Some Remarks on Sofic Monoids

Michel Coornaert

IRMA, Strasbourg

"Groups acting on rooted trees", 24–28 February 2014, Institut Henri Poincaré, Paris, France This is joint work with Tullio Ceccherini-Silberstein [CC-2013].

This is joint work with Tullio Ceccherini-Silberstein [CC-2013]. Sofic groups were introduced by Misha Gromov [Gro-1999] and Benjamin Weiss [Wei-2000]. This is joint work with Tullio Ceccherini-Silberstein [CC-2013]. Sofic groups were introduced by Misha Gromov [Gro-1999] and Benjamin Weiss [Wei-2000].

We introduce a notion of soficity for monoids.

A semigroup is a set with an associative binary operation.

A semigroup is a set with an associative binary operation. Thus a semigroup is a set S together with a map

S imes S o S $(s,t) \mapsto st$

such that

$$s_1(s_2s_3)=(s_1s_2)s_3$$
 $\forall s_1,s_2,s_3\in S_2$

A semigroup is a set with an associative binary operation. Thus a semigroup is a set S together with a map

S imes S o S $(s,t) \mapsto st$

such that

$$s_1(s_2s_3)=(s_1s_2)s_3$$
 $\forall s_1,s_2,s_3\in S.$

A monoid is a semigroup admitting an identity element.

A semigroup is a set with an associative binary operation. Thus a semigroup is a set S together with a map

S imes S o S $(s,t) \mapsto st$

such that

$$s_1(s_2s_3)=(s_1s_2)s_3$$
 $\forall s_1,s_2,s_3\in S.$

A monoid is a semigroup admitting an identity element. The identity element of a monoid M is denoted 1_M .

A semigroup is a set with an associative binary operation. Thus a semigroup is a set S together with a map

S imes S o S $(s,t) \mapsto st$

such that

$$s_1(s_2s_3)=(s_1s_2)s_3\quad\forall s_1,s_2,s_3\in S.$$

A monoid is a semigroup admitting an identity element. The identity element of a monoid M is denoted 1_M .

Example

Let X be a set. The symmetric monoid of X is the set Map(X) consisting of all maps $f: X \to X$ with the composition of maps as the monoid operation.

A semigroup is a set with an associative binary operation. Thus a semigroup is a set S together with a map

S imes S o S $(s,t) \mapsto st$

such that

$$s_1(s_2s_3)=(s_1s_2)s_3\quad\forall s_1,s_2,s_3\in S.$$

A monoid is a semigroup admitting an identity element. The identity element of a monoid M is denoted 1_M .

Example

Let X be a set. The symmetric monoid of X is the set Map(X) consisting of all maps $f: X \to X$ with the composition of maps as the monoid operation. The identity element of Map(X) is the identity map $Id_X: X \to X$.

A semigroup is a set with an associative binary operation. Thus a semigroup is a set S together with a map

S imes S o S $(s,t) \mapsto st$

such that

$$s_1(s_2s_3)=(s_1s_2)s_3\quad\forall s_1,s_2,s_3\in S.$$

A monoid is a semigroup admitting an identity element. The identity element of a monoid M is denoted 1_M .

Example

Let X be a set. The symmetric monoid of X is the set Map(X) consisting of all maps $f: X \to X$ with the composition of maps as the monoid operation. The identity element of Map(X) is the identity map $Id_X: X \to X$.

Remark

Every monoid M embeds as a submonoid of Map(M) via its Cayley map

 $M \hookrightarrow \operatorname{Map}(M)$ $s \mapsto (t \mapsto st).$

Michel Coornaert (IRMA, Strasbourg)

Consider a finite set $X \neq \emptyset$.

Consider a finite set $X \neq \emptyset$. The Hamming metric on Map(X) is the metric defined by

$$d_X^{\mathsf{Ham}}(f,g) := rac{1}{|X|} | \{ x \in X : f(x)
eq g(x) \} | \quad orall f,g \in \mathsf{Map}(X)$$

(here $|\cdot|$ denotes cardinality of finite sets).

Consider a finite set $X \neq \emptyset$. The Hamming metric on Map(X) is the metric defined by

$$d_X^{\operatorname{Ham}}(f,g):=rac{1}{|X|}|\{x\in X:f(x)
eq g(x)\}|\quad orall f,g\in\operatorname{Map}(X)$$

(here $|\cdot|$ denotes cardinality of finite sets).

Thus the Hamming distance between f and g is the proportion of elements of X at which f and g take different values.

Let *M* be a monoid, $K \subset M$ and $\varepsilon, \alpha > 0$. Let *N* be a monoid equipped with a metric *d*.

Let *M* be a monoid, $K \subset M$ and $\varepsilon, \alpha > 0$. Let *N* be a monoid equipped with a metric *d*. A map $\varphi: M \to N$ is called a (K, ε) -morphism if it satisfies

 $d(arphi(k_1k_2),arphi(k_1)arphi(k_2)) \leq arepsilon \quad orall k_1, k_2 \in K$

and

 $d(\varphi(1_M), 1_N) \leq \varepsilon.$

Let *M* be a monoid, $K \subset M$ and $\varepsilon, \alpha > 0$. Let *N* be a monoid equipped with a metric *d*. A map $\varphi: M \to N$ is called a (K, ε) -morphism if it satisfies

$$d(arphi(k_1k_2),arphi(k_1)arphi(k_2)) \leq arepsilon \quad orall k_1, k_2 \in K$$

and

 $d(\varphi(1_M), 1_N) \leq \varepsilon.$

A map $\varphi: M \to N$ is said to be (K, α) -injective if it satisfies

 $d(\varphi(k_1),\varphi(k_2)) \geq \alpha \quad \forall \text{ distinct } k_1,k_2 \in K.$

Let *M* be a monoid, $K \subset M$ and $\varepsilon, \alpha > 0$. Let *N* be a monoid equipped with a metric *d*. A map $\varphi: M \to N$ is called a (K, ε) -morphism if it satisfies

$$d(arphi(k_1k_2),arphi(k_1)arphi(k_2)) \leq arepsilon \quad orall k_1, k_2 \in K$$

and

 $d(\varphi(1_M), 1_N) \leq \varepsilon.$

A map $\varphi: M \to N$ is said to be (K, α) -injective if it satisfies

 $d(\varphi(k_1),\varphi(k_2)) \geq \alpha \quad \forall \text{ distinct } k_1,k_2 \in K.$

Definition

A monoid *M* is called **sofic** if for every finite subset $K \subset M$ and every $\varepsilon > 0$, there exist a finite set $X \neq \emptyset$ and a map

$$arphi \colon M o \mathsf{Map}(X)$$

that is a $(K, 1 - \varepsilon)$ -injective (K, ε) -morphism with respect to the Hamming metric on Map(X).

Examples of Sofic Monoids

Proposition

Every submonoid of a sofic monoid is sofic.

Every submonoid of a sofic monoid is sofic.

Proof.

If N is a submonoid of a monoid M, $K \subset N$, and $\varphi \colon M \to Map(X)$ is a $(K, 1 - \varepsilon)$ -injective (K, ε) -morphism, so is the restriction of φ to N.

Every submonoid of a sofic monoid is sofic.

Proof.

If N is a submonoid of a monoid M, $K \subset N$, and $\varphi \colon M \to Map(X)$ is a $(K, 1 - \varepsilon)$ -injective (K, ε) -morphism, so is the restriction of φ to N.

Proposition

Every finite monoid is sofic.

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X) is sofic for every finite set $X \neq \emptyset$.

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X) is sofic for every finite set $X \neq \emptyset$. Fix some $\varepsilon > 0$. We use the technique of amplification.

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X) is sofic for every finite set $X \neq \emptyset$. Fix some $\varepsilon > 0$. We use the technique of amplification. Let $n \ge 1$. Consider the diagonal monoid morphism $\Delta \colon Map(X) \hookrightarrow Map(X^n)$ defined by

$$\Delta(f)(x_1,\ldots,x_n):=(f(x_1),\ldots,f(x_n))$$

for all $f \in Map(X)$ and $(x_1, \ldots, x_n) \in X^n$.

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X) is sofic for every finite set $X \neq \emptyset$. Fix some $\varepsilon > 0$. We use the technique of amplification. Let $n \ge 1$. Consider the diagonal monoid morphism $\Delta \colon Map(X) \hookrightarrow Map(X^n)$ defined by

$$\Delta(f)(x_1,\ldots,x_n):=(f(x_1),\ldots,f(x_n))$$

for all $f \in Map(X)$ and $(x_1, \ldots, x_n) \in X^n$. We clearly have

$$\Delta(f)(x_1,\ldots,x_n)=\Delta(g)(x_1,\ldots,x_n)\iff (f(x_i)=g(x_i) ext{ for all } 1\leq i\leq n,$$

and hence

$$d_{X^n}^{\operatorname{Ham}}(\Delta(f),\Delta(g)) = 1 - \left(1 - d_X^{\operatorname{Ham}}(f,g)
ight)^n \quad orall f,g \in \operatorname{Map}(X).$$

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X) is sofic for every finite set $X \neq \emptyset$. Fix some $\varepsilon > 0$. We use the technique of amplification. Let $n \ge 1$. Consider the diagonal monoid morphism $\Delta \colon Map(X) \hookrightarrow Map(X^n)$ defined by

$$\Delta(f)(x_1,\ldots,x_n):=(f(x_1),\ldots,f(x_n))$$

for all $f \in Map(X)$ and $(x_1, \ldots, x_n) \in X^n$. We clearly have

$$\Delta(f)(x_1,\ldots,x_n)=\Delta(g)(x_1,\ldots,x_n)\iff (f(x_i)=g(x_i) \text{ for all } 1\leq i\leq n,$$

and hence

$$d_{X^n}^{\operatorname{Ham}}(\Delta(f),\Delta(g)) = 1 - \left(1 - d_X^{\operatorname{Ham}}(f,g)
ight)^n \quad orall f,g \in \operatorname{Map}(X).$$

If k := |X| and $f \neq g$, this implies that

$$d_{X^n}^{\mathsf{Ham}}(\Delta(f),\Delta(g)) \geq 1 - \left(1 - rac{1}{k}
ight)^n$$

Michel Coornaert (IRMA, Strasbourg)

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X) is sofic for every finite set $X \neq \emptyset$. Fix some $\varepsilon > 0$. We use the technique of amplification. Let $n \ge 1$. Consider the diagonal monoid morphism $\Delta \colon Map(X) \hookrightarrow Map(X^n)$ defined by

$$\Delta(f)(x_1,\ldots,x_n):=(f(x_1),\ldots,f(x_n))$$

for all $f \in Map(X)$ and $(x_1, \ldots, x_n) \in X^n$. We clearly have

$$\Delta(f)(x_1,\ldots,x_n)=\Delta(g)(x_1,\ldots,x_n)\iff (f(x_i)=g(x_i) ext{ for all } 1\leq i\leq n,$$

and hence

$$d_{X^n}^{\operatorname{Ham}}(\Delta(f),\Delta(g)) = 1 - \left(1 - d_X^{\operatorname{Ham}}(f,g)
ight)^n \quad orall f,g \in \operatorname{Map}(X).$$

If k := |X| and $f \neq g$, this implies that

$$d_{X^n}^{\mathsf{Ham}}(\Delta(f),\Delta(g)) \geq 1 - \left(1 - rac{1}{k}
ight)^n$$

We deduce that the monoid morphism δ is $(Map(X), 1 - \varepsilon)$ -injective for n large enough.

Michel Coornaert (IRMA, Strasbourg)

Proposition

A group is sofic as a group if and only if it is sofic as a monoid.

A group is sofic as a group if and only if it is sofic as a monoid.

Proof.

Use the definition of sofic groups given in [ES-2006].

A group is sofic as a group if and only if it is sofic as a monoid.

Proof.

Use the definition of sofic groups given in [ES-2006].

One says that a semigroup S is left-amenable (resp. right-amenable) if there exists a left-invariant (resp. right-invariant) finitely-additive probability measure defined on the set of all subsets of S.

A group is sofic as a group if and only if it is sofic as a monoid.

Proof.

Use the definition of sofic groups given in [ES-2006].

One says that a semigroup S is left-amenable (resp. right-amenable) if there exists a left-invariant (resp. right-invariant) finitely-additive probability measure defined on the set of all subsets of S.

Corollaire

Every cancellative one-sided amenable monoid is sofic.

A group is sofic as a group if and only if it is sofic as a monoid.

Proof.

Use the definition of sofic groups given in [ES-2006].

One says that a semigroup S is left-amenable (resp. right-amenable) if there exists a left-invariant (resp. right-invariant) finitely-additive probability measure defined on the set of all subsets of S.

Corollaire

Every cancellative one-sided amenable monoid is sofic.

Proof.

All amenable groups are sofic [Wei-2000] and it is known [WW-1967] that every cancellative one-sided amenable semigroup can be embedded in an amenable group.

Let C be a class of monoids. One says that a monoid M is locally embeddable in C if, for every finite subset $K \subset M$, there exists a monoid $N \in C$ and a map $\varphi \colon M \to N$ satisfying the following properties:

- the restriction of φ to K is injective,
- $\varphi(k_1k_2) = \varphi(k_1)\varphi(k_2) \quad \forall k_1, k_2 \in K$,
- $\varphi(1_M) = 1_N$.

(note that φ is not required to be globally injective nor to be a monoid morphism).

Proposition

Every monoid that is locally embeddable in the class of sofic monoids is itself sofic.

Let C be a class of monoids. One says that a monoid M is locally embeddable in C if, for every finite subset $K \subset M$, there exists a monoid $N \in C$ and a map $\varphi \colon M \to N$ satisfying the following properties:

- the restriction of φ to K is injective,
- $\varphi(k_1k_2) = \varphi(k_1)\varphi(k_2) \quad \forall k_1, k_2 \in K$,
- $\varphi(1_M) = 1_N$.

(note that φ is not required to be globally injective nor to be a monoid morphism).

Proposition

Every monoid that is locally embeddable in the class of sofic monoids is itself sofic.

Let \mathcal{P} be a property of monoids.

Let C be a class of monoids. One says that a monoid M is locally embeddable in C if, for every finite subset $K \subset M$, there exists a monoid $N \in C$ and a map $\varphi \colon M \to N$ satisfying the following properties:

- the restriction of φ to K is injective,
- $\varphi(k_1k_2) = \varphi(k_1)\varphi(k_2) \quad \forall k_1, k_2 \in K$,
- $\varphi(1_M) = 1_N$.

(note that φ is not required to be globally injective nor to be a monoid morphism).

Proposition

Every monoid that is locally embeddable in the class of sofic monoids is itself sofic.

Let \mathcal{P} be a property of monoids. One says that a monoid M is locally \mathcal{P} if every finitely generated submonoid of M satisfies \mathcal{P} .

Let C be a class of monoids. One says that a monoid M is locally embeddable in C if, for every finite subset $K \subset M$, there exists a monoid $N \in C$ and a map $\varphi \colon M \to N$ satisfying the following properties:

- the restriction of φ to K is injective,
- $\varphi(k_1k_2) = \varphi(k_1)\varphi(k_2) \quad \forall k_1, k_2 \in K$,
- $\varphi(1_M) = 1_N$.

(note that φ is not required to be globally injective nor to be a monoid morphism).

Proposition

Every monoid that is locally embeddable in the class of sofic monoids is itself sofic.

Let \mathcal{P} be a property of monoids. One says that a monoid M is locally \mathcal{P} if every finitely generated submonoid of M satisfies \mathcal{P} . One says that a monoid M is residually \mathcal{P} if, given any pair of distinct elements $m_1, m_2 \in M$, there exist a monoid N satisfying \mathcal{P} and a monoid morphism $\varphi \colon M \to N$ such that $\varphi(m_1) \neq \varphi(m_2)$.

Corollaire

Every locally residually finite monoid is sofic. In particular, all locally finite monoids and all residually finite monoids are sofic.

Corollaire

Every locally residually finite monoid is sofic. In particular, all locally finite monoids and all residually finite monoids are sofic.

Corollaire

Every commutative monoid is sofic.

Corollaire

Every locally residually finite monoid is sofic. In particular, all locally finite monoids and all residually finite monoids are sofic.

Corollaire

Every commutative monoid is sofic.

Corollaire

Every free monoid is sofic.

Corollaire

Every locally residually finite monoid is sofic. In particular, all locally finite monoids and all residually finite monoids are sofic.

Corollaire

Every commutative monoid is sofic.

Corollaire

Every free monoid is sofic.

Corollaire

Every linear monoid is sofic.

If a monoid M is obtained by adjoining to a semigroup S an identity element $1_M \notin S$, then M is sofic.

Remark

The hypothesis on M in the previous statement amounts to saying that M has no non-trivial one-sided invertible element, i.e., it satisfies

$$xy = 1_M \Longrightarrow x = y = 1_M.$$

The bicyclic monoid is the monoid B given by the presentation

 $B := \langle p, q : pq = 1 \rangle.$

The bicyclic monoid is the monoid B given by the presentation

 $B:=\langle p,q:pq=1\rangle.$

Every element $s \in B$ can be uniquely written in the form

$$s = q^a p^b$$
, where $a = a(s), b = b(s) \ge 0$.

The bicyclic monoid is amenable but neither left-cancellative nor right-cancellative.

The bicyclic monoid is the monoid B given by the presentation

$$B := \langle p, q : pq = 1 \rangle.$$

Every element $s \in B$ can be uniquely written in the form

$$s = q^a p^b$$
, where $a = a(s), b = b(s) \ge 0$.

The bicyclic monoid is amenable but neither left-cancellative nor right-cancellative. It may be viewed as a submonoid of the symmetric monoid $Map(\mathbb{N})$ of $\mathbb{N} = \{0, 1, 2, ...\}$ by considering $p, q \in Map(\mathbb{N})$ defined by

$$p(n) = egin{cases} n-1 & ext{if } n \geq 1 \\ 0 & ext{if } n=0 \end{cases} ext{ and } q(n) = n+1 \quad \forall n \in \mathbb{N}.$$

The bicyclic monoid is the monoid B given by the presentation

$$B := \langle p, q : pq = 1 \rangle.$$

Every element $s \in B$ can be uniquely written in the form

$$s = q^a p^b$$
, where $a = a(s), b = b(s) \ge 0$.

The bicyclic monoid is amenable but neither left-cancellative nor right-cancellative. It may be viewed as a submonoid of the symmetric monoid $Map(\mathbb{N})$ of $\mathbb{N} = \{0, 1, 2, ...\}$ by considering $p, q \in Map(\mathbb{N})$ defined by

$$p(n) = egin{cases} n-1 & ext{if } n \geq 1 \\ 0 & ext{if } n=0 \end{cases} ext{ and } q(n) = n+1 \quad orall n \in \mathbb{N}.$$

Proposition

The bicyclic monoid B is not sofic.

Lemma

Let X be a non-empty finite set. Then one has

 $d_X^{Ham}(fg, \operatorname{Id}_X) = d_X^{Ham}(gf, \operatorname{Id}_X), \quad \forall f, g \in \operatorname{Map}(X).$

Lemma

Let X be a non-empty finite set. Then one has

$$d_X^{Ham}(fg, \mathsf{Id}_X) = d_X^{Ham}(gf, \mathsf{Id}_X), \quad \forall f, g \in \mathsf{Map}(X).$$

Proof.

Let $Mat_X(\mathbb{R})$ denote the multiplicative monoid of $X \times X$ -matrices with real entries.

Lemma

Let X be a non-empty finite set. Then one has

$$d_X^{Ham}(fg, \mathsf{Id}_X) = d_X^{Ham}(gf, \mathsf{Id}_X), \quad \forall f, g \in \mathsf{Map}(X).$$

Proof.

Let $Mat_X(\mathbb{R})$ denote the multiplicative monoid of $X \times X$ -matrices with real entries. Consider the natural monoid monomorphism

$$\Phi \colon \operatorname{Map}(X) \hookrightarrow \operatorname{Mat}_X(\mathbb{R})$$

that sends $f \in Map(X)$ to the matrix $M = \Phi(f)$ given by $M_{x,y} = 1$ if x = f(y) and $M_{x,y} = 0$ otherwise.

Lemma

Let X be a non-empty finite set. Then one has

$$d_X^{Ham}(\mathit{fg},\mathsf{Id}_X)=d_X^{Ham}(\mathit{gf},\mathsf{Id}_X), \quad \forall f,g\in\mathsf{Map}(X).$$

Proof.

Let $Mat_X(\mathbb{R})$ denote the multiplicative monoid of $X \times X$ -matrices with real entries. Consider the natural monoid monomorphism

$$\Phi \colon \operatorname{Map}(X) \longrightarrow \operatorname{Mat}_X(\mathbb{R})$$

that sends $f \in Map(X)$ to the matrix $M = \Phi(f)$ given by $M_{x,y} = 1$ if x = f(y) and $M_{x,y} = 0$ otherwise. Observe that the trace of $\Phi(f)$ is the number of fixed points of f. We deduce that

Lemma

Let X be a non-empty finite set. Then one has

$$d_X^{Ham}(\mathit{fg},\mathsf{Id}_X)=d_X^{Ham}(\mathit{gf},\mathsf{Id}_X), \quad orall f,g\in\mathsf{Map}(X).$$

Proof.

Let $Mat_X(\mathbb{R})$ denote the multiplicative monoid of $X \times X$ -matrices with real entries. Consider the natural monoid monomorphism

$$\Phi \colon \operatorname{Map}(X) \longrightarrow \operatorname{Mat}_X(\mathbb{R})$$

that sends $f \in Map(X)$ to the matrix $M = \Phi(f)$ given by $M_{x,y} = 1$ if x = f(y) and $M_{x,y} = 0$ otherwise. Observe that the trace of $\Phi(f)$ is the number of fixed points of f. We deduce that

$$d_X^{\text{Ham}}(fg, \text{Id}_X) = 1 - \frac{\text{Tr}(\Phi(fg))}{|X|} = 1 - \frac{\text{Tr}(\Phi(f)\Phi(g))}{|X|}$$

for all $f, g \in Map(X)$, and hence $d_X^{Ham}(fg, Id_X) = d_X^{Ham}(gf, Id_X)$ since $Tr(\Phi(f)\Phi(g)) = Tr(\Phi(g)\Phi(f))$.

Proof that B is not sofic

Take $K := \{1_B, p, q, qp\}$ and $0 < \varepsilon < \frac{1}{5}$. Suppose that X is a non-empty finite set and that $\varphi : B \to Map(X)$ is a $(K, 1 - \varepsilon)$ -injective (K, ε) -morphism. Let $f := \varphi(p)$, $g := \varphi(q) \in Map(X)$. We then have

$$\begin{split} d_X^{\text{Ham}}(\textit{fg}, \textit{Id}_X) &= d_X^{\text{Ham}}(\varphi(p)\varphi(q), \textit{Id}_X) \\ &\leq d_X^{\text{Ham}}(\varphi(pq), \textit{Id}_X) + d_X^{\text{Ham}}(\varphi(pq), \varphi(p)\varphi(q)) \quad \text{(by the triangle inequality)} \\ &= d_X^{\text{Ham}}(\varphi(1_B), \textit{Id}_X) + d_X^{\text{Ham}}(\varphi(pq), \varphi(p)\varphi(q)) \quad \text{(since } pq = 1_B) \\ &\leq 2\varepsilon. \end{split}$$

Proof that B is not sofic

Take $K := \{1_B, p, q, qp\}$ and $0 < \varepsilon < \frac{1}{5}$. Suppose that X is a non-empty finite set and that $\varphi : B \to \operatorname{Map}(X)$ is a $(K, 1 - \varepsilon)$ -injective (K, ε) -morphism. Let $f := \varphi(p)$, $g := \varphi(q) \in \operatorname{Map}(X)$. We then have $d_X^{\operatorname{Ham}}(fg, \operatorname{Id}_X) = d_X^{\operatorname{Ham}}(\varphi(p)\varphi(q), \operatorname{Id}_X)$

$$\leq d_X^{\text{Ham}}(\varphi(pq), \text{Id}_X) + d_X^{\text{Ham}}(\varphi(pq), \varphi(p)\varphi(q)) \quad \text{(by the triangle inequality)} \\ = d_X^{\text{Ham}}(\varphi(1_B), \text{Id}_X) + d_X^{\text{Ham}}(\varphi(pq), \varphi(p)\varphi(q)) \quad \text{(since } pq = 1_B) \\ \leq 2\varepsilon.$$

By applying the preceding lemma, we obtain

$$d_X^{\operatorname{Ham}}(gf,\operatorname{Id}_X) \le 2\varepsilon.$$
 (1)

Proof that B is not sofic

Take $K := \{1_B, p, q, qp\}$ and $0 < \varepsilon < \frac{1}{5}$. Suppose that X is a non-empty finite set and that $\varphi : B \to \operatorname{Map}(X)$ is a $(K, 1 - \varepsilon)$ -injective (K, ε) -morphism. Let $f := \varphi(p)$, $g := \varphi(q) \in \operatorname{Map}(X)$. We then have $d_X^{\operatorname{Ham}}(fg, \operatorname{Id}_X) = d_X^{\operatorname{Ham}}(\varphi(p)\varphi(q), \operatorname{Id}_X)$

$$\leq d_X^{\text{Ham}}(\varphi(pq), \text{Id}_X) + d_X^{\text{Ham}}(\varphi(pq), \varphi(p)\varphi(q)) \quad \text{(by the triangle inequality)} \\ = d_X^{\text{Ham}}(\varphi(1_B), \text{Id}_X) + d_X^{\text{Ham}}(\varphi(pq), \varphi(p)\varphi(q)) \quad \text{(since } pq = 1_B) \\ \leq 2\varepsilon.$$

By applying the preceding lemma, we obtain

$$d_X^{\operatorname{Ham}}(gf,\operatorname{Id}_X) \le 2\varepsilon.$$
 (1)

Finally, using again the triangle inequality, we get

$$\begin{split} d_X^{\mathsf{Ham}}(\varphi(qp),\varphi(\mathbf{1}_B)) &\leq d_X^{\mathsf{Ham}}(\varphi(qp),gf) + d_X^{\mathsf{Ham}}(gf,\mathsf{Id}_X) + d_X^{\mathsf{Ham}}(\varphi(\mathbf{1}_B),\mathsf{Id}_X) \\ &\leq d_X^{\mathsf{Ham}}(\varphi(qp),\varphi(q)\varphi(p)) + 2\varepsilon + d_X^{\mathsf{Ham}}(\varphi(\mathbf{1}_B),\mathsf{Id}_X) \quad (\mathsf{by}\ (1)) \\ &\leq 4\varepsilon \qquad (\mathsf{since}\ \varphi\ \mathsf{is}\ \mathsf{a}\ (K,\varepsilon)\mathsf{-morphism}). \end{split}$$

This contradicts the fact that φ is $(K, 1 - \varepsilon)$ -injective since qp and 1_B are distinct elements of K and $4\varepsilon < 1 - \varepsilon$. Consequently, the monoid B is not sofic.

Michel Coornaert (IRMA, Strasbourg)

Geometric Characterization of Sofic Monoids

Let M be a finitely generated monoid and $\Sigma \subset M$ a finite generating subset.

Geometric Characterization of Sofic Monoids

Let *M* be a finitely generated monoid and $\Sigma \subset M$ a finite generating subset. The Cayley graph of (M, Σ) is the Σ -labelled graph $\mathcal{C}(M, \Sigma)$ with vertex set V := M and edge set

$$\mathsf{E} := \{(\mathsf{s}, \sigma, \mathsf{s}\sigma) : \mathsf{s} \in \mathsf{M}, \sigma \in \mathsf{\Sigma}\} \subset \mathsf{V} \times \mathsf{\Sigma} \times \mathsf{V}.$$

This means that t there is an oriented edge labelled σ from s to $s\sigma$ for all $s \in M$ and $\sigma \in \Sigma$.

Figure 1: An edge in the Cayley graph

Figure 2: The cayley graph of the bicyclic monoid B

Figure 3: The ball $B_r(1_B)$ in the Cayley graph of the bicyclic monoid B

Theorem

Let M be a finitely generated left-cancellative monoid and $\Sigma \subset M$ a finite generating subset of M. Then the following conditions are equivalent:

- (a) the monoid M is sofic;
- (b) for every $r \in \mathbb{N}$ and every $\varepsilon > 0$, there exists a finite Σ -labeled graph $\mathcal{G} = (V, E)$ with the following property: the subset $V(r) \subset V$, consisting of all the vertices $v \in V$ such that the ball of radius r centered at v in \mathcal{G} is isomorphic, as a pointed Σ -labeled graph, to the ball of radius r centered at 1_M in the Cayley graph $\mathcal{C}(M, \Sigma)$, satisfies

$$|V(r)| \ge (1-\varepsilon)|V|$$

Figure 4: Graph-theoretic proof that the monoid $\mathbb N$ is sofic

References

[CC-2013] T. Ceccherini-Silberstein, M. Coornaert, *On sofic monoids*, arXiv:1304.4919, to appear in Semigroup Forum.

[ES-2006] G. Elek, E. Szabó, On sofic groups, J. Group Theory 9 (2006), 161–171.

[Gam-2014] M. Kambites, A large class of sofic monoids, arXiv:1401.7248.

[Gro-1999] M. Gromov, *Endomorphisms of symbolic algebraic varieties*, J. Eur. Math. Soc. (JEMS) **1** (1999), 109–197.

[Wei-2000] B. Weiss, *Sofic groups and dynamical systems*, (Ergodic theory and harmonic analysis, Mumbai, 1999) Sankhya Ser. A. **62** (2000), 350–359.

[WW-1967] C. Wilde, K. Witz, *Invariant means and the Stone-Čech compactification*, Pacific J. Math., **21** (1967), 577–586.