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Dynamical systems

A dynamical system is a triple (X , Γ, α), where

X is a compact metrizable topological space,

Γ is a countable group

α is a continuous action of Γ on X , i.e., a group morphism α : Γ→ Homeo(X ).

The space X is called the phase space of the d.s.
To simplify, we write

γx := α(γ)(x) ∀γ ∈ Γ,∀x ∈ X ,

and (X , Γ) := (X , Γ, α).
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Surjunctive dynamical systems

Let (X , Γ) be a d.s.
A map τ : X → X is equivariant if it commutes with the action, i.e.,

τ(γx) = γτ(x) ∀γ ∈ Γ,∀x ∈ X .

Definition

One says that the d.s. (X , Γ) is surjunctive if every injective equivariant continuous map
τ : X → X is surjective.

The term surjunctive was created by Gottschalk [Go-1973].
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Examples of surjunctive dynamical systems

Example

If the phase space X is finite, then (X , Γ) is surjunctive. Indeed, every injective
self-mapping of a finite set is surjective. Thus, surjunctivity is a finiteness condition.

Example

If the phase space X is incompressible, i.e., there is no proper subset of X that is
homeomorphic to X , then (X , Γ) is surjunctive.
Note that closed topological manifolds are incompressible by Brouwer’s invariance of
domain.

Example

If (X , Γ) satisfies the descending chain condition, i.e., every decreasing sequence

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .

of closed invariant subsets eventually stabilizes, then (X , Γ) is surjunctive.
Minimal d.s. and, more generally, d.s. in which all proper closed invariant subsets are
finite satisfy the d.c.c.
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Shifts

Let S be a compact metrizable space and Γ a countable group.
The shift over the group Γ and the alphabet space S is the d.s. (SΓ, Γ), where

SΓ = {x : Γ→ S} with the product topology;

Γ acts on SΓ by
(γx)(γ′) := x(γ−1γ′) ∀γ, γ′ ∈ Γ, ∀x ∈ SΓ.

Theorem (Gromov-Weiss)

If S is finite and Γ sofic, then (SΓ, Γ) is surjunctive.

It is unknown if the preceding theorem remains valid for any group Γ (Gottschalk
conjecture).
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Expansiveness

Let (X , Γ) be a d.s. and d a compatible metric on X .

Definition

One says that (X , Γ) is expansive if

∃ε > 0,∀x 6= y ∈ X ,∃γ ∈ Γ such that d(γx , γy) ≥ ε.

This definition does not depend on the choice of the compatible metric d .
A point in X is called periodic if its orbit is finite.

Theorem (CC-2015)

If (X , Γ) is expansive and the periodic points are dense in X , then (X , Γ) is surjunctive.
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Examples of non-surjunctive dynamical systems

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift X ⊂ {0, 1}Z consisting of all bi-infinite sequences of 0s and 1s with
at most one chain of 1s.
Then (X ,Z) is expansive but not surjunctive.
The map τ : X → X which replaces each word 10 by 11 is equivariant, continuous,
injective but not surjective.

Example

Let S be any compact metrizable space.
Then periodic points for the Z-shift are dense in SZ.
However, if S is compressible (e.g. S is the unit interval [0, 1], or the infinite-dimensional
torus TN, or the Cantor set) then (X ,Z) is not surjunctive.
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Algebraic dynamical systems

Definition

An algebraic dynamical system is a d.s. (X , Γ), where

X is a compact metrizable topological group;

Γ is a countable group acting on X by continuous group morphisms.
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Examples of algebraic dynamical systems

Example (Arnold’s cat)

This the a.d.s. (T2,Z), where the action of Z on T2 is generated by the cat map
(x1, x2) 7→ (x2, x1 + x2).

Example

More generally, if Γ is a countable subgroup of GLn(Z), then (Tn, Γ) is an a.d.s.

Example

Let S be a compact metrizable topological group (e.g. S is a finite discrete group, or S is
a compact Lie group, or S = TN, or S = Zp the group of p-adic integers) and Γ a
countable ghroup. Then the shift (SΓ, Γ) is an a.d.s.
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Examples of algebraic dynamical systems (continued)

Example

Let M be a countable Z[Γ]-module. Let XM = M̂ denote the Pontryagin dual of M, i.e.,
the set of all continuous group morphisms

x : M → T

with the topology of pointwise convergence. Then XM is a compact metrizable abelian
group and Γ acts on XM by

(γx)(m) := x(γ−1m) ∀γ ∈ Γ, ∀x ∈ XM , ∀m ∈ M.

One says that (XM , Γ) is the a.d.s. associated with M. This yields a one-to-one
correspondence between countable Z[Γ]-modules and a.d.s. (X , Γ) with X abelian
(cf. [Sch]).
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The algebraic descending chain condition

Definition

One says that an a.d.s. (X , Γ) satisfies the algebraic descending chain condition if every
decreasing sequence

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .

of closed invariant subgroups eventually stabilizes.

Remark

When X is abelian and M = x̂ , this is equivalent to saying that the Z[Γ]-module M is
Noetherian.
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Topological rigidity

If X is a topological group, one says that a map f : X → X is affine if there exist a
continuous group morphism a : X → X an b ∈ X such that

f (x) = a(x) · b ∀x ∈ X .

Definition

One says that an a.d.s. (X , Γ) is topologically rigid if every equivariant continuous map
f : X → X is affine.

Proposition (BCC-2017)

If an a.d.s. is topologically rigid and satisfies the a.d.c.c. then it is surjunctive.
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Surjunctivity of algebraic dynamical systems for Γ = Zd

Theorem (BCC-2017)

Let (X ,Zd) be an expansive algebraic dynamical system (with X possibly non-abelian).
Then (X ,Zd) is surjunctive.

Proof.

By a result in [KS-1989], periodic points are dense.

Theorem (BCC-2017)

Let (X ,Zd) be an algebraic dynamical system. Suppose that X is abelian and that

(X ,Zd) satisfies the algebraic descending chain condition (i.e., X̂ is Noetherian as a
Z[Γ]-module). Then (X ,Zd) is surjunctive.
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Solenoids

A solenoid is a compact connected metrizable abelian group with finite topological
dimension. Solenoids are precisely the Pontryagin duals of countable torsion-free discrete
abelian groups of finite rank, i.e., additive subgroups of finite-dimensional rational vector
spaces.

Theorem (BCC-2017)

Let (X , Γ) be an algebraic dynamical system. Suppose that X is a solenoid and that
(X , Γ) is expansive. Then (X , Γ) is surjunctive.
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The `2-zero divisor conjecture

If Γ is a countable group, then there is a C[Γ]-module structure on

`2(Γ) := {f : Γ→ C :
∑
γ∈Γ

|f (γ)|2 <∞}

induced by the convolution product C[Γ]× `2(Γ)→ `2(Γ).

Definition

One says that a countable group Γ satisfies the `2-zero-divisor conjecture if `2(Γ) is
torsion free as a C[Γ]-module.

Every torsion-free elementary amenable group (and hence every torsion-free
solvable-by-finite group) satisfies the `2-zero-divisor conjecture [L-1991].

Definition

Let (X , Γ) be an a.d.s. and let µ denote the Haar measure on X . One says that (X , Γ) is
mixing if

lim
γ→∞

µ(A ∩ γB) = µ(A) · µ(B)

for all measurable subsets A,B ⊂ X .
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Surjunctivity and the `2-zero divisor conjecture

The following result was already obtained in [BW-2005] for the particular case Γ = Zd .

Theorem (BCC-2017)

Let (X , Γ) be an algebraic dynamical system such that

X is abelian,

(X , Γ) is mixing;

Γ satisfies the `2-zero-divisor conjecture;

X̂ is a torsion Z[Γ]-module.

Then (X , Γ) is topologically rigid.

Corollary (BCC-2017)

If in addition (X , Γ) satisfies the a.d.c.c. (i.e., X̂ is a Noetherian Z[Γ]-module), then
(X , Γ) is surjunctive.
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