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This is joint work with Tullio Ceccherini-Silberstein.

Our motivation came from the following phrase of Gromov [Gro-1999, p. 195]:

“. . . the Garden of Eden theorem can be generalized to a suitable class of
hyperbolic actions . . . ”
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Dynamical systems

A dynamical system is a pair (X ,G), where

X is a compact metrizable topological space,

G is a countable group acting continuously on X .

The space X is called the phase space.
If f : X → X is a homeomorphism, the d.s. (X ,Z), where

nx := f n(x) ∀n ∈ Z,∀x ∈ X ,

is also denoted (X , f ).
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Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. (T2, f ), where f is the homeomorphism of the 2-torus T2 = R/Z× R/Z
given by

f : T2 → T2

(x1, x2) 7→ (x2, x1 + x2).

Example (Shifts and subshifts)

We take a discrete finite space A, called the alphabet or the set of states, and a
countable group G . The associated shift is the d.s. (AG ,G), where

AG = {x : G → A}

is equipped with the product topology and G acts on AG by

(gx)(h) := x(g−1h) ∀g , h ∈ G , ∀x ∈ AG .

An element of AG is called a configuration. A subsystem of the shift (i.e., a pair (X ,G),
were X ⊂ AG is a closed G -invariant subspace) is called a subshift.
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Examples of Dynamical systems (continued)

Example (The Ledrappier subshift)

The Ledrappier subshift is the subshift (X ,Z2) over the alphabet A := {0, 1} = Z/2Z
consisting of all x : Z2 → A such that

x(g) = x(g + e1) + x(g + e2) ∀g ∈ Z2,

where e1 = (1, 0) and e2 = (0, 1).
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Homoclinicity

Let (X ,G) be a dynamical system. Let d be a metric on X that is compatible with the
topology.

Definition

Two points x , y ∈ X are caled homoclinic if

lim
g→∞

d(gx , gy) = 0,

i.e., for every ε > 0, there exists a finite subset F ⊂ G such that

d(gx , gy) < ε ∀g ∈ G \ F .

Homoclinicity is an equivalence relation on X . This relation is G -invariant and does not
depend on the choice of d .
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Homoclinicity (continued)

Example

Consider Arnold’s cat (T2, f ).
Equip T2 = R2/Z2 with its Eulcidean structure.
The homoclinicity class of a point x ∈ T2 is D ∩ D ′, where D is the line passing through
x whose slope is the golden mean φ := (1 +

√
5)/2 and D ′ is the line passing through x

and orthogonal to D ′. Each homoclinicity class is countably-infinite.

Example

Consider the full shift (AG ,G) over a finite alphabet A and a countable group G . Two
configurations x , y ∈ AG are homoclinic if and only if they coincide outside of a finite
subset of G . Thus, each homoclinicity class is countably-infinite as soon as A has more
than one element and G is infinite.

Example

Consider the Ledrappier subshift (X ,Z2). Observe that if two configurations x , y ∈ X
coincide on the horizontal line Z× {n} ⊂ Z2, then they coincide on Z× {n + 1}.
Therefore, the homoclinicity relations is trivial: the homoclinicity class of every
configuration x ∈ X is reduced to x .
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Pre-injective endomorphisms

Let (X ,G) be a dynamical system.

Definition

A continuous map τ : X → X is an endomorphism of the d.s. (X ,G) if it is
G -equivariant, i.e.,

τ(gx) = gτ(x) ∀g ∈ G , x ∈ X .

Remark

An endomorphism of a shift (or subshift) is also called a cellular automaton.

Definition

An endomorphism τ : X → X of the d.s. (X ,G) is called pre-injective if its restriction to
each homoclinicity class is injective.

Of course
τ injective =⇒ τ pre-injective

but the converse implication is false in general.
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Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2 given by x 7→ 2x is an endomorphism of Arnold’s
cat (T2, f ). The kernel of τ is

Ker(τ) = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (AZ,Z) on the alphabet A = Z/2Z defined by

τ(x)(n) := x(n + 1) + x(n) ∀x ∈ {0, 1}Z,∀n ∈ Z

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration x ∈ X to the 0-configuration is an
endomorphism of the Ledrappier subshift (X ,Z2) that is pre-injective but neither injective
nor surjective.

Michel Coornaert (IRMA, University of Strasbourg) Expansive actions of countable amenable groups December 8, 2015 9 / 23



Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2 given by x 7→ 2x is an endomorphism of Arnold’s
cat (T2, f ).

The kernel of τ is

Ker(τ) = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (AZ,Z) on the alphabet A = Z/2Z defined by

τ(x)(n) := x(n + 1) + x(n) ∀x ∈ {0, 1}Z,∀n ∈ Z

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration x ∈ X to the 0-configuration is an
endomorphism of the Ledrappier subshift (X ,Z2) that is pre-injective but neither injective
nor surjective.

Michel Coornaert (IRMA, University of Strasbourg) Expansive actions of countable amenable groups December 8, 2015 9 / 23



Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2 given by x 7→ 2x is an endomorphism of Arnold’s
cat (T2, f ). The kernel of τ is

Ker(τ) = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (AZ,Z) on the alphabet A = Z/2Z defined by

τ(x)(n) := x(n + 1) + x(n) ∀x ∈ {0, 1}Z,∀n ∈ Z

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration x ∈ X to the 0-configuration is an
endomorphism of the Ledrappier subshift (X ,Z2) that is pre-injective but neither injective
nor surjective.

Michel Coornaert (IRMA, University of Strasbourg) Expansive actions of countable amenable groups December 8, 2015 9 / 23



Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2 given by x 7→ 2x is an endomorphism of Arnold’s
cat (T2, f ). The kernel of τ is

Ker(τ) = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (AZ,Z) on the alphabet A = Z/2Z defined by

τ(x)(n) := x(n + 1) + x(n) ∀x ∈ {0, 1}Z,∀n ∈ Z

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration x ∈ X to the 0-configuration is an
endomorphism of the Ledrappier subshift (X ,Z2) that is pre-injective but neither injective
nor surjective.

Michel Coornaert (IRMA, University of Strasbourg) Expansive actions of countable amenable groups December 8, 2015 9 / 23



Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2 given by x 7→ 2x is an endomorphism of Arnold’s
cat (T2, f ). The kernel of τ is

Ker(τ) = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (AZ,Z) on the alphabet A = Z/2Z defined by

τ(x)(n) := x(n + 1) + x(n) ∀x ∈ {0, 1}Z, ∀n ∈ Z

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration x ∈ X to the 0-configuration is an
endomorphism of the Ledrappier subshift (X ,Z2) that is pre-injective but neither injective
nor surjective.

Michel Coornaert (IRMA, University of Strasbourg) Expansive actions of countable amenable groups December 8, 2015 9 / 23



Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2 given by x 7→ 2x is an endomorphism of Arnold’s
cat (T2, f ). The kernel of τ is

Ker(τ) = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}.

The endomorphism τ is surjective and pre-injective but not injective.

Example

The endomorphism τ of the full shift (AZ,Z) on the alphabet A = Z/2Z defined by

τ(x)(n) := x(n + 1) + x(n) ∀x ∈ {0, 1}Z, ∀n ∈ Z

is surjective and pre-injective but not injective.

Example (The Ledrappier subshift)

The constant map that sends each configuration x ∈ X to the 0-configuration is an
endomorphism of the Ledrappier subshift (X ,Z2) that is pre-injective but neither injective
nor surjective.

Michel Coornaert (IRMA, University of Strasbourg) Expansive actions of countable amenable groups December 8, 2015 9 / 23



Amenable groups

Let G be a countable group.

Definition

The group G is called amenable if there exists a sequence (Fn)n≥1 of non-empty finite
subsets of G such that

lim
n→∞

|Fn \ Fng |
|Fn|

= 0 ∀g ∈ G .

Such a sequence is called a Følner sequence for G .

• Every locally finite group is amenable.
• Every abelian group and, more generally, every solvable group is amenable.
• Every finitely generated group with subexponential growth is amenable.
• An example of a non-amenable group is provided by the free group on 2 generators.
More generally, every group containing a non-abelian free subgroup is non-amenable.
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The Garden of Eden theorem

The following result is known as the Garden of Eden theorem:

Theorem (CMS-1999)

Let G be a countable amenable group and A a finite set. Then every endomorphism τ of
the shift (AG ,G) satisfies

τ surjective ⇐⇒ τ pre-injective.

Moore [Moo-1963] proved =⇒ for G = Zd ,

Myhill [Myh-1963] proved ⇐= for G = Zd ,

Ceccherini-Silberstein, Mach̀ı and Scarabotti [CMS-1999] proved ⇐⇒ in the
general case.

The proof consists in showing that

τ surjective ⇐⇒ htop(τ(AG ),G) = htop(AG ,G) ⇐⇒ τ pre-injective,

where htop(X ,G) denotes the topological entropy of the d.s. (X ,G).
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The Moore and the Myhill property

Let (X ,G) be a dynamical system.

Definition

The d.s. (X ,G) has the Moore property if every surjective endomorphism of (X ,G) is
pre-injective.

Definition

The d.s. (X ,G) has the Myhill property if every pre-injective endomorphism of (X ,G) is
surjective.

Definition

A d.s. has the Moore-Myhill property if it has both the Moore and the Myill property.
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The Moore and the Myhill property (continued)

Example

Arnold’s cat (T2, f ) has the Moore-Myhill property. Indeed, it is easy to show that any
endomorphism τ of the cat is of the form τ = m Id +nf , for some m, n ∈ Z. Thus, with
the exception of the 0-endomorphism, every endomorphism of the cat is both surjective
and pre-injective.

Example

The GOE theorem says that the shift AG has the Moore-Myhill property whenever A is
finite and G is amenable . Bartholdi [Bar-2010] proved that if G is non-amenable then
there is a finite set A such that AG does not have the Moore property. It is known that if
G contains a nonabelian free subgroup then there is a finite set A such that AG does not
have the Myhill property.

Example

The Ledrappier subshift (X ,Z2) has the Moore property (since every endomorphism is
pre-injective) but does not have the Myhill property (since the 0-endomorphism is
pre-injective but not surjective).
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there is a finite set A such that AG does not have the Moore property. It is known that if
G contains a nonabelian free subgroup then there is a finite set A such that AG does not
have the Myhill property.

Example

The Ledrappier subshift (X ,Z2) has the Moore property (since every endomorphism is
pre-injective) but does not have the Myhill property (since the 0-endomorphism is
pre-injective but not surjective).
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The Moore and the Myhill property (continued)

Remark

The Moore property is a finiteness condition (i.e., every d.s. (X ,G) with X finite has the
Moore property) whereas the Myhill property is not (consider a finite discrete space X
with more than one point and a group G fixing each point of X ).
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Subshifts of finite type and strongly irreducible subshifts

Definition

A subshift X ⊂ AG is said to be of finite type if there exist a finite subset Ω ⊂ G and a
subset P ⊂ AΩ such that

X = {x ∈ AG : (gx)|Ω ∈ P for all g ∈ G}.

Definition

A subshift X ⊂ AG is said to be strongly irreducible if there exists a finite subset ∆ ⊂ G
with the following property:
if Ω1 and Ω2 are finite subsets of G such that there is no element g ∈ ∆ such that the
set Ω1g meets Ω2 (i.e., Ω1∆ ∩ Ω2 = ∅) then, given any two configurations x1, x2 ∈ X ,
there exists a configuration x ∈ X such that x |Ω1 = x1|Ω1 and x |Ω2 = x2|Ω2 .
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The Moore-Myhill property for strongly irreducible subshifts of finite type

Fiorenzi extended the Garden of Eden theorem in the following way:

Theorem (Fio-2003)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible
subshift of finite type X ⊂ AG has the Moore-Myhill property.

Example

The hard sphere model is the subshift X ⊂ {0, 1}Z
d

consisting of all x : Zd → {0, 1} with
no two 1s appearing at Euclidean distance 1 on Zd . The hard sphere model is strongly
irreducible and of finite type. Thus, it has the Moore-Myhill property.

Remark

For d = 1, the hard sphere model is also called the golden mean subshift because its
topological entropy is equal to the golden mean.
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The Myhill property for strongly irreducible subshifts

Theorem (CC-2012)

Let G be a countable amenable group and A a finite set. Then every strongly irreducible
subshift X ⊂ AG has the Myhill property.

Example

The even subshift is the subshift X ⊂ {0, 1}Z consisting of all bi-infinite sequences
x : Z→ {0, 1} such that the number of 1s between any two 0s is even. The even subshift
is strongly irreducible. Therefore the even subshift has the Myhill property. Note that the
even subshift is not of finite type. Actually, Fiorenzi [Fio-2000] proved that the even
subshift does not have the Moore property: it admits endomorphisms that are surjective
but not pre-injective.
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Expansive dynamical systems

Let (X ,G) be a dynamical system and let d be a metric on X that is compatible with the
topology.

Definition

The d.s. (X ,G) is expansive if there is a constant ε > 0 such that, for all distinct points
x , y ∈ X , there exists g ∈ G such that

d(gx , gy) ≥ ε.

This definition does not depend on the choice of d .

Example

Arnold’s cat is expansive.

Example

All shifts and subshifts are expansive.
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The Myhill property for a class of expansive dynamical systems

Theorem (CC-2015b)

Let X be a compact metrizable space equipped with a continuous action of a countable
amenable group G .
Suppose that the d.s. (X ,G) is expansive and that there exist a finite set A, a strongly
irreducible subshift Σ ⊂ AG , and a continuous, surjective, G -equivariant and uniformly
finite-to-one map π : Σ→ X .
Then the dynamical system (X ,G) has the Myhill property.
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Smale’s Axiom A diffeomorphisms

Let f : M → M be a diffeomorphism of a smooth compact manifold M.
A closed f -invariant subset Λ ⊂ M is hyperbolic if the restriction to Λ of the tangent
bundle of M splits as a direct sum of two invariant subbundles Es and Eu such that, with
respect to some (or equivalently any) Riemannian metric on M, the differential df is
uniformly contracting on Es and uniformly expanding on Eu.
A point x ∈ M is called non-wandering if for every neighborhood U of x , there is an
integer n ≥ 1 such that f n(U) meets U. The set Ω(f ) consisting of all non-wandering
points of f is a closed invariant subset of M.
If Per(f ) denotes the set of periodic points of f , one always has Per(f ) ⊂ Ω(f ).

Definition

One says that f is Axiom A if

Ω(f ) is hyperbolic, and

Per(f ) is dense in Ω(f ).

If f is Axiom A, then Ω(f ) can be uniquely written as a disjoint union of closed invariant
subsets Ω(f ) = X1 ∪ · · · ∪ Xk , such that the restriction of f to each Xi is topologically
transitive (spectral decomposition theorem). These subsets Xi are called the basic sets of
(M, f ).
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Axiom A diffeomorphisms (continued)

A dynamical system (X ,G) is topologically mixing if, given any two non-empty open
subsets U,V ⊂ X , one has U ∩ gV 6= ∅ for all but finitely many g ∈ G .

Corollary (CC-2015a)

Let f be an Axiom A diffeomorphism of a smooth compact manifold M. Suppose that X
is a topologically mixing basic set of (M, f ). Then the dynamical system (X , f |X ) has the
Myhill property.

Proof.

The fact that the dynamical system (X , f |X ) satisfies the hypotheses of the theorem
follows from results obtained by Rufus Bowen in the 1970s.
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Anosov diffeomorphisms

Let f : M → M be a diffeomorphism of a smooth compact manifold M.
One says that f is Anosov if the whole manifold M is hyperbolic for f .

Corollary (CC-2015a)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold
M. Then (M, f ) has the Myhill property.

Example (Hyperbolic toral automorphisms)

Consider a matrix A ∈ GLn(Z) with no eigenvalue of modulus 1. Then A induces a
topologically mixing Anosov diffeomorphism fA of the n-torus Tn = Rn/Zn. One says that
fA is a hyperbolic toral automorphism. Arnold’s cat is the hyperbolic toral automorphism
associated with the matrix

A =

(
0 1
1 1

)
.

Every Anosov diffeomorphisms of Tn is topologically conjugate to a hyperbolic toral
automorphism. In particular, every Anosov diffeomorphism of Tn is topologically mixing.

Theorem (CC-2015a)

Let f be an Anosov diffeomorphism of the n-torus Tn. Then the d.s. (Tn, f ) has the
Moore-Myhill property.
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