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Words and permutations

Let us recall the classical relation between words and
associativity.
An alphabet A is a set of letters {a, b, c , . . . }. A word w in the
alphabet A is a sequence of letters w = (w1,w2, . . . ,wk). There is
a basic operation on words given by concatenation, which is
associative. In fact, the set of words is exactly the free associative
monoid on the set A. So the study of words naturally takes place
in the setting of associative algebras.
Consider now the alphabet {a1, . . . , an}. Then the set of words
where each letter ai appears exactly once can be seen as the set of
permutations of {1, . . . , n}.
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One can find a similar relation between some kinds of trees and
some new kinds of algebraic structures.

Correspondence

words or permutations ←→ associative algebras,

rooted trees ←→ pre-Lie algebras,

planar binary trees ←→ dendriform algebras.

The natural setting of this generalisation is the theory of operads.
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Partitions

Integer partitions are classical in combinatorics and are important
too in representation theory.
The Hopf algebra of symmetric functions can be seen as a
description of representations of symmetric groups.
The set of planar binary trees should have also such a dual nature.

partitions ←→ modules over the symmetric groups,

planar binary trees ←→ tilting modules on quivers of type A.

There is a natural bijection between planar binary trees and tilting
modules over the following quivers:

1→ 2→ 3→ · · · → n. (1)
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Grafting, cutting, pruning, gluing, etc

Algebraic structures on trees did already appear a long time ago,
for instance in the work of Butcher in numerical analysis.
Many new algebraic structures on trees have been introduced more
recently, notably by Connes and Kreimer. Among them, one can
find

Hopf algebras,

Lie algebras,

groups,

operads.

Operads sometimes provide a way to understand all these objects.
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Obviously, trees are used everywhere in combinatorics. For
example,

posets on some sets of trees

statistics on trees (like permutations)

bijections or morphisms between trees and permutations

random trees

proof of Lagrange inversion using trees

generating series and the Lambert W function (random graph)
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The aim of these lectures is to introduce the notion of operad, in a
combinatorial context.
We give definitions of several variants of the notion of operad and
illustrate each of them by some specific example.
We also explain how one can build from an operad other algebraic
structures, such as a group of ”invertible formal power series”.
We will concentrate on two particularly nice kinds of trees.

rooted trees and two related operads

planar binary trees and two related operads
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Four flavours of operads

One has to distinguish four kinds of operads: either we work

in the category of sets or

in the category of vector spaces,

and also either with

symmetric or labeled (with actions of symmetric groups) or

non-symmetric or unlabeled (without actions of symmetric
groups)

objects.
This second dichotomy corresponds also (in some sense) to
non-planar or planar trees.

F. Chapoton Algebraic combinatorics and trees



Non-symmetric operads
Symmetric operads

From operads to groups

We will consider examples of operads of all four kinds.

In Set, non-symmetric: Associative, OverUnder

In Set, symmetric: Commutative, NAP

In Vect, non-symmetric: Dendriform, Mould

In Vect, symmetric: pre-Lie
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Operads in the category of sets
Operads in the category of vector spaces

In this section, the notion of operad is introduced, first in the
category of sets, then in the category of vector spaces. We give two
different definitions and explain how they are related to each other.
Operads were first introduced in algebraic topology in the 1960’s.
More recently, the theory of operads has known further
developments in many directions. Operads are useful to describe
and work with complicated new kinds of algebras and algebras up
to homotopy.
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Operads in the category of sets
Operads in the category of vector spaces

Let us consider the category Set endowed with the Cartesian
product ×. In fact, we will consider only finite sets.
There are two flavours of operads in Set, depending on the
presence or not of actions of symmetric groups. Let us start with
the simplest case, without actions of symmetric groups.
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Operads in the category of vector spaces

Definition

A non-symmetric operad P in Set is the data of a set P(n) for each
integer n ≥ 1, of an element 1 in P(1) and of composition maps

γ : P(m)× P(n1)× · · · × P(nm) −→ P(n1 + · · ·+ nm) (2)

for all integers m, n1, . . . , nm.

These data have to satisfy the following conditions.
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The element 1 is a unit in the following sense:

Unit condition

γ(1; p) = p (3)

γ(p; 1, . . . , 1) = p, (4)

for all p ∈ P(n).
The composition maps γ satisfy the following Associativity:

Associativity condition

γ(γ(p; q1, . . . , qn); r1,1, . . . , r1,m1 , r2,1, . . . , r2,m2 , r3,1, . . . , rn,mn)

= γ(p; γ(q1; r1,1, . . . , r1,m1), . . . , γ(qn; rn,1, . . . , rn,mn)).
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r r r r r r

q q q

p

There are two ways to compose, starting with top compositions or
starting with bottom composition; they should give the same result.
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Planar binary trees

Let us give an example. For this, we need some classical
combinatorial objects.
A planar binary tree is a finite connected and simply connected
graph, having only vertices of valence 1 or 3, embedded in the
plane, and with a distinguished vertex of valence 1 called the root.
The other vertices of valence 1 are called the leaves. The vertices
of valence 3 will from now on simply be called vertices.
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There is standard way to draw such trees: leaves are on a
horizontal line on top with a regular spacing and edges are in
diagonal directions.
The number of such trees with n vertices is the Catalan number

cn =
1

n + 1

(
2n

n

)
. (5)

Stanley has given 143 different combinatorial interpretations of the
Catalan numbers, among which one can cite Dyck paths, planar
trees, nonnesting and noncrossing partitions.
Recently, many relations have been found with algebra and
representation theory: quasi-symmetric functions, cluster algebras,
cluster tilting theory, dual braid monoid, Hopf algebras, etc.
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The OverUnder operad

The OverUnder operad OU (also called Duplicial operad) is used
by Frabetti in her work on renormalization with planar binary trees.
The set OU(n) is the set of planar binary trees with n + 1 leaves.

The unit 1 in OU(1) is the only planar binary tree with one
vertex.
Composition is given by local substitution at each inner vertex.
Given a planar binary tree T with n vertices, one can number its
vertices from left to right from 1 to n. Then given n planar binary
trees S1, . . . ,Sn, the composition γ(T ;S1, . . . ,Sn) is obtained by
replacing a neigbourhood of each vertex i of T by the planar
binary tree Si .
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T S_1 S_2 S_3

31

2

γ(T ;S1,S2,S3) (6)

Example of composition in the OU operad.
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One has two simple associative operations on planar binary trees:
the over (/) and under (\) products.
The over product S/T is obtained by grafting the root of S on the
leftmost leaf of T .
The under product S\T is obtained by grafting the root of T on
the rightmost leaf of S .
In addition to being associative, the over and under product satisfy

(x/y)\z = x/(y\z). (7)
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Alternative axiomatics

There is an alternative presentation of the notion of operad.
Instead of being given by γ maps, the composition is described by
maps ◦i .

1 γ maps simultaneous composition

2 ◦i map simple composition

So instead of maps γ as before, we are given a collection of maps
◦i for all m,n and 1 ≤ i ≤ m from P(m)× P(n)→ P(m + n − 1).
The ◦i maps have to satisfy an associativity and a commutativity
axiom.
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Let x , y , z be in P(m),P(n),P(p) respectively.

Associativity I (Disjoint composition):
(x ◦i y) ◦j+n−1 z = (x ◦j z) ◦i y for all x , y , z and i < j in
{1, . . . ,m},
Associativity II (Nested composition):
(x ◦i y) ◦j+i−1 z = x ◦i (y ◦j z) for all x , y , z , i in {1, . . . ,m}
and j in {1, . . . , n},
Unit: 1 ◦1 x = x = x ◦i 1 for all m, i = 1, . . . ,m.
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The equivalence between the two presentations is obtained by
using the unit 1.
In one way, the ◦i maps can be defined directly from the γ maps:

x ◦i y = γ(x ; 1, . . . , 1, y , 1, . . . , 1), (8)

where y is in the i th position.
In the other way, the γ maps can be recovered by iteration of the
◦i maps:

γ(p; q1, . . . , qn) = (. . . ((p ◦n qn) ◦n−1 qn−1) · · · ◦1 q1). (9)
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The operad of endomorphisms of a set

If S is a set, one can define the endomorphism operad of S
(denoted by EndS) as the collection EndS(n) = Hom(Sn,S)
together with the usual composition of maps. The unit 1 is the
identity in EndS(1).
If you are given a morphism from another operad P to End(S),
then one says that S has the structure of an algebra over the
operad P.
For instance, one can show that an algebra over the OU operad is
exactly a set endowed with two associative operations / and \
satisfying (x/y)\z = x/(y\z).
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The Associative operad

The set Assoc(n) is just a singleton {Mn}. The unit 1 is M1. The
composition is defined by

Mm ◦i Mn = Mm+n−1 (10)

or by
γ(Mn;Mk1 , . . . ,Mkn) = Mk1+···+kn . (11)

This operad has a presentation by generators and relations: it is
generated by M2 and the unique relation is

γ(M2;M2, 1) = γ(M2; 1,M2). (12)

This means that a morphism from Assoc to End(S) is determined
by the image of M2, which is a map from S × S → S that has to
be associative in the usual sense.
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Free operads

Let us define the free operad generated by a collection of sets
G = (Gk)k≥2.
The set FreeG (n) is the set of planar rooted trees with n leaves
and with inner vertices of valence k + 1 labeled by elements of Gk .
The unit 1 is the planar rooted tree without any inner vertex.
Composition is given by grafting of a leaf with a root.
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21 3

T S_1 S_2 S_3

γ(T ;S1,S2,S3) (13)

Example of composition in a free operad.
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From sets to vector spaces

Many classical operads can not be defined in the category of sets,
but only in the category of vector spaces.
The definition is just the same,

Sets P(n) ←→ Vector spaces P(n),

Cartesian product × ←→ tensor product ⊗,

maps ←→ linear maps.

One can go from an operad in Set to an operad in Vect simply by
using the functor “free vector space over a set”.
The combinatorial aspect can survive if there is a nice basis in each
vector space P(n) and a clean description of the composition maps.
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The Dendriform operad

The dendriform operad Dend has been introduced by Loday. The
initial motivation was from algebraic topology.
The free dendriform algebra on one generator has a basis indexed
by planar binary trees.
Later, Loday and Ronco introduced a Hopf algebra on the free
dendriform algebra on one generator. This is now called the Hopf
algebra of planar binary trees or Loday-Ronco Hopf algebra.
The vector space Dend(n) has a basis indexed by planar binary
trees with n vertices.

The unit 1 in Dend(1) is the tree .
Composition has a combinatorial description using pairs of
shuffles.
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S

1

2 4

5

T

3

One term in the composition T ◦3 S in the Dend operad.
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More recently, it has been shown that the dendriform operad has a
more refined structure: it is an anticyclic operad.
This implies in particular that there is a natural action of the cyclic
group Z/(n + 1)Z on the vector space Dend(n).

Action of the cyclic group of order 4 on Dend(2) and Dend(3)

[
−1 1
−1 0

]
−1 0 1 1 −1
−1 0 1 0 0
0 −1 0 1 0
−1 0 0 0 0
0 −1 0 0 0

 (14)

The basis are

{
,

}
and

{
, , , ,

}
.

This action is NOT given by a permutation of the planar binary
trees.
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There is a natural map from planar binary trees to rational
functions, which goes as follows.
Let us fix an integer n and n indeterminates {u1, . . . , un}.
Then a planar binary tree T defines a set of intervals in {1, . . . , n}:
to each inner vertex corresponds a pair of leaves and these leaves
enclose an interval.
The planar binary tree T is mapped to

1∏
I

∑
i∈I ui

, (15)

where the product runs over the set of intervals defined by T .
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Example

7654321

This planar binary tree is mapped to

1

(u1 + u2 + u3)(u2)(u2 + u3)(u1 + · · ·+ u7)(u5)(u5 + u6 + u7)(u7)
.
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It is clear that this map is injective from the set of planar binary
trees to the set of rational functions: just factorise the fraction to
recover the tree.
Less obviously, the associated linear map is also injective.
All this is related to the work of Ecalle and the notion of mould.

Theorem

This defines an injective map of the Dendriform operad into an
operad M of rational functions, with M(n) = Q(u1, . . . , un).

On the fractions, there is also an action of the cyclic group
Z/(n + 1)Z given by substitution

ui 7→ ui−1 and u1 7→ −(u1 + · · ·+ un). (16)

This is compatible with the injection and gives back the cyclic
action on planar binary trees.
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Non-crossing trees

One can use this map into fractions to describe a subset of Dend
which is closed under composition. Consider a regular polygon
with a finite number n + 1 of vertices. Assume that there is a
distinguished side called the base. Recall that a non-crossing tree
is a set of diagonals between vertices of this polygon such that

No two of them intersect

all vertices are connected by these diagonals

there are no loops

We will furthermore assume that it contains the base. The number
of such trees is

1

n

(
3n − 2

2n − 1

)
. (17)
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Example

2

1

3 5

6

7

4

This non-crossing tree is mapped to

1

(u2)(u2 + u3)(u1 + · · ·+ u7)(u5)(u6)(u4 + u5 + u6 + u7)(u6 + u7)
.
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There is an operad on non-crossing trees. The unit 1 is the unique
tree in the 2-polygon.
Composition is given by gluing the base side of one tree along a
chosen side of the other one, then removing the base in order to
avoid creating a loop.
By mapping non-crossing trees to fractions (this is injective), one
gets fractions which are in the image of Dend. Hence non-crossing
trees can be seen as a sub-operad of the operad Dend.
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Symmetric operads are slightly more complicated than
non-symmetric operads. Instead of being given a collection of sets
indexed by the integers, the underlying data is a species.
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Species

The theory of species has been introduced by Joyal as a natural
categorical setting for generating functions and bijections.

Definition

A species F is a functor from the category of finite sets and
bijections to the category of finite sets.

This just means that given a finite set I , there is a natural way to
build a set F (I ) out of it, without using any specific properties of
the elements of I .
This implies that there is a natural action of the bijections of I on
F (I ).
Moreover F can be uniquely recovered from the collection
F ({1, . . . , n}) and the action of symmetric groups.
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For instance, one has the species L of lists: L(I ) is the set of total
orders on I .
Most of the usual labeled combinatorial objects can be described
by species.
For instance, there are species for labelled graphs, for labelled
posets, for set partitions, for labelled hypergraphs, and so on.
As a ”technology”, species have been used a lot by the UQAM
team in combinatorics.
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One can define operations on species:

(F ′)(I ) = F (I t {•}) derivation,

(F t G )(I ) = F (I ) t G (I ) disjoint union,

(FG )(I ) = tI=JtKF (J)× G (K ) product,

(F · G )(I ) = F (I )× G (I ) Hadamard product,

(F ◦ G )(I ) = t'F (I/')×
∏

J∈I/'

G (J) composition,

where ' runs over the set of equivalence relations on I .
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To each species F corresponds an exponential generating series:

F (x) =
∑
n≥0

#F ({1, . . . , n})x
n

n!
. (18)

Each species F can be associated with a symmetric function

ZF =
∑
n≥0

Zn(F ), (19)

where Zn(F ) is the symmetric function associated with the action
of the symmetric group Sn on the set F ({1, . . . , n}).
The operations on species correspond to the same operations on
generating functions or symmetric functions.
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A symmetric operad in the category of sets is a species P together
with a morphism from P ◦ P to P which takes the place of the
composition map γ and should be associative.
The unit 1 is given by a natural system of distinguished elements
in the images of singletons by P.
This is just an instance of the definition of a monoid in a monoidal
category.
If one wants to use the analog of the ◦i products instead of the γ
maps, one can give, for all sets I , J and i ∈ I , maps

◦i : P(I )× P(J) −→ P(I \ {i} t J) (20)

that have to satisfy some naturality properties, which are generally
obvious in all examples.

F. Chapoton Algebraic combinatorics and trees



Non-symmetric operads
Symmetric operads

From operads to groups

Symmetric operads in sets
Symmetric operads in vector spaces

One can give an alternative axiomatics of symmetric operads by
using instead of a species S the equivalent data of a collection of
sets S(n) = S({1, . . . , n}) with actions of the symmetric groups
Sn.
This becomes heavy, because of renumbering. For instance, there
is an operad on the species L where L(I ) is the set of total orders
on I . The composition ◦i is given by insertion of a total order as a
segment at some point of another one:

Using species

(b, a, c , f , e, d) ◦c (u, r , p, s, t, q) = (b, a, u, r , p, s, t, q, f , e, d).
(21)
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Using species

(b, a, c , f , e, d) ◦c (u, r , p, s, t, q) = (b, a, u, r , p, s, t, q, f , e, d).
(22)

The same statement would become, after choosing the obvious
numberings of {a, b, c , d , e, f } and {p, q, r , s, t, u}:

Using actions of symmetric groups

(2, 1, 3, 6, 5, 4) ◦3 (6, 3, 1, 4, 5, 2) = (2, 1, 8, 5, 3, 6, 7, 4, 11, 10, 9).
(23)
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Example: the Commutative operad

The set Comm(I ) is just a singleton {I} for all non-empty I .
As a species, this is usually called the species of non-empty sets
denoted by E+, with generating series E+(x) = exp(x)− 1.
The unit is the unique element in Comm({i}) for all singletons.
For composition, there is no choice.
Algebras over this operad are just commutative and associative
algebras.
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Rooted trees

Definition

A rooted tree is a finite connected and simply connected graph
with a distinguished vertex, called the root.

1

2

45

3

They are very classical combinatorial objects, going back at least
to Cayley.

Classical result (Cayley)

There are nn−1 distinct rooted trees with vertices {1, 2, . . . , n}.
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The NAP operad

The NAP operad has been introduced by Livernet. The name NAP
stands for ”non-associative permutative”.
The set NAP(I ) is the set of rooted trees on I .
The unit is the unique rooted tree on the set {i} for any singleton.
Composition ◦i of a rooted tree T at the vertex i of a rooted tree
S is described as follows.
Consider the forest obtained by removing the vertex i of S . Take
the disjoint union with T . Add an edge between the root of T and
all vertices of the forest that were connected to i in S .
The root of the result is taken to be the root of S if i is not the
root of S and the root of T otherwise.
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S T

1
3

24
5

7

8
6

9

4
5

8
9

6

7

1
3

Example of ◦2 product in NAP from
NAP({1, 2, 3, 4, 5})× NAP({6, 7, 8, 9}) to
NAP({1, 3, 4, 5, 6, 7, 8, 9}).
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One has to identify the root of T and the vertex i of S . The label
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i disappears.

One can play a similar game using vector spaces instead of finite
sets.

A vectorial species is a functor from the category of finite sets
and bijections to the category of vector spaces.

This is also called an S-module, as this is equivalent to the data of
a collection of modules on all symmetric groups.
Then the same definition as before gives a notion of symmetric
operad in the category of vector spaces.
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Example: the PreLie operad and pre-Lie algebras

The Pre-Lie operad has been introduced by C-Livernet. But the
notion of pre-Lie algebra was known long before. It was used by
Gerstenhaber in his study of deformation theory. There is a pre-Lie
algebra structure on the Hochschild complex.
It was also used in relation with vector fields on the affine space, or
more generally on spaces endowed with a flat and torsion-free
connection, i.e. an affine structure. The space of sections of the
tangent bundle then has the structure of a pre-Lie algebra.
A pre-Lie algebra is a vector space with a product x satisfying

Pre-Lie axiom

(x x y) x z − x x (y x z) = (x x z) x y − x x (z x y).
(24)
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But there are many more examples, more algebraic or
combinatorial.
For instance, any operad gives a pre-Lie algebra. In the
non-symmetric case, the pre-Lie product on the direct sum ⊕nP(n)
is given for x ∈ P(n) and y ∈ P(m) by

x x y =
n∑

i=1

x ◦i y . (25)

Pre-Lie algebras are devices which encode the combinatorics of the
“sum of insertion at all possible places”
For instance, one could consider trivalent graphs with three
external legs. Then the sum of insertion at all possible vertices
defines a pre-Lie product on the vector space spanned by these
graphs.
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Each pre-Lie algebra gives a Lie algebra, by the formula

[x , y ] = x x y − y x x . (26)

In this way, pre-Lie algebras are some kind of weak associative
algebras.
Once we have a Lie algebra, there is a group and a Hopf algebra
also.
The commutative Hopf algebra of functions on the group has a
nice property: when coordinates are chosen in a nice way, the
coproduct is linear on one side.
On a more geometric side, this is related to the notion of “group
with a left-invariant affine structure”
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The PreLie operad

The set PreLie(I ) is the set of rooted trees on I .
The unit is the unique rooted tree on the set {i} for any singleton.
In a rooted tree, on can orient the edges towards the root.
Composition ◦i of a rooted tree T at the vertex i of a rooted tree
S is described as a sum over the set of functions from incoming
edges at vertex i in S to vertices of T . Pick such a function φ.
Consider the forest obtained by removing the vertex i of S . Take
the disjoint union with T .
Add an edge between each vertex of the forest that were
connected to i in S and the corresponding vertex of T given by φ.
If the vertex i had an outgoing edge in S , connect the other vertex
of this edge to the root of T .
The root of the result is taken to be the root of S if i is not the
root of S and the root of T otherwise.
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S T

5
4

1
3

24
5

7

8
6

9
8

9

6

7

1
3

Example: one term in a ◦2 product in PreLie from
PreLie({1, 2, 3, 4, 5})× PreLie({6, 7, 8, 9}) to
PreLie({1, 3, 4, 5, 6, 7, 8, 9}).
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The pre-Lie operad has more structure: it is an anticyclic operad.
This means that there is natural action of the cyclic group Sn+1

on the space PreLie({1, . . . , n}) extending the action of Sn.
There is a similar ”cyclic” structure on the operad Assoc, which is
much easier to explain.
Recall that the operad Assoc (as a symmetric operad) is based on
the species of lists: Assoc(I ) is the set of total orders on I .
One can extend uniquely a total order on I to a cyclic order on
I t {•}. Then there is an action of the bigger symmetric group of
I t {•} on the set Assoc(I ).
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Returning to the pre-Lie case, the action of the bigger symmetric
group is not easy to describe. One way is to use the usual injective
map from the pre-Lie operad into the Dendriform operad to
restrict the cyclic action of the Dend operad.
One can for instance show that the iterated bracket (seen inside
the PreLie operad)

[[. . . [[n, n − 1], n − 2], . . . , 2], 1] (27)

is (up to sign) in the same orbit as the iterated pre-Lie product

((. . . ((1 x 2) x 3) . . . n − 1) x n). (28)

So far, this action is only computable using the operad formalism.
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There is a group associated with each operad, some kind of
generalized formal power series.
The definition is simpler for non-symmetric operads.
Let P be a non-symmetric operad in the category of vector spaces.
Let

P̂ =
∏
n≥1

P(n). (29)

On this space (seen as a set), there is an associative product x ◦ y
which is linear in its left argument. If x is homogeneous of degree
n and y =

∑
k≥1 yk , then

x ◦ y =
∑

k1,...,kn

γ(x ; yk1 , . . . , ykn). (30)

The ◦ product is associative and non-linear on its right argument.
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One can consider the group of invertible elements in this monoid.
The affine subspace of elements x = 1 +

∑
k≥2 xk is a subgroup.

For an operad P, this will be called the P-group.
This construction is functorial: a morphism of operads from P to
Q gives a morphism of groups from the P-group to the Q-group.
There is a distributivity property between operations in the free
P-algebra and product on the right with an element G of the P
group:

(m(A,B, . . . ))G = m(AG ,BG , . . . ) (31)

where m is any operation in the free P-algebra induced by the
operad P.
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For instance, in the case of the Associative operad, the associated
group is just the group of series f in one variable t of the shape

f = t +
∑
n≥2

fnt
n (32)

for the group law given by composition of such series.
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In the case of a symmetric operad, the construction is mostly the
same.
Let P be a symmetric operad in the category of vector spaces. Let

P̂ =
∏
n≥1

P({1, . . . , n})Sn , (33)

the product of the coinvariants for the action of the symmetric
group. This is the completion of the free P-algebra on one
generator with respect to the filtration by n.
There is an associative product ◦ on this space, defined by choosing
representatives and using the γ maps of the operad just as before.
The affine subspace of series where the unit 1 has coefficient 1 is a
group.
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Series of planar binary trees: the OverUnder group

Sum of all trees

A = + + + + + + + + . . .

Alternating sum of V-shaped trees

B = − − + + + + . . .

Theorem

In the OverUnder group, A = B−1.
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Proof

The series A is easily seen to be the unique solution to

A = + A/ + \A + A/ \A. (34)

This amounts to say that a planar binary tree has either zero, one
(left or right) or two subtrees.
Multiplying on the right by A−1 is compatible with the over and
under products. Hence one gets the following equation.

A−1 = − /A−1 − A−1\ − /A−1\ . (35)

One can check that B satisfies this equation. The result follows by
uniqueness.
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This can be generalized with one parameter a counting the number
of right-oriented leaves, with the same proof.

Narayana statistic on all trees

Aa = +a + +a2 +a +a +a + +. . .

Restricted statistic on V-shaped trees

Ba = − a − + a2 + a + + . . .

Theorem

In the OverUnder group, Aa = B−1
a .
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Left combs

C = + + + . . .

Right combs

D = + + + . . .

In the OverUnder group, C−1 is the alternating version of C.
One has

C + C\D = D + C/D. (36)

This just means that a V-shaped tree can be decomposed using
right combs and left combs in two different ways.
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The Tamari lattice is a well-known partial order on the set of
planar binary trees with n vertices. The minimal element is the left
comb, the maximal element is the right comb. The covering

relations are given by local moves of the shape ≤ .
Let us consider the generating function for the Möbius numbers
µ(0̂,T ) in this lattice.

Möbius function in Tamari posets

E = + − + − − + + . . .

Theorem

In the OverUnder group, E = CD−1.
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As there is a map from the OverUnder operad to the Associative
operad (and 2 maps in the other way), one gets a map from the
OverUnder group to the group of formal power series in one
variable.

This application maps a sum of trees F to the series
∑

n≥1 fnt
n,

where fn is the sum of coefficients of all trees of degree n in F .
In the other direction, one can map a formal power series in one
variables to a sum of trees by using only left combs or right combs.

f =
∑
n≥1

fnt
n 7→ F = f1 + f2 + f3 + . . . (37)
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Series of planar binary trees: the Dendriform group

Consider again the series

Sum of all trees

A = + + + + + + + + . . .

In the Dendriform group, A−1 is the alternating version of A.
The OverUnder group and the Dendriform group share the same
underlying set, but they are quite different !
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Let us consider the generating series for the numbers
#{S | S ≥ T} in the Tamari lattices.

Intervals in Tamari posets

Φ = +2 + +5 +3 +2 +2 + + . . .

This can also be seen as a generating series for intervals.
There is a similar series for intervals satisfying some condition.

Indecomposable intervals

Θ = + + +2 +2 + +2 + + . . .
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Theorem

In the Dendriform group, these series satisfy

Θ = + ∗ Φ and Φ = Θ + Φ/Θ. (38)

These equations are proved in a combinatorial way.
There are nice one-parameter (”quantum”) generalisations of these
series, satisfying

Θ = + ∗ Φ and Φ = Θ + q Φ/Θ. (39)
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As there is a map from the Associative operad to the Dendriform
operad, one gets a map from the group of formal power series in
one variable to the Dendriform group.

This application maps a series
∑

n≥1 fnt
n to the sum of trees

where all trees of degree n have the same coefficient fn.

f =
∑
n≥1

fnt
n 7→ F = f1 +f2( + )+f3( + + + + )+. . .

(40)
Hence, these series form a sub-group of the Dendriform group.
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Series of rooted trees: the NAP group

Sum of corollas

C = + + + + + . . . (41)

Alternating sum of linear trees

L = − + − + − . . . (42)

Theorem

In the NAP group, C = L−1.

The proof uses a functional equation.
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Consider the series where each rooted tree has weight the inverse
of the order of its automorphism group.

Inverse of the automorphism

A = + +
1

2
+ + +

1

6
+

1

2
+ + + . . . (43)

The inverse of A in the NAP group is the similar sum restricted on
corollas and alternating:

Alternating sum of corollas

C = − +
1

2
− 1

6
+

1

24
+ . . . (44)
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There are two morphisms from the NAP group to the
multiplicative group of formal power series : either projects on
corollas or on linear trees.

There is a morphism from the NAP group to the group of formal
power series for composition given by the sum of the coefficients
of all trees of same degree.
This comes from a morphism from NAP to the Associative operad.

F. Chapoton Algebraic combinatorics and trees



Non-symmetric operads
Symmetric operads

From operads to groups

Series of rooted trees: the PreLie group

The PreLie group has the same underlying set as the NAP group,
but they are distinct.
Consider again the series where each rooted tree has weight the
inverse of the order of its automorphism group.

Inverse of the automorphism

A = + +
1

2
+ + +

1

6
+

1

2
+ + + . . . (45)

Then the inverse of A in the PreLie group is the alternating version
of A.
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Consider the following series

∆(s, t) = +(s+t) +(s2+st) +(s2+2st+t2) +. . . , (46)

which is defined by the equation

∆ = + s ∆ x + t x ∆.

From this, it follows that the inverse of ∆(s, t) in the PreLie group
is the alternating version of ∆(t, s).
One can show that ∆ is related to the statistic ”number of cycles”
in permutations.
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There is a morphism from the PreLie group to the multiplicative
group of formal power series, given by projection on corollas.

There is a morphism from the PreLie group to the group of formal
power series for composition, given by projection on linear trees.

The sum of the coefficients of all trees of same degree defines a
morphism from the PreLie group to a group of formal power series
related to the Witt Lie algebra.
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There is a morphism from the PreLie group to the Dend group,
coming from the morphism from PreLie to Dend.

Recall that at some point there was an operad M containing Dend
with M(n) = Q(u1, . . . , un).
There is also an associated group, containing the Dend group and
PreLie-groups as subgroups. Its elements are formal sums of
rational functions in different numbers of arguments. This is what
is called a mould by Ecalle, though he is using a different group
structure.
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Conclusion

There are many more nice operads and morphisms between
them.

There are many other interesting series in the associated
groups.

These series over trees can be seen as refined generating
series. They can be useful in enumerative problems.

Some of these groups are implemented in the computer
algebra system MuPAD.
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