Surjunctivity of Algebraic Dynamical Systems

Michel Coornaert

IRMA, University of Strasbourg

"Groups, Probability, Dynamics", A Conference on the occasion of the 50th birthday of Tullio Ceccherini-Silberstein, Rome February 22–24 2017,
Sapienza – Universitá di Roma

This is joint work with Siddhartha Bhattacharya and Tullio Ceccherini-Silberstein.

This is joint work with Siddhartha Bhattacharya and Tullio Ceccherini-Silberstein.

[BCC-2017] S. Bhattacharya, T. Ceccherini-Silberstein, M. Coornaert, *Surjunctivity and topological rigidity of algebraic dynamical systems*, arXiv:1702.06201

A dynamical system is a triple (X, Γ, α) , where

- X is a compact metrizable topological space,
- Γ is a countable group
- α is a continuous action of Γ on X, i.e., a group morphism $\alpha \colon \Gamma \to \mathsf{Homeo}(X)$.

A dynamical system is a triple (X, Γ, α) , where

- X is a compact metrizable topological space,
- Γ is a countable group
- α is a continuous action of Γ on X, i.e., a group morphism $\alpha \colon \Gamma \to \mathsf{Homeo}(X)$.

The space X is called the phase space of the d.s.

A dynamical system is a triple (X, Γ, α) , where

- X is a compact metrizable topological space,
- Γ is a countable group
- α is a continuous action of Γ on X, i.e., a group morphism $\alpha \colon \Gamma \to \mathsf{Homeo}(X)$.

The space X is called the phase space of the d.s.

To simplify, we write

$$\gamma x := \alpha(\gamma)(x) \quad \forall \gamma \in \Gamma, \forall x \in X,$$

and
$$(X,\Gamma) := (X,\Gamma,\alpha)$$
.

Let (X, Γ) be a d.s.

Let (X, Γ) be a d.s.

A map $\tau \colon X \to X$ is equivariant if it commutes with the action, i.e.,

$$\tau(\gamma x) = \gamma \tau(x) \quad \forall \gamma \in \Gamma, \forall x \in X.$$

Let (X, Γ) be a d.s.

A map $\tau \colon X \to X$ is equivariant if it commutes with the action, i.e.,

$$\tau(\gamma x) = \gamma \tau(x) \quad \forall \gamma \in \Gamma, \forall x \in X.$$

Definition

One says that the d.s. (X,Γ) is surjunctive if every injective equivariant continuous map $\tau\colon X\to X$ is surjective.

Let (X, Γ) be a d.s.

A map $\tau \colon X \to X$ is equivariant if it commutes with the action, i.e.,

$$\tau(\gamma x) = \gamma \tau(x) \quad \forall \gamma \in \Gamma, \forall x \in X.$$

Definition

One says that the d.s. (X,Γ) is surjunctive if every injective equivariant continuous map $\tau\colon X\to X$ is surjective.

The term surjunctive was created by Gottschalk [Go-1973].

Example

If the phase space X is finite, then (X,Γ) is surjunctive.

Example

If the phase space X is finite, then (X,Γ) is surjunctive. Indeed, every injective self-mapping of a finite set is surjective.

Example

If the phase space X is finite, then (X,Γ) is surjunctive. Indeed, every injective self-mapping of a finite set is surjective. Thus, surjunctivity is a finiteness condition.

Example

If the phase space X is finite, then (X,Γ) is surjunctive. Indeed, every injective self-mapping of a finite set is surjective. Thus, surjunctivity is a finiteness condition.

Example

If the phase space X is incompressible, i.e., there is no proper subset of X that is homeomorphic to X, then (X, Γ) is surjunctive.

Example

If the phase space X is finite, then (X,Γ) is surjunctive. Indeed, every injective self-mapping of a finite set is surjective. Thus, surjunctivity is a finiteness condition.

Example

If the phase space X is incompressible, i.e., there is no proper subset of X that is homeomorphic to X, then (X, Γ) is surjunctive.

Note that closed topological manifolds are incompressible by Brouwer's invariance of domain

Example

If the phase space X is finite, then (X,Γ) is surjunctive. Indeed, every injective self-mapping of a finite set is surjective. Thus, surjunctivity is a finiteness condition.

Example

If the phase space X is incompressible, i.e., there is no proper subset of X that is homeomorphic to X, then (X, Γ) is surjunctive.

Note that closed topological manifolds are incompressible by Brouwer's invariance of domain

Example

If (X,Γ) satisfies the descending chain condition, i.e., every decreasing sequence

$$X = X_0 \supset X_1 \supset X_2 \supset \dots$$

of closed invariant subsets eventually stabilizes, then (X, Γ) is surjunctive.

Example

If the phase space X is finite, then (X,Γ) is surjunctive. Indeed, every injective self-mapping of a finite set is surjective. Thus, surjunctivity is a finiteness condition.

Example

If the phase space X is incompressible, i.e., there is no proper subset of X that is homeomorphic to X, then (X, Γ) is surjunctive.

Note that closed topological manifolds are incompressible by Brouwer's invariance of domain

Example

If (X,Γ) satisfies the descending chain condition, i.e., every decreasing sequence

$$X = X_0 \supset X_1 \supset X_2 \supset \dots$$

of closed invariant subsets eventually stabilizes, then (X,Γ) is surjunctive.

Minimal d.s. and, more generally, d.s. in which all proper closed invariant subsets are finite satisfy the d.c.c.

5 / 18

Let ${\mathcal S}$ be a compact metrizable space and Γ a countable group.

Let S be a compact metrizable space and Γ a countable group. The shift over the group Γ and the alphabet space S is the d.s. (S^{Γ}, Γ) , where

Let S be a compact metrizable space and Γ a countable group.

The shift over the group Γ and the alphabet space S is the d.s. (S^{Γ}, Γ) , where

- $S^{\Gamma} = \{x \colon \Gamma \to S\}$ with the product topology;
- \bullet Γ acts on S^{Γ} by

$$(\gamma x)(\gamma') := x(\gamma^{-1}\gamma') \quad \forall \gamma, \gamma' \in \Gamma, \forall x \in S^{\Gamma}.$$

Let S be a compact metrizable space and Γ a countable group.

The shift over the group Γ and the alphabet space S is the d.s. (S^{Γ}, Γ) , where

- $S^{\Gamma} = \{x \colon \Gamma \to S\}$ with the product topology;
- Γ acts on S^{Γ} by

$$(\gamma x)(\gamma') := x(\gamma^{-1}\gamma') \quad \forall \gamma, \gamma' \in \Gamma, \forall x \in S^{\Gamma}.$$

Theorem (Gromov-Weiss)

If S is finite and Γ sofic, then (S^{Γ}, Γ) is surjunctive.

Let S be a compact metrizable space and Γ a countable group.

The shift over the group Γ and the alphabet space S is the d.s. (S^{Γ}, Γ) , where

- $S^{\Gamma} = \{x \colon \Gamma \to S\}$ with the product topology;
- Γ acts on S^{Γ} by

$$(\gamma x)(\gamma') := x(\gamma^{-1}\gamma') \quad \forall \gamma, \gamma' \in \Gamma, \forall x \in S^{\Gamma}.$$

Theorem (Gromov-Weiss)

If S is finite and Γ sofic, then (S^{Γ}, Γ) is surjunctive.

It is unknown if the preceding theorem remains valid for any group Γ (Gottschalk conjecture).

Let (X,Γ) be a d.s. and d a compatible metric on X.

Let (X,Γ) be a d.s. and d a compatible metric on X.

Definition

One says that (X,Γ) is expansive if

$$\exists \varepsilon > 0, \forall x \neq y \in X, \exists \gamma \in \Gamma \text{ such that } d(\gamma x, \gamma y) \geq \varepsilon.$$

Let (X,Γ) be a d.s. and d a compatible metric on X.

Definition

One says that (X,Γ) is expansive if

$$\exists \varepsilon > 0, \forall x \neq y \in X, \exists \gamma \in \Gamma \text{ such that } d(\gamma x, \gamma y) \geq \varepsilon.$$

This definition does not depend on the choice of the compatible metric d.

Let (X, Γ) be a d.s. and d a compatible metric on X.

Definition

One says that (X,Γ) is expansive if

$$\exists \varepsilon > 0, \forall x \neq y \in X, \exists \gamma \in \Gamma \text{ such that } d(\gamma x, \gamma y) \geq \varepsilon.$$

This definition does not depend on the choice of the compatible metric d. A point in X is called periodic if its orbit is finite.

Let (X, Γ) be a d.s. and d a compatible metric on X.

Definition

One says that (X,Γ) is expansive if

$$\exists \varepsilon > 0, \forall x \neq y \in X, \exists \gamma \in \Gamma \text{ such that } d(\gamma x, \gamma y) \geq \varepsilon.$$

This definition does not depend on the choice of the compatible metric d. A point in X is called periodic if its orbit is finite.

Theorem (CC-2015)

If (X,Γ) is expansive and the periodic points are dense in X, then (X,Γ) is surjunctive.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all bi-infinite sequences of 0s and 1s with at most one chain of 1s.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all bi-infinite sequences of 0s and 1s with at most one chain of 1s.

Then (X, \mathbb{Z}) is expansive but not surjunctive.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all bi-infinite sequences of 0s and 1s with at most one chain of 1s.

Then (X, \mathbb{Z}) is expansive but not surjunctive.

The map $\tau\colon X\to X$ which replaces each word 10 by 11 is equivariant, continuous, injective but not surjective.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all bi-infinite sequences of 0s and 1s with at most one chain of 1s.

Then (X, \mathbb{Z}) is expansive but not surjunctive.

The map $\tau\colon X\to X$ which replaces each word 10 by 11 is equivariant, continuous, injective but not surjective.

Example

Let S be any compact metrizable space.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all bi-infinite sequences of 0s and 1s with at most one chain of 1s.

Then (X, \mathbb{Z}) is expansive but not surjunctive.

The map $\tau\colon X\to X$ which replaces each word 10 by 11 is equivariant, continuous, injective but not surjective.

Example

Let S be any compact metrizable space.

Then periodic points for the \mathbb{Z} -shift are dense in $S^{\mathbb{Z}}$.

Neither expansiveness nor density of periodic points alone can guarantee surjunctivity.

Example

Consider the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all bi-infinite sequences of 0s and 1s with at most one chain of 1s.

Then (X, \mathbb{Z}) is expansive but not surjunctive.

The map $\tau: X \to X$ which replaces each word 10 by 11 is equivariant, continuous, injective but not surjective.

Example

Let S be any compact metrizable space.

Then periodic points for the \mathbb{Z} -shift are dense in $S^{\mathbb{Z}}$.

However, if S is compressible (e.g. S is the unit interval [0,1], or the infinite-dimensional

torus $\mathbb{T}^{\mathbb{N}}$, or the Cantor set) then (X,\mathbb{Z}) is not surjunctive.

Algebraic dynamical systems

Algebraic dynamical systems

Definition

An algebraic dynamical system is a d.s. (X, Γ) , where

- X is a compact metrizable topological group;
- \bullet Γ is a countable group acting on X by continuous group morphisms.

Example (Arnold's cat)

This the a.d.s. $(\mathbb{T}^2, \mathbb{Z})$, where the action of \mathbb{Z} on \mathbb{T}^2 is generated by the cat map $(x_1, x_2) \mapsto (x_2, x_1 + x_2)$.

Example (Arnold's cat)

This the a.d.s. $(\mathbb{T}^2, \mathbb{Z})$, where the action of \mathbb{Z} on \mathbb{T}^2 is generated by the cat map $(x_1, x_2) \mapsto (x_2, x_1 + x_2).$

Example

More generally, if Γ is a countable subgroup of $GL_n(\mathbb{Z})$, then (\mathbb{T}^n, Γ) is an a.d.s.

Example (Arnold's cat)

This the a.d.s. $(\mathbb{T}^2, \mathbb{Z})$, where the action of \mathbb{Z} on \mathbb{T}^2 is generated by the cat map $(x_1, x_2) \mapsto (x_2, x_1 + x_2)$.

Example

More generally, if Γ is a countable subgroup of $GL_n(\mathbb{Z})$, then (\mathbb{T}^n, Γ) is an a.d.s.

Example

Let S be a compact metrizable topological group (e.g. S is a finite discrete group, or S is a compact Lie group, or $S = \mathbb{T}^{\mathbb{N}}$, or $S = \mathbb{Z}_p$ the group of p-adic integers) and Γ a countable ghroup. Then the shift (S^{Γ}, Γ) is an a.d.s.

Example

Let M be a countable $\mathbb{Z}[\Gamma]$ -module.

Example

Let M be a countable $\mathbb{Z}[\Gamma]$ -module. Let $X_M = \widehat{M}$ denote the Pontryagin dual of M, i.e., the set of all continuous group morphisms

$$x \colon M \to \mathbb{T}$$

with the topology of pointwise convergence.

Example

Let M be a countable $\mathbb{Z}[\Gamma]$ -module. Let $X_M = \widehat{M}$ denote the Pontryagin dual of M, i.e., the set of all continuous group morphisms

$$x: M \to \mathbb{T}$$

with the topology of pointwise convergence. Then X_M is a compact metrizable abelian group and Γ acts on X_M by

$$(\gamma x)(m) := x(\gamma^{-1}m) \quad \forall \gamma \in \Gamma, \forall x \in X_M, \forall m \in M.$$

Example

Let M be a countable $\mathbb{Z}[\Gamma]$ -module. Let $X_M = \widehat{M}$ denote the Pontryagin dual of M, i.e., the set of all continuous group morphisms

$$x: M \to \mathbb{T}$$

with the topology of pointwise convergence. Then X_M is a compact metrizable abelian group and Γ acts on X_M by

$$(\gamma x)(m) := x(\gamma^{-1}m) \quad \forall \gamma \in \Gamma, \forall x \in X_M, \forall m \in M.$$

One says that (X_M, Γ) is the a.d.s. associated with M.

Example

Let M be a countable $\mathbb{Z}[\Gamma]$ -module. Let $X_M = M$ denote the Pontryagin dual of M, i.e., the set of all continuous group morphisms

$$x \colon M \to \mathbb{T}$$

with the topology of pointwise convergence. Then X_M is a compact metrizable abelian group and Γ acts on X_M by

$$(\gamma x)(m) := x(\gamma^{-1}m) \quad \forall \gamma \in \Gamma, \forall x \in X_M, \forall m \in M.$$

One says that (X_M, Γ) is the a.d.s. associated with M. This yields a one-to-one correspondence between countable $\mathbb{Z}[\Gamma]$ -modules and a.d.s. (X,Γ) with X abelian (cf. [Sch]).

The algebraic descending chain condition

The algebraic descending chain condition

Definition

One says that an a.d.s. (X,Γ) satisfies the algebraic descending chain condition if every decreasing sequence

$$X = X_0 \supset X_1 \supset X_2 \supset \dots$$

of closed invariant subgroups eventually stabilizes.

The algebraic descending chain condition

Definition

One says that an a.d.s. (X,Γ) satisfies the algebraic descending chain condition if every decreasing sequence

$$X = X_0 \supset X_1 \supset X_2 \supset \dots$$

of closed invariant subgroups eventually stabilizes.

Remark

When X is abelian and $M=\widehat{x}$, this is equivalent to saying that the $\mathbb{Z}[\Gamma]$ -module M is Noetherian

Topological rigidity

If X is a topological group, one says that a map $f: X \to X$ is affine if there exist a continuous group morphism $a: X \to X$ an $b \in X$ such that

$$f(x) = a(x) \cdot b \quad \forall x \in X.$$

Topological rigidity

If X is a topological group, one says that a map $f: X \to X$ is affine if there exist a continuous group morphism $a: X \to X$ an $b \in X$ such that

$$f(x) = a(x) \cdot b \quad \forall x \in X.$$

Definition

One says that an a.d.s. (X,Γ) is topologically rigid if every equivariant continuous map $f:X\to X$ is affine.

Topological rigidity

If X is a topological group, one says that a map $f: X \to X$ is affine if there exist a continuous group morphism $a: X \to X$ an $b \in X$ such that

$$f(x) = a(x) \cdot b \quad \forall x \in X.$$

Definition

One says that an a.d.s. (X,Γ) is topologically rigid if every equivariant continuous map $f:X\to X$ is affine.

Proposition (BCC-2017)

If an a.d.s. is topologically rigid and satisfies the a.d.c.c. then it is surjunctive.

Surjunctivity of algebraic dynamical systems for $\Gamma = \mathbb{Z}^d$

Surjunctivity of algebraic dynamical systems for $\Gamma = \mathbb{Z}^d$

Theorem (BCC-2017)

Let (X, \mathbb{Z}^d) be an expansive algebraic dynamical system (with X possibly non-abelian). Then (X, \mathbb{Z}^d) is surjunctive.

Surjunctivity of algebraic dynamical systems for $\Gamma=\mathbb{Z}^d$

Theorem (BCC-2017)

Let (X, \mathbb{Z}^d) be an expansive algebraic dynamical system (with X possibly non-abelian). Then (X, \mathbb{Z}^d) is surjunctive.

Proof.

By a result in [KS-1989], periodic points are dense.

Surjunctivity of algebraic dynamical systems for $\Gamma = \mathbb{Z}^d$

Theorem (BCC-2017)

Let (X, \mathbb{Z}^d) be an expansive algebraic dynamical system (with X possibly non-abelian). Then (X, \mathbb{Z}^d) is surjunctive.

Proof.

By a result in [KS-1989], periodic points are dense.

Theorem (BCC-2017)

Let (X, \mathbb{Z}^d) be an algebraic dynamical system. Suppose that X is abelian and that (X, \mathbb{Z}^d) satisfies the algebraic descending chain condition (i.e., \widehat{X} is Noetherian as a $\mathbb{Z}[\Gamma]$ -module). Then (X, \mathbb{Z}^d) is surjunctive.

A solenoid is a compact connected metrizable abelian group with finite topological dimension.

A solenoid is a compact connected metrizable abelian group with finite topological dimension. Solenoids are precisely the Pontryagin duals of countable torsion-free discrete abelian groups of finite rank, i.e., additive subgroups of finite-dimensional rational vector spaces.

A solenoid is a compact connected metrizable abelian group with finite topological dimension. Solenoids are precisely the Pontryagin duals of countable torsion-free discrete abelian groups of finite rank, i.e., additive subgroups of finite-dimensional rational vector spaces.

Theorem (BCC-2017)

Let (X,Γ) be an algebraic dynamical system. Suppose that X is a solenoid and that (X,Γ) is expansive. Then (X,Γ) is surjunctive.

If Γ is a countable group, then there is a $\mathbb{C}[\Gamma]$ -module structure on

$$\ell^2(\Gamma) := \{ f \colon \Gamma \to \mathbb{C} : \sum_{\gamma \in \Gamma} |f(\gamma)|^2 < \infty \}$$

induced by the convolution product $\mathbb{C}[\Gamma] \times \ell^2(\Gamma) \to \ell^2(\Gamma)$.

If Γ is a countable group, then there is a $\mathbb{C}[\Gamma]$ -module structure on

$$\ell^2(\Gamma) := \{ f : \Gamma \to \mathbb{C} : \sum_{\gamma \in \Gamma} |f(\gamma)|^2 < \infty \}$$

induced by the convolution product $\mathbb{C}[\Gamma] \times \ell^2(\Gamma) \to \ell^2(\Gamma)$.

Definition

One says that a countable group Γ satisfies the ℓ^2 -zero-divisor conjecture if $\ell^2(\Gamma)$ is torsion free as a $\mathbb{C}[\Gamma]$ -module.

If Γ is a countable group, then there is a $\mathbb{C}[\Gamma]$ -module structure on

$$\ell^2(\Gamma) := \{ f \colon \Gamma \to \mathbb{C} : \sum_{\gamma \in \Gamma} |f(\gamma)|^2 < \infty \}$$

induced by the convolution product $\mathbb{C}[\Gamma]\times \ell^2(\Gamma)\to \ell^2(\Gamma).$

Definition

One says that a countable group Γ satisfies the ℓ^2 -zero-divisor conjecture if $\ell^2(\Gamma)$ is torsion free as a $\mathbb{C}[\Gamma]$ -module.

Every torsion-free elementary amenable group (and hence every torsion-free solvable-by-finite group) satisfies the ℓ^2 -zero-divisor conjecture [L-1991].

If Γ is a countable group, then there is a $\mathbb{C}[\Gamma]$ -module structure on

$$\ell^2(\Gamma) := \{ f \colon \Gamma \to \mathbb{C} : \sum_{\gamma \in \Gamma} |f(\gamma)|^2 < \infty \}$$

induced by the convolution product $\mathbb{C}[\Gamma]\times\ell^2(\Gamma)\to\ell^2(\Gamma).$

Definition

One says that a countable group Γ satisfies the ℓ^2 -zero-divisor conjecture if $\ell^2(\Gamma)$ is torsion free as a $\mathbb{C}[\Gamma]$ -module.

Every torsion-free elementary amenable group (and hence every torsion-free solvable-by-finite group) satisfies the ℓ^2 -zero-divisor conjecture [L-1991].

Definition

Let (X,Γ) be an a.d.s. and let μ denote the Haar measure on X. One says that (X,Γ) is mixing if

$$\lim_{\gamma \to \infty} \mu(A \cap \gamma B) = \mu(A) \cdot \mu(B)$$

for all measurable subsets $A, B \subset X$.

The following result was already obtained in [BW-2005] for the particular case $\Gamma = \mathbb{Z}^d$.

The following result was already obtained in [BW-2005] for the particular case $\Gamma = \mathbb{Z}^d$.

Theorem (BCC-2017)

Let (X,Γ) be an algebraic dynamical system such that

- X is abelian,
- (X,Γ) is mixing;
- Γ satisfies the ℓ^2 -zero-divisor conjecture;
- \widehat{X} is a torsion $\mathbb{Z}[\Gamma]$ -module.

Then (X, Γ) is topologically rigid.

The following result was already obtained in [BW-2005] for the particular case $\Gamma = \mathbb{Z}^d$.

Theorem (BCC-2017)

Let (X,Γ) be an algebraic dynamical system such that

- X is abelian,
- (X,Γ) is mixing;
- Γ satisfies the ℓ^2 -zero-divisor conjecture;
- \widehat{X} is a torsion $\mathbb{Z}[\Gamma]$ -module.

Then (X,Γ) is topologically rigid.

Corollary (BCC-2017)

If in addition (X,Γ) satisfies the a.d.c.c. (i.e., \widehat{X} is a Noetherian $\mathbb{Z}[\Gamma]$ -module), then (X,Γ) is surjunctive.

References

References

- [B-2000] S. Bhattacharya, *Orbit equivalence and topological conjugacy of affine actions on compact abelian groups*, Monatsh. Math., 129 (2000), 89–96.
- [BW-2005] S. Bhattacharya, T. Ward, *Finite entropy characterizes topological rigidity on connected groups*, Ergodic Theory Dynam. Systems, 25 (2005), 365–373.
- [BCC-2015] T. Ceccherini-Silberstein, M. Coornaert, *Expansive actions of countable amenable groups, homoclinic pairs, and the Myhill property*, Illinois J. Math. **59** (2015), no. 3, 597–621.
- [Go-1973] W. Gottschalk, *Some general dynamical notions*, pp. 120–125, Springer Lect. Notes in Math., 318, 1973.
- [Gr-1999] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1 (1999), 109–197.
- [KS-1989] B. Kitchens, K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems, 9 (1989), 691-735.
- [L-1991] P.A. Linnell, Zero divisors and group von Neumann algebras, Pacific J. Math. 149 (1991), 349–364.
- [S-1995] K. Schmidt, "Dynamical systems of algebraic origin," vol. 128 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1995.
- [Wei-2000] B. Weiss, *Sofic groups and dynamical systems*, (Ergodic theory and harmonic analysis, Mumbai, 1999) Sankhya Ser. A. **62** (2000), 350–359.