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Graphs

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair G = (V ,∼), where

V is a nonempty set whose elements are the vertices of the graph ;

∼ is a relation on V such that
I ∀v ∈ V , v 6∼ v (anti-reflexivity)
I ∀v , w ∈ V , v ∼ w ⇒ w ∼ v (symmetry).

When v ∼ w , one says that v and w are neighbor vertices.

• •
v w

Figure 1: Two neighbor vertices

• A vertex is said to be isolated if it has no neighbor vertices.
• A graph is called finite if it has only finitely many vertices.
• A graph is called locally finite if each of its vertices has only finitely many neighbor
vertices.
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The combinatorial Laplacian

Let G = (V ,∼) be a locally finite simplicial graph without isolated vertices.

Consider the
real vector space RV consisting of all functions f : V → R. The combinatorial Laplacian
associated with the graph G is the endomorphism ∆G : RV → RV defined by

∀f ∈ RV ,∀v ∈ V , ∆G (f )(v) = f (v)− 1

deg(v)

X
v∼w

f (w) =
1

deg(v)

X
v∼w

(f (v)− f (w)) .

where deg(v) is the degree, i.e., the number of neighbor vertices of the vertex v .

Remark

The Laplacian is never injective since all constant functions are in its kernel. The
functions belonging to the kernel of the Laplacian are called harmonic.

Two vertices v and w of the graph G = (V ,∼) are in the same connected component if
there exists a finite sequence of vertices v = u0, u1, . . . , un = w with uk ∼ uk+1 for
0 ≤ k ≤ n − 1.
If Gi = (Vi ,∼) are the connected components of the graph G , one has

RV =
Y

i

RVi and ∆G =
Y

i

∆Gi .

The graph G is called connected if it has only one connected component.
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Example: Finite graphs

Suppose that the graph G is finite.

Then RV is a finite-dimensional vector space.
As ∆G is not injective, it is not surjective.
It turns out that ∆G is self-adjoint with respect to the scalar product defined by

∀f , g ∈ RV , 〈f , g〉 =
X
v∈V

deg(v)f (v)g(v).

Indeed, for all f , g ∈ RV , we have

〈f , ∆G (g)〉 =
X
v∼w

f (v) (g(v)− g(w))

=
1

2

 X
v∼w

f (v) (g(v)− g(w)) +
X
v∼w

f (w) (g(w)− g(v))

!
,

and hence

〈f , ∆G (g)〉 =
1

2

X
v∼w

(f (v)− f (w))(g(v)− g(w)) = 〈∆G (f ), g〉.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infinite graphs March 7, 2012 4 / 21



Example: Finite graphs

Suppose that the graph G is finite.
Then RV is a finite-dimensional vector space.

As ∆G is not injective, it is not surjective.
It turns out that ∆G is self-adjoint with respect to the scalar product defined by

∀f , g ∈ RV , 〈f , g〉 =
X
v∈V

deg(v)f (v)g(v).

Indeed, for all f , g ∈ RV , we have

〈f , ∆G (g)〉 =
X
v∼w

f (v) (g(v)− g(w))

=
1

2

 X
v∼w

f (v) (g(v)− g(w)) +
X
v∼w

f (w) (g(w)− g(v))

!
,

and hence

〈f , ∆G (g)〉 =
1

2

X
v∼w

(f (v)− f (w))(g(v)− g(w)) = 〈∆G (f ), g〉.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infinite graphs March 7, 2012 4 / 21



Example: Finite graphs

Suppose that the graph G is finite.
Then RV is a finite-dimensional vector space.
As ∆G is not injective, it is not surjective.

It turns out that ∆G is self-adjoint with respect to the scalar product defined by

∀f , g ∈ RV , 〈f , g〉 =
X
v∈V

deg(v)f (v)g(v).

Indeed, for all f , g ∈ RV , we have

〈f , ∆G (g)〉 =
X
v∼w

f (v) (g(v)− g(w))

=
1

2

 X
v∼w

f (v) (g(v)− g(w)) +
X
v∼w

f (w) (g(w)− g(v))

!
,

and hence

〈f , ∆G (g)〉 =
1

2

X
v∼w

(f (v)− f (w))(g(v)− g(w)) = 〈∆G (f ), g〉.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infinite graphs March 7, 2012 4 / 21



Example: Finite graphs

Suppose that the graph G is finite.
Then RV is a finite-dimensional vector space.
As ∆G is not injective, it is not surjective.
It turns out that ∆G is self-adjoint with respect to the scalar product defined by

∀f , g ∈ RV , 〈f , g〉 =
X
v∈V

deg(v)f (v)g(v).

Indeed, for all f , g ∈ RV , we have

〈f , ∆G (g)〉 =
X
v∼w

f (v) (g(v)− g(w))

=
1

2

 X
v∼w

f (v) (g(v)− g(w)) +
X
v∼w

f (w) (g(w)− g(v))

!
,

and hence

〈f , ∆G (g)〉 =
1

2

X
v∼w

(f (v)− f (w))(g(v)− g(w)) = 〈∆G (f ), g〉.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infinite graphs March 7, 2012 4 / 21



Example: Finite graphs

Suppose that the graph G is finite.
Then RV is a finite-dimensional vector space.
As ∆G is not injective, it is not surjective.
It turns out that ∆G is self-adjoint with respect to the scalar product defined by

∀f , g ∈ RV , 〈f , g〉 =
X
v∈V

deg(v)f (v)g(v).

Indeed, for all f , g ∈ RV , we have

〈f , ∆G (g)〉 =
X
v∼w

f (v) (g(v)− g(w))

=
1

2

 X
v∼w

f (v) (g(v)− g(w)) +
X
v∼w

f (w) (g(w)− g(v))

!
,

and hence

〈f , ∆G (g)〉 =
1

2

X
v∼w

(f (v)− f (w))(g(v)− g(w)) = 〈∆G (f ), g〉.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infinite graphs March 7, 2012 4 / 21



Example: Finite graphs (2)

In particular, we have

∀f ∈ RV , 〈f , ∆G (f )〉 =
1

2

X
v∼w

(f (v)− f (w))2.

It follows that if G is finite and connected, then the kernel of ∆G is reduced to the
constant functions (this may also be established by means of the maximum principle) and
its image is

Im ∆G = (Ker ∆G )⊥ = {f ∈ RV :
X
v∈V

deg(v)f (v) = 0}.
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Example: The one-ended chain

We take G = (V ,∼) with V = N = {0, 1, 2, . . . } and n ∼ m ⇐⇒ n = m ± 1.

• • • • • · · ·

Figure 2: The one-ended chain

We have

∆G (f )(n) =

(
f (0)− f (1) if n = 0,

f (n)− f (n−1)+f (n+1)
2

if n ≥ 1.

The kernel of ∆G is reduced to the constant functions and ∆G is surjective.
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Example: The two-ended chain

We take G = (V ,∼) with V = Z and n ∼ m ⇐⇒ n = m ± 1.

• • • • •· · · · · ·

Figure 3: The two-ended chain

We have

∆G (f )(n) = f (n)− f (n − 1) + f (n + 1)

2
.

The kernel of ∆G is 2-dimensional (arithmetic sequences n 7→ C1 + C2n) and ∆G is
surjective.
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Example: The triadic tree

. . . . . .

...
...

. . . · ·
·

•

• •

•

�
�

�
��

@
@

@
@@•

•

•

•�
�

�
��

@
@

@
@@
• •

Figure 4: The triadic tree
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Example: The triadic tree (2)

A tree is a connected graph containing no cycles of neighbor vertices.

The triadic tree is the tree all of whose vertices have degree 3.
Fix a vertex v0 of the triadic tree.
An end is a path going to infinity from v0 without backtracking.
The set Ω of all ends is uncountable.
With each end ω ∈ Ω, one can associate a harmonic function hω defined in the following
way. We first put hω(v0) = 1. Then, starting from v0, the value taken by hω is multiplied
by 2 when we go to a neighbor vertex in the direction of the end, and divided by 2 when
we go to a neighbor vertex in a direction which is not that of the end.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infinite graphs March 7, 2012 9 / 21



Example: The triadic tree (2)

A tree is a connected graph containing no cycles of neighbor vertices.
The triadic tree is the tree all of whose vertices have degree 3.

Fix a vertex v0 of the triadic tree.
An end is a path going to infinity from v0 without backtracking.
The set Ω of all ends is uncountable.
With each end ω ∈ Ω, one can associate a harmonic function hω defined in the following
way. We first put hω(v0) = 1. Then, starting from v0, the value taken by hω is multiplied
by 2 when we go to a neighbor vertex in the direction of the end, and divided by 2 when
we go to a neighbor vertex in a direction which is not that of the end.
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Example: The triadic tree (3)
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Figure 5: Harmonic function associated with an end
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Example : The triadic tree (4)

- ω

•

•

•v0

v

a

b

p

Figure 6: hω(v) = 2b−a

We have

∀ω, ω′ ∈ Ω, lim
v→ω′

hω(v) =

(
+∞ if ω′ = ω,

0 if ω′ 6= ω.

We deduce that the functions hω, ω ∈ Ω, are linearly independent.
Thus, the kernel of ∆G has uncountable dimension.
Here again, one easily checks that ∆G is surjective.
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Example: An infinite 3-regular graph where all harmonic functions are
constant

A graph is said to be k-regular if all its vertices have degree k.

There exist infinite 3-regular graphs where all harmonic functions are constant (cf.
[Tro-1998]) as the following one :

Figure 7: A 3-regular graph
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Surjectivity of the Laplacian

This is joint work with Tullio Ceccherini-Silberstein (Rome) and Józef Dodziuk (NYC).

Theorem (CCD-2011)

Let G = (V ,∼) be a connected, infinite, locally finite, simplicial graph. Then the
combinatorial Laplacian ∆G : RV → RV is surjective.

Plan of the proof:
We equip RV with its prodiscrete topology and we establish the following points:

Im ∆G is dense in RV ,

Im ∆G is closed in RV ,

which imply Im ∆G = RV .
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The prodiscrete topology on RV

The prodiscrete topology on RV is the product topology obtained by taking the discrete
topology on each factor R of RV =

Q
v∈V R.

The prodiscrete topology on RV is metrizable. Indeed, let us fix a vertex v0 and denote by
Bn the set of vertices at distance ≤ n from v0 (i.e., that can be joined to v0 by a chain of
neighbor vertices of length ≤ n). We have V =

S
n∈N Bn and Bn ⊂ Bn+1 for all n. Then

∀f , g ∈ RV , d(f , g) =
X
n∈N

αn

2n+1
,

where αn = 0 if f and g coincide on Bn and αn = 1 otherwise, is a metric on RV

compatible with the prodiscrete topology.
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Proof of the density of the image

Let Fn ⊂ RV denote the vector subspace consisting of all functions f ∈ RV whose
support is contained in Bn.
Consider the linear map δn : Fn → Fn defined by

∀f ∈ Fn,∀v ∈ V , δn(f )(v) =

(
∆G (f )(v) if v ∈ Bn

0 otherwise.

The maximum principle implies that δn is injective. Indeed, if f ∈ Ker δn, we have

∀v ∈ Bn, |f (v)| =

˛̨̨̨
˛ 1

deg(v)

X
v∼w

f (w)

˛̨̨̨
˛ ≤ 1

deg(v)

X
v∼w

|f (w)|.

Consequently, if v ∈ Bn satisfies |f (v)| = M = max |f |, then |f (w)| = M for all w ∈ V
such that v ∼ w . It follows that |f | is constant on Bn+1.
As V is infinite, we can find a vertex which is in Bn+1 but not in Bn. This shows that f is
identically 0.
As Fn is finite-dimensional, the injectivity of δn implies its surjectivity. Therefore, for all
g ∈ RV and n ∈ N, we can find f ∈ Fn such that ∆G (f ) coincide with g on Bn. This
shows that Im∆G is dense in RV .
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Projective sequences of sets

A projective sequence of sets (Xn, un)n∈N consists of a sequence Xn of sets together with
maps un : Xn+1 → Xn.

X0
u0←− X1

u1←− X2
u2←− X3

u3←− . . .

The projective limit of the projective sequence (Xn, un) is the set lim←−(Xn, un) consisting of
all sequences (xn)n∈N such that xn ∈ Xn and xn = un(xn+1) for all n ∈ N.
This projective limit may be empty even if all the sets Xn are nonempty.
However, if all the maps un are surjective and X0 6= ∅, then we clearly have
lim←−(Xn, un) 6= ∅ (take consecutive preimages of an element x0 ∈ X0).
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A Mittag-Leffler-type lemma

Lemma 1

Let (Xn, un)n∈N be a projective sequence of sets and let K be a field. Suppose that each
Xn is a nonempty finite-dimensional affine space over K and that all the maps
un : Xn+1 → Xn are affine. Then one has lim←−(Xn, un) 6= ∅.

Proof.

For n ≤ m, define γnm : Xm → Xn by

γnm = un ◦ un+1 ◦ . . . ◦ um−1.

For n fixed, the sets γnm(Xm) ⊂ Xn, with m = n, n + 1, . . . , form a non-increasing
sequence of finite-dimensional affine subspaces of Xn. Therefore this sequence stabilizes,
i.e., it becomes constant for m large enough.
Let X ′n =

T
n≤m γnm(Xm). The map un induces by restriction a map u′n : X ′n+1 → X ′n.

The above stability properties can be used to show that X ′0 is nonempty and that the
maps u′n are surjective.
It follows that ∅ 6= lim←−(X ′n, u

′
n) = lim←−(Xn, un).
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A Mittag-Leffler-type lemma (2)

Remark

The preceding lemma becomes false if the hypothesis saying that the affine spaces Xn are
finite-dimensional is removed. Indeed, consider for example the Hilbert space

`2(N) = {(ai )i∈N : ai ∈ R and
X
i∈N

a2
i <∞},

the affine subspaces

Xn = {(ai )i∈N ∈ `2(N) : a0 = a1 = · · · = an = 1}

with un : Xn+1 → Xn the inclusion map. Then we have

lim←−(Xn, un) =
\
n∈N

Xn = ∅.
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Proof of the closedness of the image

Let g ∈ RV in the closure of ∆G (RV ).

Then for each n ∈ N, there exists fn ∈ RV such that g and ∆G (fn) coincide on Bn.
Consider, for each n ∈ N, the affine subspace Xn ⊂ RBn+1 defined by

Xn = (∆
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G )−1(g |Bn ),

where ∆
(n)
G : RBn+1 → RBn is the linear map induced by ∆G .
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We have (∆G (f ))|Bn = ∆
(n)
G (xn) = g |Bn for all n since xn ∈ Xn. As V = ∪n∈NBn, it

follows that ∆G (f ) = g .
This shows that ∆G (RV ) is closed in RV for the prodiscrete topology.
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Concluding remarks

Remark

An analogous proof yields the surjectivity of L = ∆G + λ Id : RV → RV for every
connected infinite and locally finite simplicial graph G and any real-valued function
λ : V → [0, +∞) defined on the vertex set of G . Indeed, L is linear and, for f ∈ RV and
v ∈ V , the equality L(f )(v) = 0 implies

|f (v)| =

˛̨̨̨
˛ 1

(1 + λ(v)) deg(v)

X
v∼w

f (w)

˛̨̨̨
˛

≤ 1

(1 + λ(v)) deg(v)

X
v∼w

|f (w)| ≤ 1

deg(v)

X
v∼w

|f (w)|,

which shows that L also satisfies the maximum principle.

Remark

In [CC-2009], the surjectivity of ∆G had been established in the particular case when G is
the Cayley graph of a finitely generated infinite group. The proof distinguished two cases
according to whether G is amenable or not, by using the Garden of Eden theorem for
linear cellular automata [CC-2006] in the amenable case and the Kesten-Day spectral
theorem in the non-amenable case.
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