Operads and shuffles

F. Chapoton

September 17, 2007
with F. Hivert, J.-C. Novelli and J.-Y. Thibon

Let k be a field and V be a vector space over k. Let $T(V)$ be

$$
\bigoplus_{n \geq 0} V^{\otimes n}
$$

This is an associative algebra for the concatenation product, called the tensor algebra.
There is also an associative and commutative product $\boldsymbol{\amalg}$ on $T(V)$, called the shuffle product.
The element 1 in the base field is a unit for the shuffle product. The $\boldsymbol{\omega}$ product has the following property:
$\left(x_{1} \otimes w_{1}\right) 山\left(x_{2} \otimes w_{2}\right)=x_{1} \otimes\left(w_{1} \amalg\left(x_{2} \otimes w_{2}\right)\right)+x_{2} \otimes\left(w_{2} \boldsymbol{}\left(x_{1} \otimes w_{1}\right)\right)$,
where x_{1} and x_{2} are letters in V and w_{1} and w_{2} are words in $T(V)$.

Half of a shuffle

Let us cut the shuffle product in two parts according to the previous formula. Let $T^{+}(V)$ be the augmented tensor algebra

$$
\bigoplus_{n \geq 1} V^{\otimes n}
$$

Define a bilinear product (half-shuffle) $*$ on $T^{+}(V)$ by

$$
\left(x_{1} \otimes w_{1}\right) *\left(x_{2} \otimes w_{2}\right)=x_{1} \otimes\left(w_{1} \boldsymbol{\omega}\left(x_{2} \otimes w_{2}\right)\right) .
$$

Then one can recover the shuffle product from the $*$ product by symmetrization:

$$
x \boldsymbol{\omega} y=x * y+y * x
$$

Zinbiel algebras

The $*$ product is not associative. It satisfies instead the relation

$$
(x * y) * z=x *(y * z+z * y)
$$

Let us call this algebraic structure a Zinbiel algebra. Then $T^{+}(V)$ with $*$ is the free Zinbiel algebra on V. This provides a universal property for the shuffle algebra.

Not quite new

All this has been considered by Schützenberger a long time ago ("Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées", Séminaire Dubreil, novembre 1958, page 18).
The terminology "Zinbiel algebra" has been introduced much more recently by Loday, in relation with the notion of Leibniz algebra. There is a duality between Zinbiel and Leibniz.

Operads

In order to deal with the many different kinds of algebras that are being used currently, it is useful to introduce operads.
An operad P is a sequence of vector spaces $P(n)$ for $n \geq 1$ with an action of the symmetric group \mathfrak{S}_{n} on $P(n)$, a distinguished element $\mathbf{1}$ in $P(1)$ and composition maps

$$
\begin{equation*}
\gamma: P(m) \otimes P\left(n_{1}\right) \otimes \cdots \otimes P\left(n_{m}\right) \longrightarrow P\left(n_{1}+\cdots+n_{m}\right) \tag{1}
\end{equation*}
$$

satisfying some "associativity", "equivariance" and "unit" axioms.
In a more fancy language, operads are associative monoids with unit in the monoidal category of \mathfrak{S}-modules.
The basic example is the following: fix a vector space V. Let $P(n)=\operatorname{hom}_{k}\left(V^{\otimes n}, V\right)$, let $\mathbf{1}$ be the identity map from V to itself and let γ be the usual composition map of multilinear applications.

The Zinbiel operad

Let us describe the operad Zin corresponding to Zinbiel algebras. The vector space $\operatorname{Zin}(n)$ is $k \mathfrak{S}_{n}$, with the regular action of the symmetric group. Permutations are seen as words. The unit $\mathbf{1}$ is the unique permutation 1 in \mathfrak{S}_{1}.
The composition γ can be described using shuffles and renumbering. Let us give more details in a particular case. Let $\sigma_{i} \in \mathfrak{S}_{n_{i}}$ for $i=1, \ldots, m$. First renumber the permutation σ_{1} from 1 to n_{1}, then renumber σ_{2} from $n_{1}+1$ to $n_{1}+n_{2}$ and so on.. Then

$$
\gamma\left(12 \ldots m, \sigma_{1}, \ldots, \sigma_{m}\right)
$$

is the sum over all shuffles of the renumbered σ 's that preserves the order of the leftmost letters. For instance:
$\gamma(12,321,21)=32154+32514+32541+35214+35241+35421$.

Anticyclic structure and relation to Lie

The operad Zin has more structure: it is an anticyclic operad. This implies in particular that there is an action of the bigger symmetric group \mathfrak{S}_{n+1} on $\operatorname{Zin}(n)$, extending the regular action of \mathfrak{S}_{n}.
This means that $\operatorname{Zin}(n)$ is a module of dimension n ! over the symmetric group \mathfrak{S}_{n+1}. It is known that this module is isomorphic to the module $\operatorname{Lie}(n+1)$ which is the multi-homogeneous part of degree $(1,1, \ldots, 1)$ of the free Lie algebra on $n+1$ generators.
One possible way to describe this module is by mapping permutations to fractions.

Operad of fractions

Let us introduce an operad M of fractions.
Here M stand for "moulds".
The space $M(n)$ is the field $k\left(u_{1}, \ldots, u_{n}\right)$ of rational functions in n indeterminates u_{1}, \ldots, u_{n}.
The unit $\mathbf{1}$ is the fraction $1 / u_{1}$ in $M(1)$.
The composition can be described using substitution and product of functions. For example:

$$
\gamma\left(\frac{1}{u_{1} u_{2}}, \frac{1}{u_{1}}, \frac{1}{u_{1}\left(u_{1}+u_{2}\right) u_{3}}\right)=\frac{u_{2}+u_{3}+u_{4}}{u_{1}\left(u_{2}+u_{3}+u_{4}\right)} \frac{1}{u_{2}\left(u_{2}+u_{3}\right) u_{4}} .
$$

Action of bigger symmetric group on fractions

There is an action of \mathfrak{S}_{n} on $M(n)$ by renumbering of the indeterminates u_{1}, \ldots, u_{n}.
This can be extended to an action of \mathfrak{S}_{n+1} as follows. Introduce a new variable u_{0} such that

$$
u_{0}+u_{1}+\cdots+u_{n}=0
$$

Any element σ of \mathfrak{S}_{n+1} sends a fraction f in $M(n)$ to an element $\sigma(f)$ in $k\left(u_{0}, u_{1}, \ldots, u_{n}\right)$; then $\sigma(f)$ can be uniquely rewritten as an element of $M(n)$ using the linear relation above to eliminate all instances of u_{0}.
For instance, the orbit of $-1 / u_{1} u_{2}$ contains $1 / u_{1}\left(u_{1}+u_{2}\right)$ and $1 / u_{2}\left(u_{1}+u_{2}\right)$.

Permutations as fractions

Let us now map permutations in \mathfrak{S}_{n} to fractions in $M(n)$:
The permutation $[\sigma(1), \ldots, \sigma(n)]$ is sent to

$$
\begin{equation*}
\frac{1}{\left(u_{\sigma(1)}+u_{\sigma(2)}+\cdots+u_{\sigma(n)}\right) \ldots\left(u_{\sigma(n-1)}+u_{\sigma(n)}\right)\left(u_{\sigma(n)}\right)} . \tag{2}
\end{equation*}
$$

Claim : this defines an injective morphism of operads from Zin to M.

Claim : this morphism is compatible with the actions of \mathfrak{S}_{n+1}. Therefore there is an embedding of the Lie module inside the field of fractions.

Rooted trees

A permutation can be seen as a linear tree, having its leftmost letter as root.
A rooted tree T with vertices $1, \ldots, n$ can be seen as a partial order. Each tree can be mapped to the sum of all permutations compatible with this partial order.
For example, the rooted tree

is mapped to the following sum of permutations

$$
2134+2143+2413
$$

The operad NAP inside Zin

Claim : the set of rooted trees in Zin is closed under composition. The operation can be described as follows. The tree $\gamma\left(T, S_{1}, \ldots, S_{m}\right)$ is obtained from the disjoint union of the trees S_{1}, \ldots, S_{m} by adding an edge between the root of S_{i} and the root of S_{j} if there is an edge between i and j in T. The root is taken to be the root of S_{k} where k is the root of T.
In this way, one recovers the operad NAP introduced by Livernet. The acronym NAP means non-associative permutative.

Non-symmetric operad from Zin

Let us now forget about the actions of symmetric groups on $\operatorname{Zin}(n)$. We get a non-symmetric operad Z.
One can consider the direct sum MR of all spaces $\operatorname{Zin}(n)$.

$$
\mathrm{MR}=\bigoplus_{n \geq 1} k \mathfrak{S}_{n}
$$

This is the free Z-algebra on one generator.

Outer product of permutations

The element $12+21$ in $\operatorname{Zin}(2)$ defines an morphism from the symmetric operad Comm in the symmetric operad Zin The element $12+21$ in $Z(2)$ defines an morphism from the non-symmetric operad Assoc in the non-symmetric operad Z Hence one has associative product on MR.
This is nothing but the algebra structure of the Malvenuto-Reutenauer Hopf algebra, also known as the algebra FQSym of Free Quasi-symmetric functions.
The product is sometimes called the shifted shuffle.

Dendriform products on permutations

But the operad structure gives more.
In the same way as the shuffle product was decomposed into two half-shuffles, the associative product on MR can be decomposed. Using 12 and 21, one gets on MR the structure of a Dendriform algebra.
Definition (Loday): A dendriform algebra is a vector space with two binary operations \succ and \prec such that

$$
\begin{align*}
x \succ(y \succ z) & =(x \succ y) \succ z+(x \prec y) \succ z, \tag{3}\\
x \succ(y \prec z) & =(x \succ y) \prec z, \tag{4}\\
x \prec(y \succ z)+x \prec(y \prec z) & =(x \prec y) \prec z . \tag{5}
\end{align*}
$$

Then $x * y=x \prec y+x \succ y$ is associative.
And $x \triangleleft y=y \succ x-x \prec y$ is a pre-Lie product.

The Dendriform operad has been described by Loday using planar binary trees

The free Dendriform algebra on one generator is the Hopf algebra of binary trees of Loday and Ronco.
There is an inclusion of the Dendriform operad in the Zinbiel operad, hence in the operad M of fractions.

The fraction of a planar binary tree

The fraction associated to a planar binary tree has a nice description.

Example

This planar binary tree is mapped to
1
$\overline{\left(u_{1}+u_{2}+u_{3}\right)\left(u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{1}+\cdots+u_{7}\right)\left(u_{5}\right)\left(u_{5}+u_{6}+u_{7}\right)\left(u_{7}\right)}$.
There is a link with tilting modules for the quivers of type A.

A group structure on MR

As the algebra MR is the free algebra on one generator on the non-symmetric version of Zinbiel,
By a general construction for non-symmetric operads, the completion of MR becomes a group.
One can define a pre-Lie product \circ using the operad composition as follows

$$
x \circ y=\sum_{i=1}^{n} x \circ_{i} y
$$

when x has degree n and

$$
\begin{equation*}
x \circ_{i} y=\gamma(x, \mathbf{1}, \ldots, \mathbf{1}, y, \mathbf{1}, \ldots, \mathbf{1}) \tag{6}
\end{equation*}
$$

with y in ith position.
Then there is an associated Lie algebra and an associated group.

Dendriform inside Zinbiel

The dendriform operad is contained in Zinbiel
In fact, it is the suboperad generated by 12 and 21
Therefore, there is a subalgebra of MR (The Loday-Ronco Hopf algebra of binary trees)
Let us call "dendriform" an element in this subalgebra.
This subspace is also a sub-group of the group structure on MR As a subspace of the symmetric group ring, it contains the Descent algebra.

Ecalle's theory of moulds

The operad M was inspired by Ecalle's work and the notion of mould.
One can define a notion of alternal element in M, by a vanishing condition on summations over non-trivial shuffles. This is related to the usual notion of primitive element or Lie element,

Conjecture

An element of M is dendriform and alternal if and only if it belongs to the image of the free Pre-Lie algebra inside the free Dendriform algebra.
(There is an injective map from the free Pre-Lie algebra to the free Dendriform algebra)
This would imply that Lie idempotents in the descent algebra come from elements in the free pre-Lie algebra.

