1 + y1y2
,

y1y2

y1 + 1
.
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Precise setting for dilogarithm identities

Fix a Dynkin diagram of type A,D,E. For example A3.

Let Q be an alternating orientation of this Dynkin diagram. For
example,

Q =

Choose the following initial Y -seed:

1/x y 1/z

(variables yi for sources, inverses 1/yi for sinks)
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Restricted Y -system

Define µ+ to be the composition of all mutations at the sources of
Q (they commute).

Q =

The quiver µ+(Q) is the opposite quiver of Q (all arrows reversed).

µ+(Q) =

Let µ− be the composition of all mutations at the sources of
µ+(Q). One has µ−(µ+(Q)) = Q.
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Restricted Y -system

Theorem (Fomin & Zelevinsky)

The composition µ− ◦ µ+ acting on Y -seeds is periodic. Let Y be
the subset of the Y -variables that correspond to sources in the
Y -seeds obtained by iterating µ+ and µ−. The set Y is made of
Laurent polynomials in the variables yi . The non-trivial
denominators are in natural bijection with positive roots for the
Dynkin diagram.

For example, one gets in type A3

x , y , z ,
x + z + xz + 1

y
,
x + 2y + z + y2 + xy + xz + yz + 1

xyz
x + y + z + xz + 1

xy
,
x + y + z + xz + 1

yz
,
y + 1

x
,
y + 1

z
.
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Identity associated with a Dynkin diagram

Theorem (Ch.)

Let Xn be a simply-laced Dynkin diagram of rank n. Let Y(Xn) be
the subset of the Y -system described before. Then∑

y∈Y
L(1/(1 + y)) = n L(1).

For the Dynkin diagrams of type A1 and A2, one recovers the two
classical functional equations. Type An gives a family of identities.

Type Dn gives another family of identities. Three other identities
for E6, E7 and E8.
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About the proof

The proof is quite simple.

One first shows that this sum is constant, using a trick due to
Edward Frenkel and András Szenes, and the description of the
restricted Y -system given by Fomin and Zelevinsky.

To compute the value of the sum, one takes the limit where all
variables go to 0. Among elements of Y, exactly n have limit 0
(hence add L(1) to the sum) and the others have limit +∞ (hence
do not contribute to the sum). For example in type A3:

x , y , z ,
x + z + xz + 1

y
,
x + 2y + z + y2 + xy + xz + yz + 1

xyz
x + y + z + xz + 1

xy
,
x + y + z + xz + 1

yz
,
y + 1

x
,
y + 1

z
.
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More general identities

Many more dilogarithm identities have been conjectured,
motivated by conformal field theory.

Dilogarithm identities associated to pairs of Dynkin diagrams, that
generalize the identities presented here, have been proved by
Nakanishi, using the periodicity theorem due to Keller.

More general identities have been obtained in recent works by
Inoue, Iyama, Keller, Kuniba and Nakanishi.

They use similar methods, namely the relation to cluster algebras
and cluster categories.
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Another way to the Y -variables

Y -variables were defined using iteration of Y -seed mutation.

One can use representation theory to get another description.

Let Q be a quiver with no cycles.

A representation of Q is given by
vector spaces Mi corresponding to vertices i ∈ Q0 of Q,

linear maps fi ,j : Mi → Mj corresponding to arrows i → j of Q.

For example, a representation of the quiver of type A2 is

C3 C26 0
9 0
1 7



The dimension vector of M is dim M = (dim Mi )i∈Q0 .

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Another way to the Y -variables

Y -variables were defined using iteration of Y -seed mutation.

One can use representation theory to get another description.

Let Q be a quiver with no cycles.

A representation of Q is given by
vector spaces Mi corresponding to vertices i ∈ Q0 of Q,

linear maps fi ,j : Mi → Mj corresponding to arrows i → j of Q.

For example, a representation of the quiver of type A2 is

C3 C26 0
9 0
1 7



The dimension vector of M is dim M = (dim Mi )i∈Q0 .

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Another way to the Y -variables

Y -variables were defined using iteration of Y -seed mutation.

One can use representation theory to get another description.

Let Q be a quiver with no cycles.

A representation of Q is given by
vector spaces Mi corresponding to vertices i ∈ Q0 of Q,

linear maps fi ,j : Mi → Mj corresponding to arrows i → j of Q.

For example, a representation of the quiver of type A2 is

C3 C26 0
9 0
1 7



The dimension vector of M is dim M = (dim Mi )i∈Q0 .

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Grassmannians of submodules

Fix a representation M of Q of dimension vector m = (mi )i .

Choose a smaller dimension vector e (ei ≤ mi for every vertex i).

One can define Gre(M) the Grassmannian of submodules of M
of dimension vector e. This is the moduli space of submodules of
M whose dimension vector is e.
Very similar to usual Grassmannian. Can be defined as a subvariety
of a product of classical Grassmannians.

Introduce now the following polynomials in variables (xi )i :

FM =
∑
e≤m

χ(Gre(M))
∏
i

xi
ei ,

where χ is the Euler characteristic.

Call them the F -polynomials.
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Example of F -polynomial

Consider for example the quiver

Q =

and the representation C ' C ' C of dimension vector (1, 1, 1).

The possible dimension vectors of submodules are

(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1).

Each of the 5 grassmannians of submodules is just a point with
Euler characteristic 1.
Therefore the F -polynomial for this representation is

1 + x1 + x3 + x1x3 + x1x2x3.
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From quivers to Y -variables

Fact

The polynomials FM are sufficient to recover Y -variables.

In fact, the Y -variables are products and quotients of
F -polynomials and monomials (There are explicit formulas. . . ).

One can also use the same F -polynomials to compute cluster
variables (not defined in this talk, but even more important).
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Cluster category

Cluster variables and Y -variables are closely related to
F -polynomials, which are defined using the category mod Q of
representations of the quiver Q.

This is not the right category to explain the periodicity. The
cluster category CQ is the good global setting for that.

The cluster category CQ is defined as a kind of quotient of the
derived category D mod Q of the category mod Q in which the
shift functor [1] becomes isomorphic with the Auslander-Reiten
functor τ . It remains a triangulated category.

Essential property: it is 2-Calabi-Yau, meaning that the square of
the shift functor [2] is a Serre functor.

This definition works for acyclic quivers. More and more general
versions are available, for quivers with potentials, in works of
Bernhard Keller, Yann Palu, Claire Amiot, Pierre-Guy Plamondon
and others.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Cluster category

Cluster variables and Y -variables are closely related to
F -polynomials, which are defined using the category mod Q of
representations of the quiver Q.

This is not the right category to explain the periodicity. The
cluster category CQ is the good global setting for that.

The cluster category CQ is defined as a kind of quotient of the
derived category D mod Q of the category mod Q in which the
shift functor [1] becomes isomorphic with the Auslander-Reiten
functor τ . It remains a triangulated category.

Essential property: it is 2-Calabi-Yau, meaning that the square of
the shift functor [2] is a Serre functor.

This definition works for acyclic quivers. More and more general
versions are available, for quivers with potentials, in works of
Bernhard Keller, Yann Palu, Claire Amiot, Pierre-Guy Plamondon
and others.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Cluster category

Cluster variables and Y -variables are closely related to
F -polynomials, which are defined using the category mod Q of
representations of the quiver Q.

This is not the right category to explain the periodicity. The
cluster category CQ is the good global setting for that.

The cluster category CQ is defined as a kind of quotient of the
derived category D mod Q of the category mod Q in which the
shift functor [1] becomes isomorphic with the Auslander-Reiten
functor τ . It remains a triangulated category.

Essential property: it is 2-Calabi-Yau, meaning that the square of
the shift functor [2] is a Serre functor.

This definition works for acyclic quivers. More and more general
versions are available, for quivers with potentials, in works of
Bernhard Keller, Yann Palu, Claire Amiot, Pierre-Guy Plamondon
and others.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Cluster category

Cluster variables and Y -variables are closely related to
F -polynomials, which are defined using the category mod Q of
representations of the quiver Q.

This is not the right category to explain the periodicity. The
cluster category CQ is the good global setting for that.

The cluster category CQ is defined as a kind of quotient of the
derived category D mod Q of the category mod Q in which the
shift functor [1] becomes isomorphic with the Auslander-Reiten
functor τ . It remains a triangulated category.

Essential property: it is 2-Calabi-Yau, meaning that the square of
the shift functor [2] is a Serre functor.

This definition works for acyclic quivers. More and more general
versions are available, for quivers with potentials, in works of
Bernhard Keller, Yann Palu, Claire Amiot, Pierre-Guy Plamondon
and others.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Cluster category

Cluster variables and Y -variables are closely related to
F -polynomials, which are defined using the category mod Q of
representations of the quiver Q.

This is not the right category to explain the periodicity. The
cluster category CQ is the good global setting for that.

The cluster category CQ is defined as a kind of quotient of the
derived category D mod Q of the category mod Q in which the
shift functor [1] becomes isomorphic with the Auslander-Reiten
functor τ . It remains a triangulated category.

Essential property: it is 2-Calabi-Yau, meaning that the square of
the shift functor [2] is a Serre functor.

This definition works for acyclic quivers. More and more general
versions are available, for quivers with potentials, in works of
Bernhard Keller, Yann Palu, Claire Amiot, Pierre-Guy Plamondon
and others.

F. Chapoton Rogers dilogarithm and periodicity of cluster Y -systems



Periodicity in cluster category

In the category D mod Q, the Auslander-Reiten functor satisfies

τh = [−2], (1)

where h is the Coxeter number.
Therefore in the cluster category CQ , where τ = [1], one has

[h + 2] = Id . (2)

This means that the shift functor is periodic of period h + 2.

For example, this explains the period 5 for the quiver A2, for which
h = 3.
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Final remarks

Clusters and geometry of surfaces
There exists a combinatorial/geometric description of the cluster
category in some cases related to triangulations of surfaces and
Teichmüller space. (e.g. works of Ralf Schiffler)

Quantum clusters
There is an obvious way to define quantum F -polynomials: replace
the Euler characteristic by the number of points over finite field Fq.
They can probably be used to define quantum Y -systems.

Question: can one use these in quantum dilogarithm identities?
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Post-scriptum

Advertisment

(Nothing to do with the talk)

arXiv:0909.1694

a note on q-Zeta operators and Bernoulli-Carlitz fractions
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