The surjectivity of the combinatorial Laplacian on infinite graphs

Michel Coornaert

IRMA, Strasbourg

Seminario di Analisi, Firenze

Graphs

To simplify, we shall only consider simplicial graphs.

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair $G = (V, \sim)$, where

- V is a nonempty set whose elements are the vertices of the graph ;
- ullet ~ is a relation on V such that
 - ▶ $\forall v \in V$, $v \not\sim v$ (anti-reflexivity)
 - $\forall v, w \in V, v \sim w \Rightarrow w \sim v \text{ (symmetry)}.$

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair $G = (V, \sim)$, where

- V is a nonempty set whose elements are the vertices of the graph ;
- ullet ~ is a relation on V such that
 - ▶ $\forall v \in V$, $v \not\sim v$ (anti-reflexivity)
 - $\forall v, w \in V, v \sim w \Rightarrow w \sim v \text{ (symmetry)}.$

When $v \sim w$, one says that v and w are neighbor vertices.

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair $G = (V, \sim)$, where

- V is a nonempty set whose elements are the vertices of the graph ;
- ullet ~ is a relation on V such that
 - ▶ $\forall v \in V$, $v \not\sim v$ (anti-reflexivity)
 - $\forall v, w \in V, v \sim w \Rightarrow w \sim v \text{ (symmetry)}.$

When $v \sim w$, one says that v and w are neighbor vertices.

Figure 1: Two neighbor vertices

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair $G = (V, \sim)$, where

- V is a nonempty set whose elements are the vertices of the graph ;
- ullet ~ is a relation on V such that
 - ▶ $\forall v \in V, v \not\sim v$ (anti-reflexivity)
 - $\forall v, w \in V, v \sim w \Rightarrow w \sim v \text{ (symmetry)}.$

When $v \sim w$, one says that v and w are neighbor vertices.

Figure 1: Two neighbor vertices

• A vertex is said to be isolated if it has no neighbor vertices.

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair $G = (V, \sim)$, where

- V is a nonempty set whose elements are the vertices of the graph ;
- ullet ~ is a relation on V such that
 - ▶ $\forall v \in V$, $v \not\sim v$ (anti-reflexivity)
 - $\forall v, w \in V, v \sim w \Rightarrow w \sim v \text{ (symmetry)}.$

When $v \sim w$, one says that v and w are neighbor vertices.

Figure 1: Two neighbor vertices

- A vertex is said to be isolated if it has no neighbor vertices.
- A graph is called finite if it has only finitely many vertices.

To simplify, we shall only consider simplicial graphs.

Definition

A simplicial graph is a pair $G = (V, \sim)$, where

- V is a nonempty set whose elements are the vertices of the graph ;
- ullet ~ is a relation on V such that
 - ▶ $\forall v \in V$, $v \not\sim v$ (anti-reflexivity)
 - $\forall v, w \in V, v \sim w \Rightarrow w \sim v \text{ (symmetry)}.$

When $v \sim w$, one says that v and w are neighbor vertices.

Figure 1: Two neighbor vertices

- A vertex is said to be isolated if it has no neighbor vertices.
- A graph is called finite if it has only finitely many vertices.

• A graph is called locally finite if each of its vertices has only finitely many neighbor vertices.

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices.

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices. Consider the real vector space \mathbb{R}^V consisting of all functions $f \colon V \to \mathbb{R}$.

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices. Consider the real vector space \mathbb{R}^V consisting of all functions $f : V \to \mathbb{R}$. The combinatorial Laplacian associated with the graph G is the endomorphism $\Delta_G : \mathbb{R}^V \to \mathbb{R}^V$ defined by

$$\forall f \in \mathbb{R}^V, \forall v \in V, \quad \Delta_G(f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{v \sim w} f(w) = \frac{1}{\deg(v)} \sum_{v \sim w} (f(v) - f(w)).$$

where deg(v) is the degree, i.e., the number of neighbor vertices of the vertex v.

ママイト

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices. Consider the real vector space \mathbb{R}^V consisting of all functions $f : V \to \mathbb{R}$. The combinatorial Laplacian associated with the graph G is the endomorphism $\Delta_G : \mathbb{R}^V \to \mathbb{R}^V$ defined by

$$\forall f \in \mathbb{R}^V, \forall v \in V, \quad \Delta_G(f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{v \sim w} f(w) = \frac{1}{\deg(v)} \sum_{v \sim w} (f(v) - f(w)).$$

where deg(v) is the degree, i.e., the number of neighbor vertices of the vertex v.

Remark

The Laplacian is never injective since all constant functions are in its kernel. The functions belonging to the kernel of the Laplacian are called harmonic.

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices. Consider the real vector space \mathbb{R}^V consisting of all functions $f \colon V \to \mathbb{R}$. The combinatorial Laplacian associated with the graph G is the endomorphism $\Delta_G \colon \mathbb{R}^V \to \mathbb{R}^V$ defined by

$$\forall f \in \mathbb{R}^V, \forall v \in V, \quad \Delta_G(f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{v \sim w} f(w) = \frac{1}{\deg(v)} \sum_{v \sim w} \left(f(v) - f(w) \right).$$

where deg(v) is the degree, i.e., the number of neighbor vertices of the vertex v.

Remark

The Laplacian is never injective since all constant functions are in its kernel. The functions belonging to the kernel of the Laplacian are called harmonic.

Two vertices v and w of the graph $G = (V, \sim)$ are in the same connected component if there exists a finite sequence of vertices $v = u_0, u_1, \ldots, u_n = w$ with $u_k \sim u_{k+1}$ for $0 \le k \le n-1$.

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices. Consider the real vector space \mathbb{R}^V consisting of all functions $f \colon V \to \mathbb{R}$. The combinatorial Laplacian associated with the graph G is the endomorphism $\Delta_G \colon \mathbb{R}^V \to \mathbb{R}^V$ defined by

$$\forall f \in \mathbb{R}^V, \forall v \in V, \quad \Delta_G(f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{v \sim w} f(w) = \frac{1}{\deg(v)} \sum_{v \sim w} \left(f(v) - f(w) \right).$$

where deg(v) is the degree, i.e., the number of neighbor vertices of the vertex v.

Remark

The Laplacian is never injective since all constant functions are in its kernel. The functions belonging to the kernel of the Laplacian are called harmonic.

Two vertices v and w of the graph $G = (V, \sim)$ are in the same connected component if there exists a finite sequence of vertices $v = u_0, u_1, \ldots, u_n = w$ with $u_k \sim u_{k+1}$ for $0 \le k \le n-1$. If $G_i = (V_i, \sim)$ are the connected components of the graph G, one has

$$\mathbb{R}^V = \prod_i \mathbb{R}^{V_i}$$
 and $\Delta_G = \prod_i \Delta_{G_i}$.

Let $G = (V, \sim)$ be a locally finite simplicial graph without isolated vertices. Consider the real vector space \mathbb{R}^V consisting of all functions $f \colon V \to \mathbb{R}$. The combinatorial Laplacian associated with the graph G is the endomorphism $\Delta_G \colon \mathbb{R}^V \to \mathbb{R}^V$ defined by

$$\forall f \in \mathbb{R}^V, \forall v \in V, \quad \Delta_G(f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{v \sim w} f(w) = \frac{1}{\deg(v)} \sum_{v \sim w} \left(f(v) - f(w) \right).$$

where deg(v) is the degree, i.e., the number of neighbor vertices of the vertex v.

Remark

The Laplacian is never injective since all constant functions are in its kernel. The functions belonging to the kernel of the Laplacian are called harmonic.

Two vertices v and w of the graph $G = (V, \sim)$ are in the same connected component if there exists a finite sequence of vertices $v = u_0, u_1, \ldots, u_n = w$ with $u_k \sim u_{k+1}$ for $0 \le k \le n-1$. If $G_i = (V_i, \sim)$ are the connected components of the graph G, one has

$$\mathbb{R}^{V} = \prod_{i} \mathbb{R}^{V_{i}}$$
 and $\Delta_{G} = \prod_{i} \Delta_{G_{i}}.$

The graph G is called connected if it has only one connected component.

Suppose that the graph G is finite.

Suppose that the graph G is finite. Then \mathbb{R}^V is a finite-dimensional vector space.

Suppose that the graph *G* is finite. Then \mathbb{R}^V is a finite-dimensional vector space. As Δ_G is not injective, it is **not surjective**.

Suppose that the graph G is finite.

Then \mathbb{R}^{V} is a finite-dimensional vector space.

As Δ_G is not injective, it is **not surjective**.

It turns out that Δ_G is self-adjoint with respect to the scalar product defined by

$$orall f,g\in \mathbb{R}^V, \hspace{1em} \langle f,g
angle = \sum_{v\in V} \deg(v)f(v)g(v).$$

Suppose that the graph G is finite.

Then \mathbb{R}^{V} is a finite-dimensional vector space.

As Δ_G is not injective, it is **not surjective**.

It turns out that Δ_G is self-adjoint with respect to the scalar product defined by

$$orall f,g\in \mathbb{R}^V, \quad \langle f,g
angle = \sum_{v\in V} \deg(v)f(v)g(v).$$

Indeed, for all $f, g \in \mathbb{R}^V$, we have

$$egin{aligned} &\langle f, \Delta_G(g)
angle &= \sum_{v \sim w} f(v) \left(g(v) - g(w)
ight) \ &= rac{1}{2} \left(\sum_{v \sim w} f(v) \left(g(v) - g(w)
ight) + \sum_{v \sim w} f(w) \left(g(w) - g(v)
ight)
ight), \end{aligned}$$

and hence

$$\langle f, \Delta_G(g) \rangle = rac{1}{2} \sum_{v \sim w} (f(v) - f(w))(g(v) - g(w)) = \langle \Delta_G(f), g \rangle.$$

In particular, we have

$$orall f \in \mathbb{R}^V, \quad \langle f, \Delta_G(f)
angle = rac{1}{2} \sum_{v \in W} (f(v) - f(w))^2.$$

In particular, we have

$$orall f \in \mathbb{R}^V, \quad \langle f, \Delta_G(f)
angle = rac{1}{2} \sum_{v \sim w} (f(v) - f(w))^2.$$

It follows that if G is finite and connected, then the kernel of Δ_G is reduced to the constant functions (this may also be established by means of the maximum principle) and its image is

$$\operatorname{\mathsf{Im}}\Delta_G = (\operatorname{\mathsf{Ker}}\Delta_G)^\perp = \{f\in \mathbb{R}^V: \sum_{v\in V} \operatorname{\mathsf{deg}}(v)f(v) = 0\}.$$

We take $G = (V, \sim)$ with $V = \mathbb{N} = \{0, 1, 2, ...\}$ and $n \sim m \iff n = m \pm 1$.

Figure 2: The one-ended chain

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infin

We take
$$G = (V, \sim)$$
 with $V = \mathbb{N} = \{0, 1, 2, ...\}$ and $n \sim m \iff n = m \pm 1$.

Figure 2: The one-ended chain

We have

$$\Delta_G(f)(n) = \begin{cases} f(0) - f(1) & \text{if } n = 0, \\ f(n) - \frac{f(n-1) + f(n+1)}{2} & \text{if } n \ge 1. \end{cases}$$

March 7, 2012 6 / 21

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infin

We take
$$G = (V, \sim)$$
 with $V = \mathbb{N} = \{0, 1, 2, ...\}$ and $n \sim m \iff n = m \pm 1$.

Figure 2: The one-ended chain

We have

$$\Delta_G(f)(n) = \begin{cases} f(0) - f(1) & \text{if } n = 0, \\ f(n) - \frac{f(n-1) + f(n+1)}{2} & \text{if } n \ge 1. \end{cases}$$

The kernel of Δ_G is reduced to the constant functions and Δ_G is surjective.

We take $G = (V, \sim)$ with $V = \mathbb{Z}$ and $n \sim m \iff n = m \pm 1$.

Figure 3: The two-ended chain

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infin March 7, 2012

We have

$$\Delta_G(f)(n) = f(n) - \frac{f(n-1) + f(n+1)}{2}$$

The surjectivity of the combinatorial Laplacian on infin

Michel Coornaert (IRMA, Strasbourg)

We have

$$\Delta_G(f)(n) = f(n) - \frac{f(n-1) + f(n+1)}{2}$$

The kernel of Δ_G is 2-dimensional (arithmetic sequences $n \mapsto C_1 + C_2 n$) and Δ_G is surjective.

A tree is a connected graph containing no cycles of neighbor vertices.

A tree is a connected graph containing no cycles of neighbor vertices. The triadic tree is the tree all of whose vertices have degree 3.

A tree is a connected graph containing no cycles of neighbor vertices. The triadic tree is the tree all of whose vertices have degree 3. Fix a vertex v_0 of the triadic tree.

A tree is a connected graph containing no cycles of neighbor vertices. The triadic tree is the tree all of whose vertices have degree 3. Fix a vertex v_0 of the triadic tree. An end is a path going to infinity from v_0 without backtracking.

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infin March 7, 2012

A tree is a connected graph containing no cycles of neighbor vertices. The triadic tree is the tree all of whose vertices have degree 3. Fix a vertex v_0 of the triadic tree. An end is a path going to infinity from v_0 without backtracking. The set Ω of all ends is uncountable
A tree is a connected graph containing no cycles of neighbor vertices.

The triadic tree is the tree all of whose vertices have degree 3.

Fix a vertex v_0 of the triadic tree.

An end is a path going to infinity from v_0 without backtracking.

The set Ω of all ends is uncountable.

With each end $\omega\in\Omega,$ one can associate a harmonic function h_ω defined in the following way.

A tree is a connected graph containing no cycles of neighbor vertices.

The triadic tree is the tree all of whose vertices have degree 3.

Fix a vertex v_0 of the triadic tree.

An end is a path going to infinity from v_0 without backtracking.

The set Ω of all ends is uncountable.

With each end $\omega \in \Omega$, one can associate a harmonic function h_{ω} defined in the following way. We first put $h_{\omega}(v_0) = 1$. Then, starting from v_0 , the value taken by h_{ω} is multiplied by 2 when we go to a neighbor vertex in the direction of the end, and divided by 2 when we go to a neighbor vertex in a direction which is not that of the end.

Figure 6: $h_{\omega}(v) = 2^{b-a}$

We have

$$\forall \omega, \omega' \in \Omega, \quad \lim_{\nu \to \omega'} h_{\omega}(\nu) = \begin{cases} +\infty & \text{if } \omega' = \omega, \\ 0 & \text{if } \omega' \neq \omega. \end{cases}$$

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infin

Figure 6: $h_{\omega}(v) = 2^{b-a}$

We have

$$\forall \omega, \omega' \in \Omega, \quad \lim_{v \to \omega'} h_{\omega}(v) = \begin{cases} +\infty & \text{if } \omega' = \omega, \\ 0 & \text{if } \omega' \neq \omega. \end{cases}$$

We deduce that the functions h_{ω} , $\omega \in \Omega$, are linearly independent.

Figure 6: $h_{\omega}(v) = 2^{b-a}$

We have

$$\forall \omega, \omega' \in \Omega, \quad \lim_{\nu \to \omega'} h_{\omega}(\nu) = \begin{cases} +\infty & \text{if } \omega' = \omega, \\ 0 & \text{if } \omega' \neq \omega. \end{cases}$$

We deduce that the functions h_{ω} , $\omega \in \Omega$, are linearly independent. Thus, the kernel of Δ_G has uncountable dimension.

Figure 6: $h_{\omega}(v) = 2^{b-a}$

We have

$$\forall \omega, \omega' \in \Omega, \quad \lim_{v \to \omega'} h_{\omega}(v) = \begin{cases} +\infty & \text{if } \omega' = \omega, \\ 0 & \text{if } \omega' \neq \omega. \end{cases}$$

We deduce that the functions h_{ω} , $\omega \in \Omega$, are linearly independent. Thus, the kernel of Δ_G has uncountable dimension. Here again, one easily checks that Δ_G is surjective.

$\mathsf{Example:}\ \mathsf{An}\ \mathsf{infinite}\ \mathsf{3}\mathsf{-regular}\ \mathsf{graph}\ \mathsf{where}\ \mathsf{all}\ \mathsf{harmonic}\ \mathsf{functions}\ \mathsf{are}\ \mathsf{constant}$

A graph is said to be k-regular if all its vertices have degree k.

Example: An infinite 3-regular graph where all harmonic functions are constant

A graph is said to be k-regular if all its vertices have degree k. There exist infinite 3-regular graphs where all harmonic functions are constant (cf. [Tro-1998]) as the following one :

Figure 7: A 3-regular graph

The surjectivity of the combinatorial Laplacian on infin

Surjectivity of the Laplacian

This is joint work with Tullio Ceccherini-Silberstein (Rome) and Józef Dodziuk (NYC).

Theorem (CCD-2011)

Let $G = (V, \sim)$ be a connected, infinite, locally finite, simplicial graph. Then the combinatorial Laplacian $\Delta_G : \mathbb{R}^V \to \mathbb{R}^V$ is surjective.

Surjectivity of the Laplacian

This is joint work with Tullio Ceccherini-Silberstein (Rome) and Józef Dodziuk (NYC).

Theorem (CCD-2011)

Let $G = (V, \sim)$ be a connected, infinite, locally finite, simplicial graph. Then the combinatorial Laplacian $\Delta_G : \mathbb{R}^V \to \mathbb{R}^V$ is surjective.

Plan of the proof:

We equip \mathbb{R}^V with its prodiscrete topology and we establish the following points:

- Im Δ_G is dense in \mathbb{R}^V ,
- Im Δ_G is closed in \mathbb{R}^V ,

which imply Im $\Delta_G = \mathbb{R}^V$.

The prodiscrete topology on \mathbb{R}^V

The prodiscrete topology on \mathbb{R}^V is the product topology obtained by taking the discrete topology on each factor \mathbb{R} of $\mathbb{R}^V = \prod_{v \in V} \mathbb{R}$.

The prodiscrete topology on \mathbb{R}^V is the product topology obtained by taking the discrete topology on each factor \mathbb{R} of $\mathbb{R}^V = \prod_{v \in V} \mathbb{R}$.

The prodiscrete topology on \mathbb{R}^V is metrizable. Indeed, let us fix a vertex v_0 and denote by B_n the set of vertices at distance $\leq n$ from v_0 (i.e., that can be joined to v_0 by a chain of neighbor vertices of length $\leq n$). We have $V = \bigcup_{n \in \mathbb{N}} B_n$ and $B_n \subset B_{n+1}$ for all n. Then

$$\forall f,g \in \mathbb{R}^V, \quad d(f,g) = \sum_{n \in \mathbb{N}} \frac{\alpha_n}{2^{n+1}},$$

where $\alpha_n = 0$ if f and g coincide on B_n and $\alpha_n = 1$ otherwise, is a metric on \mathbb{R}^V compatible with the prodiscrete topology.

Proof of the density of the image

Let $F_n \subset \mathbb{R}^V$ denote the vector subspace consisting of all functions $f \in \mathbb{R}^V$ whose support is contained in B_n .

Consider the linear map $\delta_n \colon F_n \to F_n$ defined by

$$orall f\in F_n, orall v\in V, \quad \delta_n(f)(v)=egin{cases} \Delta_G(f)(v) & ext{if } v\in B_n\ 0 & ext{otherwise}. \end{cases}$$

Proof of the density of the image

Let $F_n \subset \mathbb{R}^V$ denote the vector subspace consisting of all functions $f \in \mathbb{R}^V$ whose support is contained in B_n .

Consider the linear map $\delta_n \colon F_n \to F_n$ defined by

$$orall f \in F_n, orall v \in V, \quad \delta_n(f)(v) = egin{cases} \Delta_G(f)(v) & ext{if } v \in B_n \ 0 & ext{otherwise.} \end{cases}$$

The maximum principle implies that δ_n is injective. Indeed, if $f \in \text{Ker } \delta_n$, we have

$$\forall v \in B_n, \quad |f(v)| = \left| rac{1}{\deg(v)} \sum_{v \sim w} f(w)
ight| \leq rac{1}{\deg(v)} \sum_{v \sim w} |f(w)|.$$

Consequently, if $v \in B_n$ satisfies $|f(v)| = M = \max |f|$, then |f(w)| = M for all $w \in V$ such that $v \sim w$. It follows that |f| is constant on B_{n+1} . As V is infinite, we can find a vertex which is in B_{n+1} but not in B_n . This shows that f is identically 0.

Proof of the density of the image

Let $F_n \subset \mathbb{R}^V$ denote the vector subspace consisting of all functions $f \in \mathbb{R}^V$ whose support is contained in B_n .

Consider the linear map $\delta_n \colon F_n \to F_n$ defined by

$$orall f \in F_n, orall v \in V, \quad \delta_n(f)(v) = egin{cases} \Delta_G(f)(v) & ext{if } v \in B_n \ 0 & ext{otherwise.} \end{cases}$$

The maximum principle implies that δ_n is injective. Indeed, if $f \in \text{Ker } \delta_n$, we have

$$\forall v \in B_n, \quad |f(v)| = \left| \frac{1}{\deg(v)} \sum_{v \sim w} f(w) \right| \leq \frac{1}{\deg(v)} \sum_{v \sim w} |f(w)|.$$

Consequently, if $v \in B_n$ satisfies $|f(v)| = M = \max |f|$, then |f(w)| = M for all $w \in V$ such that $v \sim w$. It follows that |f| is constant on B_{n+1} .

As V is infinite, we can find a vertex which is in B_{n+1} but not in B_n . This shows that f is identically 0.

As F_n is finite-dimensional, the injectivity of δ_n implies its surjectivity. Therefore, for all $g \in \mathbb{R}^V$ and $n \in \mathbb{N}$, we can find $f \in F_n$ such that $\Delta_G(f)$ coincide with g on B_n . This shows that Im Δ_G is dense in \mathbb{R}^V .

A projective sequence of sets $(X_n, u_n)_{n \in \mathbb{N}}$ consists of a sequence X_n of sets together with maps $u_n \colon X_{n+1} \to X_n$.

A projective sequence of sets $(X_n, u_n)_{n \in \mathbb{N}}$ consists of a sequence X_n of sets together with maps $u_n \colon X_{n+1} \to X_n$.

$$X_0 \xleftarrow{u_0} X_1 \xleftarrow{u_1} X_2 \xleftarrow{u_2} X_3 \xleftarrow{u_3} \dots$$

A projective sequence of sets $(X_n, u_n)_{n \in \mathbb{N}}$ consists of a sequence X_n of sets together with maps $u_n \colon X_{n+1} \to X_n$.

$$X_0 \xleftarrow{u_0} X_1 \xleftarrow{u_1} X_2 \xleftarrow{u_2} X_3 \xleftarrow{u_3} \dots$$

The projective limit of the projective sequence (X_n, u_n) is the set $\lim_{n \to \infty} (X_n, u_n)$ consisting of all sequences $(x_n)_{n \in \mathbb{N}}$ such that $x_n \in X_n$ and $x_n = u_n(x_{n+1})$ for all $n \in \mathbb{N}$.

The surjectivity of the combinatorial Laplacian on infin

A projective sequence of sets $(X_n, u_n)_{n \in \mathbb{N}}$ consists of a sequence X_n of sets together with maps $u_n \colon X_{n+1} \to X_n$.

$$X_0 \xleftarrow{u_0} X_1 \xleftarrow{u_1} X_2 \xleftarrow{u_2} X_3 \xleftarrow{u_3} \dots$$

The projective limit of the projective sequence (X_n, u_n) is the set $\lim_{n \to \infty} (X_n, u_n)$ consisting of all sequences $(x_n)_{n \in \mathbb{N}}$ such that $x_n \in X_n$ and $x_n = u_n(x_{n+1})$ for all $n \in \mathbb{N}$. This projective limit may be empty even if all the sets X_n are nonempty. A projective sequence of sets $(X_n, u_n)_{n \in \mathbb{N}}$ consists of a sequence X_n of sets together with maps $u_n \colon X_{n+1} \to X_n$.

$$X_0 \xleftarrow{u_0} X_1 \xleftarrow{u_1} X_2 \xleftarrow{u_2} X_3 \xleftarrow{u_3} \dots$$

The projective limit of the projective sequence (X_n, u_n) is the set $\lim_{n \in \mathbb{N}} (X_n, u_n)$ consisting of all sequences $(x_n)_{n \in \mathbb{N}}$ such that $x_n \in X_n$ and $x_n = u_n(x_{n+1})$ for all $n \in \mathbb{N}$. This projective limit may be empty even if all the sets X_n are nonempty. However, if all the maps u_n are surjective and $X_0 \neq \emptyset$, then we clearly have $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$ (take consecutive preimages of an element $x_0 \in X_0$).

Lemma 1

Let $(X_n, u_n)_{n \in \mathbb{N}}$ be a projective sequence of sets and let K be a field. Suppose that each X_n is a nonempty finite-dimensional affine space over K and that all the maps $u_n \colon X_{n+1} \to X_n$ are affine. Then one has $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Lemma 1

Let $(X_n, u_n)_{n \in \mathbb{N}}$ be a projective sequence of sets and let K be a field. Suppose that each X_n is a nonempty finite-dimensional affine space over K and that all the maps $u_n \colon X_{n+1} \to X_n$ are affine. Then one has $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Proof.

For $n \leq m$, define $\gamma_{nm} \colon X_m \to X_n$ by

 $\gamma_{nm} = u_n \circ u_{n+1} \circ \ldots \circ u_{m-1}.$

Lemma 1

Let $(X_n, u_n)_{n \in \mathbb{N}}$ be a projective sequence of sets and let K be a field. Suppose that each X_n is a nonempty finite-dimensional affine space over K and that all the maps $u_n \colon X_{n+1} \to X_n$ are affine. Then one has $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Proof.

For
$$n \leq m$$
, define $\gamma_{nm} \colon X_m \to X_n$ by

$$\gamma_{nm} = u_n \circ u_{n+1} \circ \ldots \circ u_{m-1}.$$

For *n* fixed, the sets $\gamma_{nm}(X_m) \subset X_n$, with m = n, n + 1, ..., form a non-increasing sequence of finite-dimensional affine subspaces of X_n . Therefore this sequence stabilizes, i.e., it becomes constant for *m* large enough.

Lemma 1

Let $(X_n, u_n)_{n \in \mathbb{N}}$ be a projective sequence of sets and let K be a field. Suppose that each X_n is a nonempty finite-dimensional affine space over K and that all the maps $u_n \colon X_{n+1} \to X_n$ are affine. Then one has $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Proof.

For
$$n \leq m$$
, define $\gamma_{nm} \colon X_m \to X_n$ by

$$\gamma_{nm} = u_n \circ u_{n+1} \circ \ldots \circ u_{m-1}.$$

For *n* fixed, the sets $\gamma_{nm}(X_m) \subset X_n$, with m = n, n + 1, ..., form a non-increasing sequence of finite-dimensional affine subspaces of X_n . Therefore this sequence stabilizes, i.e., it becomes constant for *m* large enough. Let $X'_n = \bigcap_{n \le m} \gamma_{nm}(X_m)$. The map u_n induces by restriction a map $u'_n \colon X'_{n+1} \to X'_n$.

Lemma 1

Let $(X_n, u_n)_{n \in \mathbb{N}}$ be a projective sequence of sets and let K be a field. Suppose that each X_n is a nonempty finite-dimensional affine space over K and that all the maps $u_n \colon X_{n+1} \to X_n$ are affine. Then one has $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Proof.

For
$$n \leq m$$
, define $\gamma_{nm} \colon X_m \to X_n$ by

$$\gamma_{nm} = u_n \circ u_{n+1} \circ \ldots \circ u_{m-1}.$$

For *n* fixed, the sets $\gamma_{nm}(X_m) \subset X_n$, with $m = n, n + 1, \ldots$, form a non-increasing sequence of finite-dimensional affine subspaces of X_n . Therefore this sequence stabilizes, i.e., it becomes constant for *m* large enough. Let $X'_n = \bigcap_{n \le m} \gamma_{nm}(X_m)$. The map u_n induces by restriction a map $u'_n \colon X'_{n+1} \to X'_n$. The above stability properties can be used to show that X'_0 is nonempty and that the maps u'_n are surjective.

Lemma 1

Let $(X_n, u_n)_{n \in \mathbb{N}}$ be a projective sequence of sets and let K be a field. Suppose that each X_n is a nonempty finite-dimensional affine space over K and that all the maps $u_n \colon X_{n+1} \to X_n$ are affine. Then one has $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Proof.

For
$$n \leq m$$
, define $\gamma_{nm} \colon X_m \to X_n$ by

$$\gamma_{nm} = u_n \circ u_{n+1} \circ \ldots \circ u_{m-1}.$$

For *n* fixed, the sets $\gamma_{nm}(X_m) \subset X_n$, with m = n, n + 1, ..., form a non-increasing sequence of finite-dimensional affine subspaces of X_n . Therefore this sequence stabilizes, i.e., it becomes constant for *m* large enough.

Let $X'_n = \bigcap_{n \le m} \gamma_{nm}(X_m)$. The map u_n induces by restriction a map $u'_n \colon X'_{n+1} \to X'_n$. The above stability properties can be used to show that X'_0 is nonempty and that the maps u'_n are surjective.

It follows that
$$\varnothing \neq \varprojlim(X'_n, u'_n) = \varprojlim(X_n, u_n)$$
.

Remark

The preceding lemma becomes false if the hypothesis saying that the affine spaces X_n are finite-dimensional is removed. Indeed, consider for example the Hilbert space

$$\ell^2(\mathbb{N})=\{(a_i)_{i\in\mathbb{N}}:a_i\in\mathbb{R} ext{ and } \sum_{i\in\mathbb{N}}a_i^2<\infty\},$$

the affine subspaces

$$X_n=\{(a_i)_{i\in\mathbb{N}}\in\ell^2(\mathbb{N}):a_0=a_1=\cdots=a_n=1\}$$

with $u_n: X_{n+1} \to X_n$ the inclusion map. Then we have

$$\lim_{n \in \mathbb{N}} (X_n, u_n) = \bigcap_{n \in \mathbb{N}} X_n = \varnothing.$$

Michel Coornaert (IRMA, Strasbourg) The surjectivity of the combinatorial Laplacian on infin

March 7, 2012 18 / 21

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$. Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n .

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_{G}^{(n)} \colon \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_{n}}$ is the linear map induced by Δ_{G} .

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)} : \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space.

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)} : \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space. The restriction map $\mathbb{R}^{B_{n+2}} \to \mathbb{R}^{B_{n+1}}$ induces an affine map $u_n : X_{n+1} \to X_n$.

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)}: \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space. The restriction map $\mathbb{R}^{B_{n+2}} \to \mathbb{R}^{B_{n+1}}$ induces an affine map $u_n: X_{n+1} \to X_n$. By the above lemma, we have $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$.

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)} : \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space. The restriction map $\mathbb{R}^{B_{n+2}} \to \mathbb{R}^{B_{n+1}}$ induces an affine map $u_n : X_{n+1} \to X_n$. By the above lemma, we have $\lim_{n \in \mathbb{N}} (X_n, u_n) \neq \emptyset$. Choose some element $(x_n)_{n \in \mathbb{N}} \in \lim_{n \to \infty} (X_n, u_n)$.

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)}: \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space. The restriction map $\mathbb{R}^{B_{n+2}} \to \mathbb{R}^{B_{n+1}}$ induces an affine map $u_n: X_{n+1} \to X_n$. By the above lemma, we have $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$. Choose some element $(x_n)_{n \in \mathbb{N}} \in \lim_{n \to \infty} (X_n, u_n)$. We have $x_n \in \mathbb{R}^{B_{n+1}}$. Moreover, x_{n+1} and x_n coincide on B_{n+1} for every $n \in \mathbb{N}$. As $V = \bigcup_{n \in \mathbb{N}} B_{n+1}$, there exists $f \in \mathbb{R}^V$ (unique) such that $f|_{B_{n+1}} = x_n$ for all n.
Proof of the closedness of the image

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)} : \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space. The restriction map $\mathbb{R}^{B_{n+2}} \to \mathbb{R}^{B_{n+1}}$ induces an affine map $u_n : X_{n+1} \to X_n$. By the above lemma, we have $\lim_{n \to \infty} (X_n, u_n) \neq \emptyset$. Choose some element $(x_n)_{n \in \mathbb{N}} \in \lim_{n \to \infty} (X_n, u_n)$. We have $x_n \in \mathbb{R}^{B_{n+1}}$. Moreover, x_{n+1} and x_n coincide on B_{n+1} for every $n \in \mathbb{N}$. As $V = \bigcup_{n \in \mathbb{N}} B_{n+1}$, there exists $f \in \mathbb{R}^V$ (unique) such that $f|_{B_{n+1}} = x_n$ for all n. We have $(\Delta_G(f))|_{B_n} = \Delta_G^{(n)}(x_n) = g|_{B_n}$ for all n since $x_n \in X_n$. As $V = \bigcup_{n \in \mathbb{N}} B_n$, it follows that $\Delta_G(f) = g$.

Proof of the closedness of the image

Let $g \in \mathbb{R}^V$ in the closure of $\Delta_G(\mathbb{R}^V)$.

Then for each $n \in \mathbb{N}$, there exists $f_n \in \mathbb{R}^V$ such that g and $\Delta_G(f_n)$ coincide on B_n . Consider, for each $n \in \mathbb{N}$, the affine subspace $X_n \subset \mathbb{R}^{B_{n+1}}$ defined by

$$X_n = (\Delta_G^{(n)})^{-1}(g|_{B_n}),$$

where $\Delta_G^{(n)}: \mathbb{R}^{B_{n+1}} \to \mathbb{R}^{B_n}$ is the linear map induced by Δ_G . We have $X_n \neq \emptyset$ since $f_n|_{B_{n+1}} \in X_n$. Moreover, the affine subspace X_n is finite-dimensional since $\mathbb{R}^{B_{n+1}}$ is a finite-dimensional vector space. The restriction map $\mathbb{R}^{B_{n+2}} \to \mathbb{R}^{B_{n+1}}$ induces an affine map $u_n: X_{n+1} \to X_n$. By the above lemma, we have $\lim_{n \in \mathbb{N}} (X_n, u_n) \neq \emptyset$. Choose some element $(x_n)_{n \in \mathbb{N}} \in \lim_{n \in \mathbb{N}} (X_n, u_n)$. We have $x_n \in \mathbb{R}^{B_{n+1}}$. Moreover, x_{n+1} and x_n coincide on B_{n+1} for every $n \in \mathbb{N}$. As $V = \bigcup_{n \in \mathbb{N}} B_{n+1}$, there exists $f \in \mathbb{R}^V$ (unique) such that $f|_{B_{n+1}} = x_n$ for all n. We have $(\Delta_G(f))|_{B_n} = \Delta_G^{(n)}(x_n) = g|_{B_n}$ for all n since $x_n \in X_n$. As $V = \bigcup_{n \in \mathbb{N}} B_n$, it follows that $\Delta_G(\mathbb{R}^V)$ is closed in \mathbb{R}^V for the prodiscrete topology.

Concluding remarks

Remark

An analogous proof yields the surjectivity of $L = \Delta_G + \lambda \operatorname{Id} : \mathbb{R}^V \to \mathbb{R}^V$ for every connected infinite and locally finite simplicial graph G and any real-valued function $\lambda \colon V \to [0, +\infty)$ defined on the vertex set of G. Indeed, L is linear and, for $f \in \mathbb{R}^V$ and $v \in V$, the equality L(f)(v) = 0 implies

$$egin{aligned} |f(v)| &= \left|rac{1}{(1+\lambda(v))\deg(v)}\sum_{v\sim w}f(w)
ight| \ &\leq rac{1}{(1+\lambda(v))\deg(v)}\sum_{v\sim w}|f(w)| \leq rac{1}{\deg(v)}\sum_{v\sim w}|f(w)|, \end{aligned}$$

which shows that L also satisfies the maximum principle.

Concluding remarks

Remark

An analogous proof yields the surjectivity of $L = \Delta_G + \lambda \operatorname{Id} : \mathbb{R}^V \to \mathbb{R}^V$ for every connected infinite and locally finite simplicial graph G and any real-valued function $\lambda \colon V \to [0, +\infty)$ defined on the vertex set of G. Indeed, L is linear and, for $f \in \mathbb{R}^V$ and $v \in V$, the equality L(f)(v) = 0 implies

$$egin{aligned} |f(v)| &= \left|rac{1}{(1+\lambda(v))\deg(v)}\sum_{v\sim w}f(w)
ight| \ &\leq rac{1}{(1+\lambda(v))\deg(v)}\sum_{v\sim w}|f(w)| \leq rac{1}{\deg(v)}\sum_{v\sim w}|f(w)|, \end{aligned}$$

which shows that L also satisfies the maximum principle.

Remark

In [CC-2009], the surjectivity of Δ_G had been established in the particular case when G is the Cayley graph of a finitely generated infinite group. The proof distinguished two cases according to whether G is amenable or not, by using the Garden of Eden theorem for linear cellular automata [CC-2006] in the amenable case and the Kesten-Day spectral theorem in the non-amenable case.

References

[CC-2006] T. Ceccherini-Silberstein, M. Coornaert, *The Garden of Eden theorem for linear cellular automata*, Ergod. Th & Dynam. Sys. **26** (2006), 53–68.

[CC-2009] T. Ceccherini-Silberstein, M. Coornaert, *A note on Laplace operators on groups*, Limits of graphs in group theory and computer science, 37–40, EPFL Press, Lausanne, 2009.

[CCD-2011] T. Ceccherini-Silberstein, M. Coornaert, J. Dodziuk, *The surjectivity of the combinatorial Laplacian on infinite graphs*, arXiv:1103.4901, to appear in L'Enseignement Mathématique.

[Gro-1999] M. Gromov, *Endomorphisms of symbolic algebraic varieties*, J. Eur. Math. Soc. (JEMS) **1** (1999), 109–197.

[Tro-1998] V.I. Trofimov, *The existence of nonconstant harmonic functions on infinite vertex-symmetric graphs*, Europ. J. Combinatorics **19** (1998), 519–523.