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The shuffle product on the tensor algebra

Let k be a field and V be a vector space over k. Let T(V) be
Bver
n>0

This is an associative algebra for the concatenation product, called
the tensor algebra.

There is also an associative and commutative product W on
T(V), called the shuffle product.

The element 1 in the base field is a unit for the shuffle product.
The 1 product has the following property:

(x1@w) W (x@ws) = X1 @(wi W (x2@ws))+Xx2 @ (wo LU (X1 @wy)),

where x; and x; are letters in V' and w; and ws are words in T (V).
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Half of a shuffle

Let us cut the shuffle product in two parts according to the
previous formula. Let T+ (V) be the augmented tensor algebra

@ ven,

n>1
Define a bilinear product (half-shuffle) * on T+(V) by
(x1 @ w1) * (2 @ w2) = x1 ® (w1 L (X2 @ wy)).

Then one can recover the shuffle product from the * product by
symmetrization:
XWy =Xx*xy+y*xX.
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Zinbiel algebras

The * product is not associative. It satisfies instead the relation
(xxy)xz=xx(yxz+zxy).

Let us call this algebraic structure a Zinbiel algebra.
Then T*(V) with x is the free Zinbiel algebra on V. This provides
a universal property for the shuffle algebra.
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Not quite new

All this has been considered by Schiitzenberger a long time ago
(“Sur une propriété combinatoire des algebres de Lie libres pouvant
étre utilisée dans un probleme de mathématiques appliquées”,
Séminaire Dubreil, novembre 1958, page 18).

The terminology “Zinbiel algebra” has been introduced much more
recently by Loday, in relation with the notion of Leibniz algebra.
There is a duality between Zinbiel and Leibniz.
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In order to deal with the many different kinds of algebras that are
being used currently, it is useful to introduce operads.

An operad P is a sequence of vector spaces P(n) for n > 1 with an
action of the symmetric group &, on P(n), a distinguished
element 1 in P(1) and composition maps

v:P(m)@P(n) @@ P(nm) — P(n+ -+ nm) (1)

satisfying some “associativity”, “equivariance” and “unit” axioms.
In a more fancy language, operads are associative monoids with
unit in the monoidal category of G-modules.

The basic example is the following: fix a vector space V. Let

P(n) = homg(V®" V), let 1 be the identity map from V to itself
and let v be the usual composition map of multilinear applications.
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The Zinbiel operad

Let us describe the operad Zin corresponding to Zinbiel algebras.
The vector space Zin(n) is kS,, with the regular action of the
symmetric group. Permutations are seen as words. The unit 1 is
the unique permutation 1 in Gj.

The composition v can be described using shuffles and
renumbering. Let us give more details in a particular case. Let

o;i € 6, for i =1,...,m. First renumber the permutation o1 from
1 to ny, then renumber o5 from ny +1 to ny + ny and so on.. Then

v(12...my01,...,0m)

is the sum over all shuffles of the renumbered o's that preserves
the order of the leftmost letters. For instance:

v(12,321,21) = 32154 + 32514 + 32541 + 35214 + 35241 4 35421.
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Anticyclic structure and relation to Lie

The operad Zin has more structure: it is an anticyclic operad.
This implies in particular that there is an action of the bigger
symmetric group &,41 on Zin(n), extending the regular action of
Sh.

This means that Zin(n) is a module of dimension n! over the
symmetric group &,41. It is known that this module is isomorphic
to the module Lie(n + 1) which is the multi-homogeneous part of
degree (1,1,...,1) of the free Lie algebra on n+ 1 generators.

One possible way to describe this module is by mapping
permutations to fractions.
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Operad of fractions

Let us introduce an operad M of fractions.

Here M stand for “moulds”.

The space M(n) is the field k(u1, ..., u,) of rational functions in n
indeterminates uq, ..., u,.

The unit 1 is the fraction 1/uy in M(1).

The composition can be described using substitution and product
of functions. For example:

< 1 1 > W + u3z + uy 1
U1U2’ ’ u1(U1+UQ)U3 ul(U2+U3+U4) u2(U2—‘rU3)U4.
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Action of bigger symmetric group on fractions

There is an action of &, on M(n) by renumbering of the
indeterminates uq, ..., u,.

This can be extended to an action of &1 as follows.
Introduce a new variable ug such that

o+ g+ -+ up = 0.

Any element o of G,11 sends a fraction f in M(n) to an element
o(f) in k(ug, u1,...,upn); then o(f) can be uniquely rewritten as
an element of M(n) using the linear relation above to eliminate all
instances of wup.

For instance, the orbit of —1/ujuy contains 1/ui(uy + w2) and
1/U2(U1 + U2).
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Permutations as fractions

Let us now map permutations in S, to fractions in M(n):
The permutation [o(1),...,0(n)] is sent to

1
(Us(1) + Us2) + -+ Ug(n)) - - (Ug(n—1) + Uo(m)(Us(n))

()

Claim : this defines an injective morphism of operads from Zin to
M.

Claim : this morphism is compatible with the actions of &,1.
Therefore there is an embedding of the Lie module inside the field
of fractions.
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Rooted trees

A permutation can be seen as a linear tree, having its leftmost
letter as root.

A rooted tree T with vertices 1,...,n can be seen as a partial
order. Each tree can be mapped to the sum of all permutations
compatible with this partial order.

For example, the rooted tree

is mapped to the following sum of permutations

2134 + 2143 + 2413.
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The operad NAP inside Zin

Claim : the set of rooted trees in Zin is closed under composition.
The operation can be described as follows. The tree
v(T,S1,...,5m) is obtained from the disjoint union of the trees
S1,...,Sm by adding an edge between the root of S; and the root
of S; if there is an edge between i and j in T. The root is taken to
be the root of S, where k is the root of T.

In this way, one recovers the operad NAP introduced by Livernet.
The acronym NAP means non-associative permutative.
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Non-symmetric operad from Zin

Let us now forget about the actions of symmetric groups on Zin(n).
We get a non-symmetric operad Z.
One can consider the direct sum MR of all spaces Zin(n).

MR = @ kS,

n>1

This is the free Z-algebra on one generator.

F. Chapoton Operads and shuffles



Outer product of permutations

The element 12 + 21 in Zin(2) defines an morphism from the
symmetric operad Comm in the symmetric operad Zin

The element 12 + 21 in Z(2) defines an morphism from the
non-symmetric operad Assoc in the non-symmetric operad Z
Hence one has associative product on MR.

This is nothing but the algebra structure of the
Malvenuto-Reutenauer Hopf algebra, also known as the algebra
FQSym of Free Quasi-symmetric functions.

The product is sometimes called the shifted shuffle.
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Dendriform products on permutations

But the operad structure gives more.

In the same way as the shuffle product was decomposed into two
half-shuffles, the associative product on MR can be decomposed.
Using 12 and 21, one gets on MR the structure of a Dendriform

algebra.
Definition (Loday): A dendriform algebra is a vector space with
two binary operations > and < such that

x=(y=z)=x=y)=z+(x<y)=z, (3)
x=(y<2z)=(x=y) <z, (4)
x<(y=2)+x<(y<z)=(x<y)=<z (5)

Then x*xy = x < y + x > y is associative.
And x<y =y > x —x < y is a pre-Lie product.
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The dendriform operad

The Dendriform operad has been described by Loday using planar
binary trees

The free Dendriform algebra on one generator is the Hopf algebra
of binary trees of Loday and Ronco.

There is an inclusion of the Dendriform operad in the Zinbiel
operad, hence in the operad M of fractions.
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The fraction of a planar binary tree

The fraction associated to a planar binary tree has a nice
description.

1234567

This planar binary tree is mapped to

1
(u1 + vz + uz)(u2)(u2 + us)(ur + - - + u7)(us ) (us + us + u7)(ur) |

There is a link with tilting modules for the quivers of type A.
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A group structure on MR

As the algebra MR is the free algebra on one generator on the
non-symmetric version of Zinbiel,

By a general construction for non-symmetric operads, the
completion of MR becomes a group.

One can define a pre-Lie product o using the operad composition

as follows
n
xoy=Y xoiy,
i=1
when x has degree n and

xoiy =v(x,1,...,1,y,1,...,1) (6)

with y in ith position.
Then there is an associated Lie algebra and an associated group.
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Dendriform inside Zinbiel

The dendriform operad is contained in Zinbiel

In fact, it is the suboperad generated by 12 and 21

Therefore, there is a subalgebra of MR (The Loday-Ronco Hopf
algebra of binary trees)

Let us call “dendriform” an element in this subalgebra.

This subspace is also a sub-group of the group structure on MR
As a subspace of the symmetric group ring, it contains the Descent
algebra.
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Ecalle's theory of moulds

The operad M was inspired by Ecalle's work and the notion of
mould.

One can define a notion of alternal element in M, by a vanishing
condition on summations over non-trivial shuffles. This is related
to the usual notion of primitive element or Lie element,.

An element of M is dendriform and alternal if and only if it belongs
to the image of the free Pre-Lie algebra inside the free Dendriform
algebra.

(There is an injective map from the free Pre-Lie algebra to the free
Dendriform algebra)

This would imply that Lie idempotents in the descent algebra come
from elements in the free pre-Lie algebra.
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