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Configurations and Shifts

Take:

a group G (called the universe),

a set A (called the alphabet).

The set
AG := {x : G ! A}

is called the set of configurations.
The shift on AG is the left action of G on AG given by

G ⇥ AG ! AG

(g , x) 7! gx

where
gx(h) := x(g�1h) 8h 2 G .
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Cellular Automata

Definition

A cellular automaton over the group G and the alphabet A is a map

⌧ : AG ! AG

satisfying the following condition:
there exist a finite subset M ⇢ G and a map µ : AM ! A such that

(⌧(x))(g) = µ((g�1x)|M) 8x 2 AG , 8g 2 G ,

where (g�1x)|M denotes the restriction of the configuration g�1x to M.

Such a set M is called a memory set and µ is called a local defining map for ⌧ .
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Example: a one-dimensional cellular automaton

Take G := Z and A := {(shape, color)}, where

shape 2 {square, disc} color 2 {green, red, yellow}.

Thus the alphabet A has cardinality 2⇥ 3 = 6. The map ⌧ : AZ ! AZ, defined by

shape((⌧(x))(n)) = shape(x(n � 1)) color((⌧(x))(n)) = color(x(n + 1)),

is a cellular automaton with memory set M = {�1, 1}.
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Example: a one-dimensional cellular automaton (continued)

x := •• ••

⌧(x) = •• • • ••
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Example: Conway’s Game of Life

Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 7 / 21



Example: Conway’s Game of Life

Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 7 / 21



Example: Conway’s Game of Life (continued)

Here G := Z2 = Z⇥ Z and A := {0, 1}.
Life is described by the cellular automaton

⌧ : {0, 1}Z
2

! {0, 1}Z
2

with memory set M := {�1, 0, 1}2 ⇢ Z2

and local defining map µ : AM ! A given by

µ(y) :=

8
>>>><

>>>>:

1 if

8
>><

>>:

X

m2M

y(m) = 3

or
X

m2M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

8y 2 AM .

Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 8 / 21



Example: Conway’s Game of Life (continued)

Here G := Z2 = Z⇥ Z and A := {0, 1}.

Life is described by the cellular automaton

⌧ : {0, 1}Z
2

! {0, 1}Z
2

with memory set M := {�1, 0, 1}2 ⇢ Z2

and local defining map µ : AM ! A given by

µ(y) :=

8
>>>><

>>>>:

1 if

8
>><

>>:

X

m2M

y(m) = 3

or
X

m2M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

8y 2 AM .
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Algebraic subsets

Let K be a field and let m, n be non-negative integers.

Definition

A subset A ⇢ Km is called an algebraic subset if there exists a subset S ⇢ K [t
1

, . . . , tm]
such that A is the set of common zeroes of the polynomials in S , i.e.,

A = {a = (a
1

, . . . , am) 2 Km : P(a) = 0 8P 2 S}.

A map P : Km ! K n is called polynomial if there exist polynomials
P
1

, . . . ,Pn 2 K [t
1

, . . . , tm] such that

P(a) = (P
1

(a), . . . ,Pn(a)) 8a 2 Km.

Definition

Let A ⇢ Km and B ⇢ K n be algebraic subsets.
A map f : A ! B is called regular if f is the restriction of some polynomial map
P : Km ! K n.
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Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 9 / 21



Algebraic subsets

Let K be a field and let m, n be non-negative integers.

Definition

A subset A ⇢ Km is called an algebraic subset if there exists a subset S ⇢ K [t
1

, . . . , tm]
such that A is the set of common zeroes of the polynomials in S , i.e.,

A = {a = (a
1

, . . . , am) 2 Km : P(a) = 0 8P 2 S}.

A map P : Km ! K n is called polynomial if there exist polynomials
P
1

, . . . ,Pn 2 K [t
1

, . . . , tm] such that

P(a) = (P
1

(a), . . . ,Pn(a)) 8a 2 Km.

Definition

Let A ⇢ Km and B ⇢ K n be algebraic subsets.
A map f : A ! B is called regular if f is the restriction of some polynomial map
P : Km ! K n.
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The category of a�ne algebraic sets

The identity map on any algebraic subset is regular. The composite of two regular maps
is regular.
Thus, the algebraic subsets of Km, m = 0, 1, . . . , are the objects of a category whose
morphisms are the regular maps.
This category is the category of a�ne algebraic sets over K .
This category admits finite products. Indeed, if A ⇢ Km and B ⇢ K n are algebraic
subsets then

A⇥ B ⇢ Km ⇥ K n = Km+n

is also an algebraic subset. It is the direct product of A and B in the category of
algebraic sets over K .
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Algebraic cellular automata

Definition

Let G be a group and let K be a field. One says that a cellular automaton ⌧ : AG ! AG

with memory set M is an algebraic cellular automaton over K if:
A is an a�ne algebraic set over K ;
the associated local defining map µM : AM ! A is regular.
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Examples of algebraic cellular automata

The map ⌧ : KZ ! KZ defined by

⌧(x)(n) = x(n + 1)� x(n)2 8x 2 KZ, 8n 2 Z,

is an algebraic cellular automaton with memory set M = {0, 1}.

Remark

Every cellular automaton with finite alphabet A may be regarded as an algebraic cellular
automaton (embed A in some field K).
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Schemes

Let S be a scheme (e.g., the spectrum Spec(R) of a ring R).
A scheme over S , or S-scheme, is a scheme X together with a scheme morphism
⇡X : X ! S .
If X and Y are S-schemes, an S-scheme morphism is a scheme morphism f : X ! Y
such that ⇡Y = f � ⇡X .
The category of S-schemes admits finite products (S-fibered products).
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Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 13 / 21



Y -points

Let X ,Y ,Z be S-schemes. The set

X (Y ) := MorS(Y ,X )

of S-morphisms from Y to X is the set of Y -points of X .
If f : X ! Z is an S-scheme morphism, then f induces by precomposition a map

f (Y ) : X (Y ) ! Z(Y ).
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Cellular automata over schemes

Let S be a scheme and let G be a group. Let X and Y be schemes over S .
Let A := X (Y ) denote the set of Y -points of X .

Definition (CCP-2017)

A cellular automaton over the group G and the S-scheme X with coe�cients in the
S-scheme Y is a cellular automaton ⌧ : AG ! AG that admits a memory set M such that
the associated local defining map µ : AM ! A satisfies µ = f (Y ) for some S-scheme
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Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 15 / 21



Cellular automata over schemes

Let S be a scheme and let G be a group. Let X and Y be schemes over S .

Let A := X (Y ) denote the set of Y -points of X .

Definition (CCP-2017)

A cellular automaton over the group G and the S-scheme X with coe�cients in the
S-scheme Y is a cellular automaton ⌧ : AG ! AG that admits a memory set M such that
the associated local defining map µ : AM ! A satisfies µ = f (Y ) for some S-scheme
morphism f : XM ! X .

Here XM denotes the S-fibered product of a family of copies of X indexed by M.
The above definition makes sense since f (Y ) : (XM)(Y ) ! X (Y ) = A and
(XM)(Y ) = (X (Y ))M = AM by the universal property of S-fibered products.
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Example: algebraic cellular automaton

Let K be a field, A ⇢ Km an algebraic subset, and ⌧ : AG ! AG a cellular automaton.
Take S = Y := K , where, by a common abuse of notation, K stands for the spectrum of
K .
Let X := Spec(R), where R is the coordinate ring of A, that is, R := K [t

1

, . . . , tm]/I ,
where I ⇢ K [t

1

, . . . , tm] is the ideal consisting of the polynomials that are identically 0 on
A.
Then X (Y ) = X (K) = A and regular maps AM ! A are the maps that are induced by
K -scheme morphisms XM ! X .
Thus, the algebraic cellular automata ⌧ : AG ! AG are precisely the cellular automata
over the K -scheme X with coe�cients in K .
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Algebraic varieties

Let K be a field. A K -scheme X is called a K -algebraic variety if X is a scheme of finite
type over K .
This means that X is a finite union of a�ne open subschemes Ui = Spec(Ri ), where each
Ri is a finitely generated K -algebra.
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Results

In the sequel,

G is a group;

K is an algebraically closed field (e.g., K = C);
X is a K -algebraic variety;

A := X (K) is the set of K -points of X ;

⌧ : AG ! AG is a cellular automaton over the group G and the K -scheme X with
coe�cients in K .

Theorem (CCP-2017, Theorem 1.2)

Suppose that G is locally residually finite. Suppose that the algebraic variety X is
complete or that the field K is uncountable. Then

⌧ injective =) ⌧ surjective.
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Results (continued)

A cellular automaton is called reversible if it is bijective and its inverse map is also a
cellular automaton.

Theorem (CCP-2017, Theorem 1.3)

Suppose that K is uncountable. Then

⌧ bijective =) ⌧ reversible.

The cellular automata over a group G and schemes S ,X ,Y form a monoid for the
composition of maps. This monoid is denoted by CA(G , S ,X ,Y ).

Theorem (CCP-2017, Theorem 1.4)

Suppose that G is locally residually finite. Suppose that the algebraic variety X is
separated and reduced and that the field K has characteristic 0. Then

⌧ reversible =) ⌧ invertible in the monoid CA(G ,K ,X ,K).
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Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 19 / 21



Results (continued)

A cellular automaton is called reversible if it is bijective and its inverse map is also a
cellular automaton.

Theorem (CCP-2017, Theorem 1.3)

Suppose that K is uncountable. Then

⌧ bijective =) ⌧ reversible.

The cellular automata over a group G and schemes S ,X ,Y form a monoid for the
composition of maps. This monoid is denoted by CA(G , S ,X ,Y ).

Theorem (CCP-2017, Theorem 1.4)

Suppose that G is locally residually finite. Suppose that the algebraic variety X is
separated and reduced and that the field K has characteristic 0. Then

⌧ reversible =) ⌧ invertible in the monoid CA(G ,K ,X ,K).
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Counterexamples

Let K be a field and let K [[t]] denote the K -algebra of formal power series with
coe�cients in K .

(Count-1) Take A := K [[t]] and consider the map ⌧ : AZ ! AZ defined by

⌧(x)(n) := x(n + 1)� tx(n) 8x 2 AZ, 8n 2 Z.

Then ⌧ is a cellular automaton with memory set M = {0, 1}. Moreover, ⌧ is
bijective with inverse map ⌧�1 : AZ ! AZ given by

⌧�1(x)(n) = x(n) + tx(n + 1) + t2x(n + 2) + . . . 8x 2 AZ, 8n 2 Z.

Clearly ⌧�1 is not a cellular automaton. Thus ⌧ is not reversible.

(Count-2) Take B := K [t] ⇢ A and consider the restriction � : BZ ! BZ of ⌧ to
BZ ⇢ AZ. Then � is an injective cellular automaton that is not surjective.
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bijective with inverse map ⌧�1 : AZ ! AZ given by

⌧�1(x)(n) = x(n) + tx(n + 1) + t2x(n + 2) + . . . 8x 2 AZ, 8n 2 Z.

Clearly ⌧�1 is not a cellular automaton. Thus ⌧ is not reversible.

(Count-2) Take B := K [t] ⇢ A and consider the restriction � : BZ ! BZ of ⌧ to
BZ ⇢ AZ.

Then � is an injective cellular automaton that is not surjective.
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Counterexamples
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⌧�1(x)(n) = x(n) + tx(n + 1) + t2x(n + 2) + . . . 8x 2 AZ, 8n 2 Z.

Clearly ⌧�1 is not a cellular automaton. Thus ⌧ is not reversible.

(Count-2) Take B := K [t] ⇢ A and consider the restriction � : BZ ! BZ of ⌧ to
BZ ⇢ AZ. Then � is an injective cellular automaton that is not surjective.

Michel Coornaert (IRMA, Université de Strasbourg) Some properties of injective cellular automata 12 février 2018 20 / 21



References

[CC-2011] T. Ceccherini-Silberstein and M. Coornaert, On algebraic cellular automata,
J. Lond. Math. Soc. 84 (2011), 541–558.

[CCP-2017] T. Ceccherini-Silberstein, M. Coornaert, X.K. Phung, On injective cellular
automata over schemes, arXiv:1712.05716

[Go-1973] W. Gottschalk, Some general dynamical notions, pp. 120–125, Springer Lect.
Notes in Math., 318, 1973.

[Gr-1999] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math.
Soc. (JEMS) 1 (1999), 109–197.
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