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This is joint work with Tullio Ceccherini-Silberstein [CC-2013].

Sofic groups were introduced by Misha Gromov [Gro-1999] and Benjamin Weiss
[Wei-2000].
We introduce a notion of soficity for monoids.
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Semigroups and Monoids

A semigroup is a set with an associative binary operation.

Thus a semigroup is a set S
together with a map

S × S → S

(s, t) 7→ st

such that
s1(s2s3) = (s1s2)s3 ∀s1, s2, s3 ∈ S .

A monoid is a semigroup admitting an identity element.
The identity element of a monoid M is denoted 1M .

Example

Let X be a set. The symmetric monoid of X is the set Map(X ) consisting of all maps
f : X → X with the composition of maps as the monoid operation. The identity element
of Map(X ) is the identity map IdX : X → X .

Remark

Every monoid M embeds as a submonoid of Map(M) via its Cayley map

M ↪−→ Map(M)

s 7→ (t 7→ st).
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The Hamming metric

Consider a finite set X 6= ∅.

The Hamming metric on Map(X ) is the metric defined by

dHam
X (f , g) :=

1

|X | |{x ∈ X : f (x) 6= g(x)}| ∀f , g ∈ Map(X )

(here | · | denotes cardinality of finite sets).
Thus the Hamming distance between f and g is the proportion of elements of X at
which f and g take different values.
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Definition

Let M be a monoid, K ⊂ M and ε, α > 0. Let N be a monoid equipped with a metric d .

A map ϕ : M → N is called a (K , ε)-morphism if it satisfies

d(ϕ(k1k2), ϕ(k1)ϕ(k2)) ≤ ε ∀k1, k2 ∈ K

and
d(ϕ(1M), 1N) ≤ ε.

A map ϕ : M → N is said to be (K , α)-injective if it satisfies

d(ϕ(k1), ϕ(k2)) ≥ α ∀ distinct k1, k2 ∈ K .

Definition

A monoid M is called sofic if for every finite subset K ⊂ M and every ε > 0, there exist a
finite set X 6= ∅ and a map

ϕ : M → Map(X )

that is a (K , 1− ε)-injective (K , ε)-morphism with respect to the Hamming metric on
Map(X ).
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Examples of Sofic Monoids

Proposition

Every submonoid of a sofic monoid is sofic.

Proof.

If N is a submonoid of a monoid M, K ⊂ N, and ϕ : M → Map(X ) is a
(K , 1− ε)-injective (K , ε)-morphism, so is the restriction of ϕ to N.

Proposition

Every finite monoid is sofic.
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Examples of Sofic Monoids (continued)

Proof.

As every monoid embeds in its symmetric monoid, it suffices to prove that Map(X ) is
sofic for every finite set X 6= ∅.

Fix some ε > 0. We use the technique of amplification.
Let n ≥ 1. Consider the diagonal monoid morphism ∆: Map(X ) ↪−→ Map(X n) defined
by

∆(f )(x1, . . . , xn) := (f (x1), . . . , f (xn))

for all f ∈ Map(X ) and (x1, . . . , xn) ∈ X n. We clearly have

∆(f )(x1, . . . , xn) = ∆(g)(x1, . . . , xn) ⇐⇒ (f (xi ) = g(xi ) for all 1 ≤ i ≤ n,

and hence

dHam
Xn (∆(f ), ∆(g)) = 1−

“
1− dHam

X (f , g)
”n

∀f , g ∈ Map(X ).

If k := |X | and f 6= g , this implies that

dHam
Xn (∆(f ), ∆(g)) ≥ 1−

„
1− 1

k

«n

We deduce that the monoid morphism δ is (Map(X ), 1− ε)-injective for n large
enough.
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Examples of Sofic Monoids (continued)

Proposition

A group is sofic as a group if and only if it is sofic as a monoid.

Proof.

Use the definition of sofic groups given in [ES-2006].

One says that a semigroup S is left-amenable (resp. right-amenable) if there exists a
left-invariant (resp. right-invariant) finitely-additive probability measure defined on the
set of all subsets of S .

Corollaire

Every cancellative one-sided amenable monoid is sofic.

Proof.

All amenable groups are sofic [Wei-2000] and it is known [WW-1967] that every
cancellative one-sided amenable semigroup can be embedded in an amenable group.
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Examples of Sofic Monoids (continued)

Let C be a class of monoids. One says that a monoid M is locally embeddable in C if, for
every finite subset K ⊂ M, there exists a monoid N ∈ C and a map ϕ : M → N satisfying
the following properties:

the restriction of ϕ to K is injective,

ϕ(k1k2) = ϕ(k1)ϕ(k2) ∀k1, k2 ∈ K ,

ϕ(1M) = 1N .

(note that ϕ is not required to be globally injective nor to be a monoid morphism).

Proposition

Every monoid that is locally embeddable in the class of sofic monoids is itself sofic.

Let P be a property of monoids. One says that a monoid M is locally P if every finitely
generated submonoid of M satisfies P. One says that a monoid M is residually P if,
given any pair of distinct elements m1, m2 ∈ M, there exist a monoid N satisfying P and
a monoid morphism ϕ : M → N such that ϕ(m1) 6= ϕ(m2).
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Examples of Sofic Monoids (continued)

Corollaire

Every locally residually finite monoid is sofic. In particular, all locally finite monoids and
all residually finite monoids are sofic.

Corollaire

Every commutative monoid is sofic.

Corollaire

Every free monoid is sofic.

Corollaire

Every linear monoid is sofic.
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Examples of Sofic Monoids (continued)

Proposition

If a monoid M is obtained by adjoining to a semigroup S an identity element 1M /∈ S,
then M is sofic.

Remark

The hypothesis on M in the previous statement amounts to saying that M has no
non-trivial one-sided invertible element, i.e., it satisfies

xy = 1M =⇒ x = y = 1M .

Michel Coornaert (IRMA, Strasbourg) Some Remarks on Sofic Monoids February 24, 2014 11 / 20



The Bicyclic Monoid

The bicyclic monoid is the monoid B given by the presentation

B := 〈p, q : pq = 1〉.

Every element s ∈ B can be uniquely written in the form

s = qapb, where a = a(s), b = b(s) ≥ 0.

The bicyclic monoid is amenable but neither left-cancellative nor right-cancellative. It
may be viewed as a submonoid of the symmetric monoid Map(N) of N = {0, 1, 2, . . . } by
considering p, q ∈ Map(N) defined by

p(n) =

(
n − 1 if n ≥ 1

0 if n = 0
and q(n) = n + 1 ∀n ∈ N.

Proposition

The bicyclic monoid B is not sofic.
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Non-Soficity of the Bicyclic Monoid

Lemma

Let X be a non-empty finite set. Then one has

dHam
X (fg , IdX ) = dHam

X (gf , IdX ), ∀f , g ∈ Map(X ).

Proof.

Let MatX (R) denote the multiplicative monoid of X × X -matrices with real entries.
Consider the natural monoid monomorphism

Φ: Map(X ) ↪−→ MatX (R)

that sends f ∈ Map(X ) to the matrix M = Φ(f ) given by Mx,y = 1 if x = f (y) and
Mx,y = 0 otherwise. Observe that the trace of Φ(f ) is the number of fixed points of f .
We deduce that

dHam
X (fg , IdX ) = 1− Tr(Φ(fg))

|X | = 1− Tr(Φ(f )Φ(g))

|X |

for all f , g ∈ Map(X ), and hence dHam
X (fg , IdX ) = dHam

X (gf , IdX ) since
Tr(Φ(f )Φ(g)) = Tr(Φ(g)Φ(f )).
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Proof that B is not sofic

Take K := {1B , p, q, qp} and 0 < ε <
1

5
. Suppose that X is a non-empty finite set and

that ϕ : B → Map(X ) is a (K , 1− ε)-injective (K , ε)-morphism. Let f := ϕ(p),
g := ϕ(q) ∈ Map(X ). We then have

dHam
X (fg , IdX ) = dHam

X (ϕ(p)ϕ(q), IdX )

≤ dHam
X (ϕ(pq), IdX ) + dHam

X (ϕ(pq), ϕ(p)ϕ(q)) (by the triangle inequality)

= dHam
X (ϕ(1B), IdX ) + dHam

X (ϕ(pq), ϕ(p)ϕ(q)) (since pq = 1B)

≤ 2ε.

By applying the preceding lemma, we obtain

dHam
X (gf , IdX ) ≤ 2ε. (1)

Finally, using again the triangle inequality, we get

dHam
X (ϕ(qp), ϕ(1B)) ≤ dHam

X (ϕ(qp), gf ) + dHam
X (gf , IdX ) + dHam

X (ϕ(1B), IdX )

≤ dHam
X (ϕ(qp), ϕ(q)ϕ(p)) + 2ε + dHam

X (ϕ(1B), IdX ) (by (1))

≤ 4ε (since ϕ is a (K , ε)-morphism).

This contradicts the fact that ϕ is (K , 1− ε)-injective since qp and 1B are distinct
elements of K and 4ε < 1− ε. Consequently, the monoid B is not sofic.
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Geometric Characterization of Sofic Monoids

Let M be a finitely generated monoid and Σ ⊂ M a finite generating subset.

The Cayley graph of (M, Σ) is the Σ-labelled graph C(M, Σ) with vertex set V := M and
edge set

E := {(s, σ, sσ) : s ∈ M, σ ∈ Σ} ⊂ V × Σ× V .

This means that t there is an oriented edge labelled σ from s to sσ for all s ∈ M and
σ ∈ Σ.

Figure 1: An edge in the Cayley graph
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Geometric Characterization of Sofic Monoids (continued)

Figure 2: The cayley graph of the bicyclic monoid B
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Geometric Characterization of Sofic Monoids (continued)

Figure 3: The ball Br (1B) in the Cayley graph of the bicyclic monoid B
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Geometric Characterization of Sofic Monoids (continued)

Theorem

Let M be a finitely generated left-cancellative monoid and Σ ⊂ M a finite generating
subset of M. Then the following conditions are equivalent:

(a) the monoid M is sofic;

(b) for every r ∈ N and every ε > 0, there exists a finite Σ-labeled graph G = (V , E) with
the following property: the subset V (r) ⊂ V , consisting of all the vertices v ∈ V
such that the ball of radius r centered at v in G is isomorphic, as a pointed Σ-labeled
graph, to the ball of radius r centered at 1M in the Cayley graph C(M, Σ), satisfies

|V (r)| ≥ (1− ε)|V |.

Michel Coornaert (IRMA, Strasbourg) Some Remarks on Sofic Monoids February 24, 2014 18 / 20



Geometric Characterization of Sofic Monoids (continued)

Figure 4: Graph-theoretic proof that the monoid N is sofic

Michel Coornaert (IRMA, Strasbourg) Some Remarks on Sofic Monoids February 24, 2014 19 / 20



References

[CC-2013] T. Ceccherini-Silberstein, M. Coornaert, On sofic monoids, arXiv:1304.4919,
to appear in Semigroup Forum.
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