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Symbolic Dynamics

Take:

a group G (called the universe),

a finite set A (called the alphabet).

The set
AG = {x : G → A}

is called the set of configurations.
The shift on AG is the left action of G on AG given by

G × AG → AG

(g , x) 7→ gx

where
gx(h) = x(g−1h) ∀h ∈ G .
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Cellular Automata

Definition

A cellular automaton over the group G and the alphabet A is a map

τ : AG → AG

satisfying the following condition:
there exist a finite subset M ⊂ G and a map µ : AM → A such that

(τ(x))(g) = µ((g−1x)|M) ∀x ∈ AG , ∀g ∈ G ,

where (g−1x)|M denotes the restriction of the configuration g−1x to M.

Such a set M is called a memory set and µ is called a local defining map for τ .
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 4 / 33



Cellular Automata

Definition

A cellular automaton over the group G and the alphabet A is a map

τ : AG → AG

satisfying the following condition:
there exist a finite subset M ⊂ G and a map µ : AM → A such that

(τ(x))(g) = µ((g−1x)|M) ∀x ∈ AG , ∀g ∈ G ,

where (g−1x)|M denotes the restriction of the configuration g−1x to M.

Such a set M is called a memory set and µ is called a local defining map for τ .
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Example 1

Take G := Z, A := {0, 1}, and τ : AZ → AZ given by

τ(x)(n) := x(n) + x(n + 1) mod 2 ∀x ∈ AZ, n ∈ Z.

For example, if

x = . . . 11100101001101110000100011 . . . then

τ(x) = . . . 0010111101011001000110010? . . .

τ is a cellular automaton with memory M = {0, 1} and local defining map
µ : AM = A2 → A given by

00 7→ 0, 01 7→ 1, 10 7→ 1, 11 7→ 0.
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Example 2

Take G := Z and A := {(shape, color)}, where

shape ∈ {square, disc} color ∈ {green, red, yellow}.

Thus the alphabet A has cardinality 2× 3 = 6. The map τ : AZ → AZ, defined by

shape((τ(x))(n)) = shape(x(n−1)) color((τ(x))(n)) = color(x(n+1)) ∀x ∈ AZ, n ∈ Z,

is a cellular automaton with memory set M = {−1, 1}.
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Example 2 (continued)

x := •• ••

τ(x) = •• • • ••
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Example 3: Conway’s Game of Life
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Example 3 (continued)

Here we take G := Z2 = Z× Z and A := {0, 1}.
Life is described by the cellular automaton

τ : AZ2

→ AZ2

with memory set M = {−1, 0, 1}2 ⊂ Z2

and local defining map µ : AM → A given by

µ(y) =


1 if


∑
m∈M

y(m) = 3

or
∑
m∈M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

∀y ∈ AM .
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 9 / 33



Example 3 (continued)

Here we take G := Z2 = Z× Z and A := {0, 1}.
Life is described by the cellular automaton

τ : AZ2

→ AZ2

with memory set M = {−1, 0, 1}2 ⊂ Z2

and local defining map µ : AM → A given by

µ(y) =


1 if


∑
m∈M

y(m) = 3

or
∑
m∈M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

∀y ∈ AM .
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Diamonds and Pre-injectivity

Let τ : AG → AG be a cellular automaton.

Definition

Two configurations x1, x2 ∈ AG are almost equal if they coincide outside of a finite subset
of G , i.e., the set {g ∈ G : x1(g) 6= x2(g)} is finite.

Definition

Two configurations x1, x2 ∈ AG form a diamond for τ if

x1 and x2 are almost equal but not equal;

τ(x1) = τ(x2).

Definition

One says that τ is pre-injective if it has no diamonds.
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Diamonds and Pre-injectivity (continued)

Note that
τ injective =⇒ τ pre-injective.

The converse is false.

Example 1 is pre-injective but not injective;

Example 2 is injective and hence pre-injective;

Example 3 is not pre-injective and hence non-injective;
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The GOE Theorem for Zd

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let G = Zd and A a finite set. Let τ : AG → AG be a cellular automaton. Then
τ surjective ⇐⇒ τ pre-injective.

=⇒ is due to Moore,

⇐= is due to Myhill.

Examples 1 and 2 are pre-injective. Therefore they are surjective (easy to check
directly) by Myhill’s implication.

Example 3 is not pre-injective.
Therefore it is not surjective (not easy to check directly) by Moore’s implication.
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 12 / 33



The GOE Theorem for Zd

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem (GOE theorem)

Let G = Zd and A a finite set. Let τ : AG → AG be a cellular automaton. Then
τ surjective ⇐⇒ τ pre-injective.

=⇒ is due to Moore,

⇐= is due to Myhill.

Examples 1 and 2 are pre-injective. Therefore they are surjective (easy to check
directly) by Myhill’s implication.

Example 3 is not pre-injective.
Therefore it is not surjective (not easy to check directly) by Moore’s implication.
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The GOE theorem for Groups of Subexponential Growth

Schupp [S-1988] asked the following.

Question

Is the analogue of the Moore-Myhill theorem true exactly for virtually nilpotent groups?

Definition

A group G with finite generating set S has subexponential growth if

lim
k→∞

log NS(k)

k
= 0,

where NS(k) is the number of elements of G that can be written as a product of at most
k elements in S ∪ S−1.

Mach̀ı and Mignosi [MM-1993] proved that the GOE theorem remains valid when G is a
f.g. group with subexponential growth.
Every f.g. virtually nilpotent group has subexponential growth but there are f.g. groups of
subexponential growth that are not virtually nilpotent. The first examples of such groups
were given by Grigorchuk [Gri-1984].
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The GOE Theorem for Amenable Groups

Definition

A group G is amenable if there exists a finitely-additive invariant probability measure
defined on the set of all subsets of G .

All f.g. groups of subexponential growth, all solvable groups, all locally finite groups are
amenable.
Ceccherini-Silberstein, Mach̀ı and Scarabotti [CMS-1999] proved that the GOE theorem
remains valid for amenable groups.
Bartholdi [B-2010] proved that if G is a non-amenable group then G does not satisfy
Moore’s implication, i.e., there exist a finite set A and a cellular automaton τ : AG → AG

that is surjective but not pre-injective.
Bartholdi and Kielak [BK-2016] proved that if G is a non-amenable group then G does
not satisfy Myhill’s implication either, i.e., there exist a finite set A and a cellular
automaton τ : AG → AG that is pre-injective but not surjective.
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What Gromov Said

Gromov [Gro-1999, p. 195] wrote:

“. . . the Garden of Eden theorem can be generalized to a suitable class of
hyperbolic actions . . . ”
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Dynamical systems

A dynamical system is a pair (X ,G), where

X is a compact metrizable topological space,

G is a countable group acting continuously on X .

The space X is called the phase space.
If f : X → X is a homeomorphism, the d.s. generated by f is the d.s. (X ,Z), where Z
acts on X by

(n, x) 7→ f n(x) ∀n ∈ Z, x ∈ X .

This d.s. is also denoted (X , f ).
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Examples of Dynamical Systems

Example

Let A be a finite set and G a countable group. Equip A with its discree topology and AG

with the product topology. Then the shift (AG ,G) is a d.s.

Example (Arnold’s cat)

This is the d.s. (T2, f ), where f is the automorphism of the 2-torus T2 = R/Z× R/Z
given by

f (x) =

(
x2

x1 + x2

)
∀x =

(
x1

x2

)
∈ T2.

Thus we have f (x) = Ax , where A =

(
0 1
1 1

)
is the cat matrix.
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Homoclinicity

Let (X ,G) be a dynamical system. Let d be a metric on X that is compatible with the
topology.

Definition

Two points x , y ∈ X are caled homoclinic if

lim
g→∞

d(gx , gy) = 0,

i.e., for every ε > 0, there exists a finite subset F ⊂ G such that

d(gx , gy) < ε ∀g ∈ G \ F .

Homoclinicity is an equivalence relation on X . This relation does not depend on the
choice of d .
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Homoclinicity (continued)

Example

Let A be a finite set and G a countable group. Consider the shift (AG ,G).
Two configurations x , y ∈ AG are homoclinic if and only if they are almost equal.

Example

Consider Arnold’s cat (T2, f ).
Equip T2 = R2/Z2 with its Euclidean structure.
The homoclinicity class of a point x ∈ T2 is D ∩ D ′, where D is the line passing through

x whose slope is the golden mean
1 +
√

5

2
= 1.618 . . . and D ′ is the line passing through

x and orthogonal to D ′. The slopes of D and D ′ are the eigenvalues of the cat matrix.
Each homoclinicity class is countably-infinite and dense in T2.
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x whose slope is the golden mean
1 +
√

5

2
= 1.618 . . . and D ′ is the line passing through

x and orthogonal to D ′. The slopes of D and D ′ are the eigenvalues of the cat matrix.
Each homoclinicity class is countably-infinite and dense in T2.
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Endomorphisms of Dynamical Systems

Let (X ,G) be a dynamical system.

Definition

An endomorphism of the d.s. (X ,G) is a continuous map τ : X → X such that τ
commutes with the action of G , that is, such that

τ(gx) = gτ(x) ∀g ∈ G , x ∈ X .

Example

Let A be a finite set and G a countable group.
Then the endomorphisms of the shift (AG ,G) are precisely the cellular automata
τ : AG → AG

(Curtis-Hedlund-Lyndon theorem).
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 20 / 33



Endomorphisms of Dynamical Systems

Let (X ,G) be a dynamical system.

Definition

An endomorphism of the d.s. (X ,G) is a continuous map τ : X → X such that τ
commutes with the action of G , that is, such that

τ(gx) = gτ(x) ∀g ∈ G , x ∈ X .

Example

Let A be a finite set and G a countable group.
Then the endomorphisms of the shift (AG ,G) are precisely the cellular automata
τ : AG → AG

(Curtis-Hedlund-Lyndon theorem).
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Pre-injective Endomorphisms

Let (X ,G) be a dynamical system.

Definition

An endomorphism τ : X → X of the d.s. (X ,G) is called pre-injective if its restriction to
each homoclinicity class is injective.

Example

For shift systems (AG ,G), the two definitions of pre-injectivity are equivalent.

Example

The group endomorphism τ : T2 → T2, given by τ(x) := 2x for all x ∈ T2, is an
endomorphism of Arnold’s cat (T2, f ).
The kernel of τ consists of four points:

Ker(τ) =

{(
0
0

)
,

(
1/2

0

)
,

(
0

1/2

)
,

(
1/2
1/2

)}
.

The endomorphism τ is pre-injective but not injective.
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 21 / 33



Pre-injective Endomorphisms

Let (X ,G) be a dynamical system.

Definition

An endomorphism τ : X → X of the d.s. (X ,G) is called pre-injective if its restriction to
each homoclinicity class is injective.

Example

For shift systems (AG ,G), the two definitions of pre-injectivity are equivalent.

Example

The group endomorphism τ : T2 → T2, given by τ(x) := 2x for all x ∈ T2, is an
endomorphism of Arnold’s cat (T2, f ).
The kernel of τ consists of four points:

Ker(τ) =

{(
0
0

)
,

(
1/2

0

)
,

(
0

1/2

)
,

(
1/2
1/2

)}
.

The endomorphism τ is pre-injective but not injective.
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Dynamical Systems that Satisfy the GOE Theorem

Let (X ,G) be a dynamical system.

Definition

One says that the d.s. (X ,G) satisfies the Garden of Eden theorem if every
endomorphism τ : X → X of (X ,G) satisfies

τ surjective ⇐⇒ τ pre-injective.

Example

Arnold’s cat (T2, f ) satisfies the GOE theorem. Indeed, it is easy to show, using spectral
analysis, that any endomorphism τ of the cat is of the form τ = m Id +nf , for some
m, n ∈ Z. With the exception of the 0-endomorphism, every endomorphism of the cat is
both surjective and pre-injective.
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Anosov Diffeomorphisms

Let f : M → M be a diffeomorphism of a smooth compact manifold M.
One says that f is Anosov if the tangent bundle TM of M continuously splits as a direct
sum TM = Es ⊕ Eu of two df -invariant subbundles Es and Eu such that, with respect to
some (or equivalently any) Riemannian metric on M, the differential df is exponentially
contracting on Es and exponentially expanding on Eu, i. e., there are constants C > 0
and 0 < λ < 1 such that

‖df n(v)‖ ≤ Cλn‖v‖,
‖df −n(w)‖ ≤ Cλn‖w‖

for all x ∈ M, v ∈ Es(x), w ∈ Eu(x), and n ≥ 0.

Example

Arnold’s cat is Anosov.
If we identify the tangent space at x ∈ T2 with R2, the two eigenlines of the cat matrix
yield Eu(x) and Es(x).
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Hyperbolic toral automorphisms

Example

Arnold’s cat can be generalized as follows.
Consider a matrix A ∈ GLn(Z) with no eigenvalue of modulus 1. Then the map

f : Tn → Tn

x 7→ Ax

is an Anosov diffeomorphism of the n-dimensional torus Tn := Rn/Zn.
One says that f is the hyperbolic toral automorphism associated with A.
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A GOE Theorem for Anosov Diffeomorphisms on Tori

Theorem (CC-2016)

Let f be an Anosov diffeomorphism of the n-dimensional torus Tn. Then the d.s. (Tn, f )
satisfies the GOE theorem.

The proof uses two classical results:

Result 1 (Franks [Fra-1970], Manning [Man-1974]) Every Anosov diffeomorphisms of Tn

is topologically conjugate to a hyperbolic toral automorphism.

Result 2 (Walters [Wal-1968]) Every endomorphism of a hyperbolic toral automorphism
on Tn is affine, i. e., of the form x 7→ Bx + c, where B is an integral n × n
matrix and c ∈ Tn.
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on Tn is affine, i. e., of the form x 7→ Bx + c, where B is an integral n × n
matrix and c ∈ Tn.
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General Anosov Diffoemorphisms

Question

Let f be an Anosov diffeomorphism of a smooth compact manifold M. Does the
dynamical system (M, f ) satisfy the GOE theorem?

A homeomorphism f of a topological space X is topologically mixing if, given any two
non-empty open subsets U,V ⊂ X , one has U ∩ f n(V ) 6= ∅ for all but finitely many
n ∈ Z.

Theorem (CC-2015)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold
M. Then (M, f ) has the Myhill property, i.e., every pre-injective continuous map
τ : M → M commuting with f is surjective.

Remark

All known examples of Anosov diffeomorphisms are topologically mixing.
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Algebraic Dynamical Systems

Definition

An algebraic dynamical system is a d.s. (X ,G), where X is a compact metrizable abelian
topological group and G is a countable group acting on X by continuous group
automorphisms.

Example

Let G be a countable group and A a c.m.a.t. group. Then AG is a c.m.a.t. group. The
shift system (AG ,G) is an a.d.s.

Example

Arnold’s cat (T2,Z) is an a.d.s.
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 27 / 33



Algebraic Dynamical Systems

Definition

An algebraic dynamical system is a d.s. (X ,G), where X is a compact metrizable abelian
topological group and G is a countable group acting on X by continuous group
automorphisms.

Example

Let G be a countable group and A a c.m.a.t. group. Then AG is a c.m.a.t. group. The
shift system (AG ,G) is an a.d.s.

Example

Arnold’s cat (T2,Z) is an a.d.s.
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Principal Algebraic Dynamical Systems

Let G be a countable group and denote by Z[G ] its integral group ring.

If M is a countable left Z[G ]-module, then its Pontryagin dual M̂ (the character group of

the additive group M) is a c.m.a.t. group. G acts on M and hence (by dualizing) on M̂

by continuous group automorphisms. (M̂,G) is an a.d.s.
Every a.d.s. can be obtained in this way (see [Sch-1995]).
In the case M = Z[G ]/(f ), where (f ) = Z[G ]f denotes the left ideal generated by

f ∈ Z[G ], one writes Xf := M̂ and one says that (Xf ,G) is the principal a.d.s. associated
with f .
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Convolution Product

Let G be a countable group.

`1(G) := {η : G → R :
∑
g∈G

|η(g)| <∞}.

`∞(G) := {ξ : G → R : sup
g∈G
|ξ(g)| <∞}.

G ⊂ Z[G ] ⊂ `1(G) ⊂ `∞(g).

For η ∈ `1(G) and ξ ∈ `∞(G), define η ? ξ by

(η ? ξ)(g) :=
∑

g1,g2∈G :
g1g2=g

η(g1)ξ(g2) =
∑
h∈G

η(gh−1)ξ(h).

? extends the group operation on G ;

(`1(G), ?) is a Banach algebra.
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GOE Theorems for Principal Algebraic Dynamical Systems

Theorem (Li-2017)

Let G be a countable amenable group and let f ∈ Z[G ] such that f is invertible in `1(G).
Then the p.a.d.s. (Xf ,G) satisfies the GOE theorem.

The fact that f ∈ Z[G ] is invertible in `1(G) is equivalent to the expansiveness of (Xf ,G).
A sufficient condition for f ∈ Z[G ] to be invertible in `1(G) is that f is lopsided, i.e.,
there exists g0 ∈ G such that

|f (g0)| >
∑
g 6=g0

|f (g)|.
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GOE Theorems for Principal Algebraic Dynamical Systems (continued)

C0(G) := {ξ : G → R : lim
g→∞

ξ(g) = 0} ⊂ `∞(G).

Definition

An element f ∈ Z[G ] is weakly expansive if it satisfies:

(C1) ∀ξ ∈ C0(G), f ? ξ = 0 =⇒ ξ = 0;

(C2) ∃ω ∈ C0(G) such that f ? ω = 1G .

f invertible in `1(G) =⇒ f weakly expansive.

Theorem (CCL-2018)

Let G be a countable abelian group and let f ∈ Z[G ] such that f is weakly expansive and
Xf is connected. Then the p.a.d.s. (Xf ,G) satisfies the GOE theorem.

Example

Take g := Z3, so that Z[G ] = Z[u±, v±,w±] is the ring of Laurent polynomials on 3
indeterminates. Then f := 6− u − u−1 − v − v−1 − w − w−1 satisfies the hypotheses of
the previous theorem but is not invertible in `1(G). Thus (Xf ,G) satisfies the GOE
theorem. This dynamical system is known as the 3-dimensional harmonic model.
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 31 / 33



GOE Theorems for Principal Algebraic Dynamical Systems (continued)

C0(G) := {ξ : G → R : lim
g→∞

ξ(g) = 0} ⊂ `∞(G).

Definition

An element f ∈ Z[G ] is weakly expansive if it satisfies:

(C1) ∀ξ ∈ C0(G), f ? ξ = 0 =⇒ ξ = 0;

(C2) ∃ω ∈ C0(G) such that f ? ω = 1G .

f invertible in `1(G) =⇒ f weakly expansive.

Theorem (CCL-2018)

Let G be a countable abelian group and let f ∈ Z[G ] such that f is weakly expansive and
Xf is connected. Then the p.a.d.s. (Xf ,G) satisfies the GOE theorem.

Example

Take g := Z3, so that Z[G ] = Z[u±, v±,w±] is the ring of Laurent polynomials on 3
indeterminates. Then f := 6− u − u−1 − v − v−1 − w − w−1 satisfies the hypotheses of
the previous theorem but is not invertible in `1(G). Thus (Xf ,G) satisfies the GOE
theorem. This dynamical system is known as the 3-dimensional harmonic model.
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Michel Coornaert (IRMA, Université de Strasbourg) The Garden of Eden Theorem April 11, 2018 31 / 33



GOE Theorems for Principal Algebraic Dynamical Systems (continued)

C0(G) := {ξ : G → R : lim
g→∞

ξ(g) = 0} ⊂ `∞(G).

Definition

An element f ∈ Z[G ] is weakly expansive if it satisfies:

(C1) ∀ξ ∈ C0(G), f ? ξ = 0 =⇒ ξ = 0;

(C2) ∃ω ∈ C0(G) such that f ? ω = 1G .

f invertible in `1(G) =⇒ f weakly expansive.

Theorem (CCL-2018)

Let G be a countable abelian group and let f ∈ Z[G ] such that f is weakly expansive and
Xf is connected.

Then the p.a.d.s. (Xf ,G) satisfies the GOE theorem.

Example

Take g := Z3, so that Z[G ] = Z[u±, v±,w±] is the ring of Laurent polynomials on 3
indeterminates. Then f := 6− u − u−1 − v − v−1 − w − w−1 satisfies the hypotheses of
the previous theorem but is not invertible in `1(G). Thus (Xf ,G) satisfies the GOE
theorem. This dynamical system is known as the 3-dimensional harmonic model.
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