q-analogues of Bernoulli numbers& zeta operators at negative integers

Frédéric Chapoton

CNRS & Université Claude Bernard Lyon 1

Octobre 2011

Usual Bernoulli numbers

The **Bernoulli numbers** are given by the generating series

$$\sum_{n>0} B_n \frac{x^n}{n!} = \frac{x}{\exp(x) - 1}.$$

This can be restated as

$$exp(x + Bx) - exp(Bx) = x$$

by using the **umbral** (symbolic) convention $B^n = B_n$. By Taylor expansion, one finds

$$(B+1)^n - B^n = \begin{cases} 1 & \text{if} \quad n=1, \\ 0 & \text{else.} \end{cases}$$

Usual Bernoulli numbers

$$(B+1)^n - B^n = \begin{cases} 1 & \text{if} \quad n=1, \\ 0 & \text{else.} \end{cases}$$

One can use this equation to compute the Bernoulli numbers :

$$1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, \\0, 7/6, 0, -3617/510, 0, 43867/798, 0, -174611/330, \dots$$

The numbers B_{2n+1} vanish when $n \ge 1$.

Rational numbers, with important properties, well-known in number theory.

Used in the Euler-Maclaurin summation formula.

Related to values of the Riemann zeta function at negative integers.

Riemann ζ function

The **Riemann** ζ **function** is defined for $s \in \mathbb{C}$ with $\mathfrak{Re}(s) > 1$ by

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \in P} \frac{1}{1 - \frac{1}{p^s}},$$

where the product runs over the set P of prime numbers. It can be extended to a meromorphic function on $\mathbb C$ with unique pole at s=1.

Euler has computed the values at negative integers :

$$\zeta(1-n)=\frac{-B_n}{n},$$

for $n \ge 2$.

Carlitz q-Bernoulli numbers

Leonard Carlitz has introduced (in 1948) q-analogues of Bernoulli numbers defined by the initial value $\beta_0 = 1$ and the formula

$$q(q\beta+1)^n-\beta^n=\begin{cases}1 & \text{if} \quad n=1,\\0 & \text{if} \quad n>1.\end{cases}$$

with the convention that $\beta^n = \beta_n$. This gives the following fractions

$$\beta_0 = 1, \quad \beta_1 = -\frac{1}{\Phi_2}, \quad \beta_2 = \frac{q}{\Phi_2 \Phi_3},$$

$$\beta_3 = \frac{q(1-q)}{\Phi_2 \Phi_3 \Phi_4}, \quad \beta_4 = \frac{q(q^4 - q^3 - 2q^2 - q + 1)}{\Phi_2 \Phi_3 \Phi_4 \Phi_5},$$

where Φ_n are cyclotomic polynomials.

Carlitz q-Bernoulli numbers

$$B_0 = 1, \ B_1 = -1/2, \ B_2 = 1/6, \ B_3 = 0, \ B_4 = -1/30, \dots$$

$$\beta_0 = 1, \quad \beta_1 = -\frac{1}{\Phi_2}, \quad \beta_2 = \frac{q}{\Phi_2 \Phi_3}, \quad \beta_3 = \frac{q(1-q)}{\Phi_2 \Phi_3 \Phi_4},$$

$$\beta_4 = \frac{q(q^4 - q^3 - 2q^2 - q + 1)}{\Phi_2 \Phi_3 \Phi_4 \Phi_5}, \dots$$

q-analogues : Bernoulli numbers are recovered by letting q=1. **denominator** : a product of cyclotomic polynomials of order between 2 and n+1, with multiplicity at most one. Multiplicity can be zero (starting with Φ_3 absent in β_7).

numerator: a factor q for $n \ge 2$, a factor 1 - q when $n \ge 3$ is odd, and a big (irreducible?) factor.

Zeroes and poles

Nice pattern, that needs to be explained : many zeros on the circle, some on the positive real line, a few others

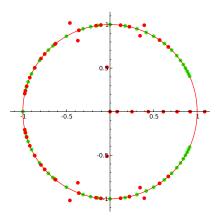


Figure: Roots ullet and poles ullet of the Carlitz q-Bernoulli number eta_{14}

q-Bernoulli numbers are natural.

In the works of Carlitz, the q-Bernoulli numbers have been related to the q-Eulerian numbers.

They appear more recently in a completely different setting, involving Lie idempotents in the descent algebras of symmetric groups, dendriform algebras, pre-Lie algebras, etc.

As coefficients in a sum over rooted trees

$$\begin{split} \Omega_{q} &= 1 \bullet - \frac{1}{\Phi_{2}} \bullet + \frac{1}{\Phi_{3}} \bullet + \frac{q}{\Phi_{2}\Phi_{3}} \frac{1}{2} \bullet \bullet \\ &- \frac{1}{\Phi_{2}\Phi_{4}} \bullet - \frac{q}{2\Phi_{3}\Phi_{4}} \bullet - \frac{q^{2}}{\Phi_{2}\Phi_{3}\Phi_{4}} \bullet - \frac{q(q-1)}{\Phi_{2}\Phi_{3}\Phi_{4}} \frac{1}{6} \bullet - \frac{q^{4}}{\Phi_{2}\Phi_{3}\Phi_{4}} \bullet - \frac{q^{4}}{\Phi_{2}\Phi_{3}\Phi_{4}\Phi_{5}} \bullet - \frac{q^{4}}{\Phi_{2}\Phi_{4}\Phi_{5}} \bullet - \frac{q^{4}}{\Phi_{2}\Phi_{5}} \bullet - \frac{q^{4}}{\Phi_{2}\Phi_{5}$$

CLAIM: The Carlitz *q*-Bernoulli numbers are **natural objects**!

QUESTION

Are they related to some kind of q-analogue of Riemann ζ function?

Previous attempts of q-zeta function

One can find articles by many authors on various q-analogues of the Riemann ζ -function :

- Ivan Cherednik,
- Taekyun Kim
- Neal Koblitz,
- M. Kaneko, N. Kurokawa and M. Wakayama,
- Junya Satoh.

(not an exhaustive list)

They proposed many different functions as q-analogues of ζ .

BUT: They did not find any **simple relationship** with Carlitz *q*-Bernoulli numbers.

These functions do not have an Eulerian product.

q-analogue is a linear operator

Main Idea

The correct q-analogue of the value $\zeta_q(s)$ is not a complex number, but a linear operator on the vector space of formal power series in q.

Consider the space $\mathbb{C}[[q]]$ of formal power series in q. For every integer $n \geq 1$, define a linear operator F_n by

$$F_n(f(q)) = f(q^n).$$

This is some kind of "Frobenius operator".

Key lemma

Now introduce the *q*-numbers :

$$[n]_q = \frac{1-q^n}{1-q} = 1+q+\cdots+q^{n-1}.$$

Let s be any complex number.

CRUCIAL LEMMA

For every integers m and n, one has

$$\left(\frac{1}{[m]_q^s}F_m\right)\left(\frac{1}{[n]_q^s}F_n\right) = \frac{1}{[mn]_q^s}F_{mn} = \left(\frac{1}{[n]_q^s}F_n\right)\left(\frac{1}{[m]_q^s}F_m\right).$$

This is a q-analogue of the obvious fact that

$$\frac{1}{m^s} \frac{1}{n^s} = \frac{1}{(mn)^s} = \frac{1}{n^s} \frac{1}{m^s}.$$

Definition of q-zeta operators

One can now introduce the linear operator $\zeta_q(s)$:

$$\zeta_q(s) = \sum_{n \geq 1} \frac{1}{[n]_q^s} F_n,$$

for every $s \in \mathbb{C}$.

To ensure convergence, one has to restrict the domain to the space $q\mathbb{C}[[q]]$ of formal power series without constant term.

This operator can be factorised (by using the key lemma) :

$$\zeta_q(s) = \prod_{p \in P} (\operatorname{Id} - \frac{1}{[p]_q^s} F_p)^{-1},$$

which is the q-analogue of the Eulerian product for $\zeta(s)$.

Rationality at negative integers

For example, consider $\zeta_q(0)$ acting on q:

$$\zeta_q(0)q = \sum_{n\geq 1} \frac{1}{[n]_q^0} F_n q = \sum_{n\geq 1} q^n = q/(1-q).$$

Proposition

For every integer j > 0, and every integer $n \ge 0$, the formal power series $\zeta_q(-n)q^j$ is a rational fraction, *i.e.* belongs to $\mathbb{Q}(q)$.

This is obvious for n = 0, where one gets $q^{j}/(1 - q^{j})$.

q-analogue of Euler result

Proposition

For every integer j > 0, and every integer $n \ge 0$, the formal power series $\zeta_q(-n)q^i$ is a rational fraction with a pole at q = 1.

Theorem

For every every integer $n \ge 2$, there holds

$$\zeta_q(1-n)(q-(n+1)q^2)=\beta(n).$$

This formula is a q-analogue of the Euler formula

$$\zeta(1-n)(-n)=B_n,$$

relating Bernoulli numbers and values of ζ at negative integers.

Higher q-analogues

Taekyun Kim has considered some other q-analogues of Bernoulli numbers, similar to Carlitz q-Bernoulli numbers. Fix an integer $k \geq 1$. The k^{th} higher q-analogue is defined by $\beta_0 = \frac{k}{[k]_q}$ and

$$q^k(q\beta+1)^n-\beta^n=\begin{cases} 1 & \text{if} \quad n=1,\\ 0 & \text{if} \quad n>1. \end{cases}$$

For k = 1, they are Carlitz q-Bernoulli numbers. One can show that they satisfy

$$\zeta_q(1-n)(kq^k-(n+k)q^{k+1})=\beta(n).$$

q-zeta functions from q-zeta operator

One can interpret the q-zeta functions considered by several authors as

$$\zeta_q(s)q, \quad \zeta_q(s)q^t, \quad \zeta_q(s)q^s, \quad \zeta_q(s)q^{s/2}, \quad \zeta_q(s)q^{s-m}, \quad \zeta_q(s)q^{s-1}.$$

This does not quite fit in our framework of formal power series, unless the power of q is an integer.

A second variable enters.

One can turn $\zeta_q(s)$ into an operator on formal power series in two variables q and z by extending the "Frobenius operator" by

$$F_n(f(q,z)) = f(q^n,z^n).$$

Then $\zeta_q(s)$ makes sense as an operator on formal power series in q and z without constant term.

Proposition

For every integer $n \ge 0$, the formal power series $\zeta_q(-n)z$ is a rational fraction of q and z, *i.e.* belongs to $\mathbb{Q}(q,z)$.

For example,

$$\zeta_q(0)z = z/(1-z),$$

$$\zeta_q(-1)z = \frac{z}{(1-z)(1-qz)}.$$

The proof is by induction on n using the difference operator

$$\Delta(f(q,z)) = \frac{f(q,qz) - f(q,z)}{q-1},$$

which satisfies

$$\Delta(z^n) = [n]_q z^n$$

and therefore sends

$$\zeta_q(-n)z\mapsto \zeta_q(-n-1)z.$$

As Δ maps fractions to fractions, one gets that every $\zeta_q(-n)z$ is in $\mathbb{Q}(z,q)$.

These fractions have been considered before in the study of the symmetric groups. This is closely related to the original viewpoint of Carlitz.

Proposition

One has

$$\zeta_q(-n)z = \frac{\sum_{\sigma \in S_n} q^{\mathsf{maj}\,\sigma} z^{\mathsf{des}\,\sigma}}{\prod_{i=0}^n 1 - q^i z}$$

where maj, des are the Major index and descent number of permutations.

The fraction $\zeta_q(-n)z$ is therefore a generating function for two parameters on the symmetric group S_n .

General Dirichlet series

The formalism above for the Riemann zeta function can be applied to any Dirichlet series.

$$L(s) = \sum_{n\geq 1} \frac{a_n}{n^s} \quad \longleftrightarrow \quad L_q(s) = \sum_{n\geq 1} \frac{a_n}{[n]_q^s} F_n.$$

If the Dirichlet series is multiplicative, $L_q(s)$ will have a factorisation, over the set P of prime numbers, as an operator.

This allows for example to define incomplete operators by removing a finite number of primes.

Also, for any two Dirichlet series L and L', the operators $L_q(s)$ and $L'_q(s)$ commute (by the key lemma).

But this is not true in general for $L_q(s)$ and $L_q'(t)$ with $s \neq t$.

One can show for *L*-series associated with **Dirichlet characters** that $L_q(-n)z$ is a rational fraction of q and z for every $n \ge 0$.

Generating series for these values $L_q(-n)z$ for $n \ge 0$ satisfy simple functional equations.

In a few cases, one can describe the numerator in a combinatorial way.

For example, in the case of the primitive Dirichlet character of conductor 4, the fractions $L_q(-n)z$ are related to the hyperoctahedral groups (Coxeter groups of type B/C)

Eisenstein series

There is also another q-zeta function, considered by Rivoal, Zudilin, Jouhet & Mosaki and others in transcendence theory :

$$\zeta_{q=1}(-k+1)\frac{z}{1-z} = \sum_{n\geq 1} n^{k-1} \frac{z^n}{1-z^n},$$

where q is taken to be 1.

This is related to the classical Eisenstein series (modular form) Ei_k whose associated Dirichlet series is

$$\zeta(s-k+1)\zeta(s)$$

This may suggest to consider

$$\zeta_q(-k+1)\zeta_q(0)z = \zeta_q(-k+1)\frac{z}{1-z}$$

as a q-analogue of the Eisenstein series.

Relation with Lambert series

A Lambert series is a sum of the following shape

$$\sum_{n>1} a_n \frac{q^n}{1-q^n}.$$

This kind of series can be restated, using the associated operator

$$L_q(s) = \sum_{n>1} \frac{a_n}{[n]_q^s} F_n,$$

as

$$L_q(0)\frac{q}{1-q} = L_q(0)\zeta_q(0)q.$$

q-analogues of polylogarithms

The usual polylogarithm function is defined by

$$\mathcal{L}_k(z) = \sum_{n \ge 1} \frac{z^n}{n^k}$$

This can be written as

$$\zeta_{q=1}(k)z$$

And therefore suggest the following (well-known) q-analogue

$$\zeta_q(k)z = \sum_{n \ge 1} \frac{z^n}{[n]_q^k}$$

The q-analogue of \mathcal{L}_1 has a nice functional equation, analogue of

$$\log(1 - x - y + xy) = \log(1 - x) + \log(1 - y)$$

Missing points, open directions

1 : back to q=1

How to deduce the classical results by letting q tends to 1?

2 : other explicit values

Find some other examples of closed evaluation (outside Dirichlet characters)

3 : functional equation, modularity, completed operator

the **functional equation** for the ζ operator or the definition of a nice **Archimedean factor** or some kind of *q*-analogue of modular forms

3 : zeta functions of orders

Understand the relation to genus zeta functions of orders (Louis Solomon, Marleen Denert)