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General Notation

Z := {. . . ,−1, 0, 1, 2, . . . }

is the set of integers.
Given m, n ∈ Z, we write

[m, n] := {k ∈ Z| m ≤ k ≤ n}.

N := {0, 1, 2, . . . }

is the set of non-negative integers.
Given a map f : X → Y and a subset Z ⊂ X , the restriction of f to Z is the map
f |Z : Z → Y defined by f |Z (z) = f (z) for all z ∈ Z .
Given a map f : X → X , we write Fix(f ) := {x ∈ X | f (x) = x}.
If X is a finite set, |X | denotes the cardinality of X .
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Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 2 / 29



General Notation

Z := {. . . ,−1, 0, 1, 2, . . . }

is the set of integers.
Given m, n ∈ Z, we write

[m, n] := {k ∈ Z| m ≤ k ≤ n}.

N := {0, 1, 2, . . . }

is the set of non-negative integers.
Given a map f : X → Y and a subset Z ⊂ X ,

the restriction of f to Z is the map
f |Z : Z → Y defined by f |Z (z) = f (z) for all z ∈ Z .
Given a map f : X → X , we write Fix(f ) := {x ∈ X | f (x) = x}.
If X is a finite set, |X | denotes the cardinality of X .
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Configurations

A is a finite set, called the alphabet.

AZ = {x : Z→ A}

is called the set of configurations (over the alphabet A).
Thus, a configuration x ∈ AZ is a bi-infinite sequence

. . . x(−1)x(0)x(1)x(2) . . .

whose terms are elements of A.

Exercise 1

Show that if |A| ≥ 2 then AZ is uncountable.
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The Topology on AZ

Given configurations x , y ∈ AZ, we put

v(x , y) := sup{n ∈ N| x |[−n+1,n−1] = y |[−n+1,n−1]}.

Thus v(x , y) ∈ N ∪ {∞}.
We define d(x , y) by

d(x , y) := 2−v(x,y),

where we use the convention 2−∞ = 0.
Thus

d(x , y) ∈ {0, 1, 1

2
,

1

4
,

1

8
, . . . }.

We have that d(x , y) =
1

2n
if and only if

(x(k) = y(k) ∀k ∈ [−n + 1, n − 1]) and (x(n) 6= y(n) or x(−n) 6= y(−n)).
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The Topology on AZ (continued)

Proposition 1

d is a metric on AZ.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
For all x , y , z ∈ AZ, we have that

v(x , y) ≥ min(v(x , z), v(z , y)).

This implies

d(x , y) ≤ max(d(x , z), d(z , y)) (ultrametric inequality)

and hence
d(x , y) ≤ d(x , z) + d(z , y) (triangle inequality).

We equip AZ with the topology defined by d . This topology is called the prodiscrete
topology on AZ.
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The Topology on AZ (continued)

Exercise 2

Let x ∈ AZ. Show that the sets

Vn(x) := {y ∈ AZ | x |[−n,n] = y |[−n,n]},

with n running over N, form a base of neighborhoods of x . Show that each Vn(x) is both
closed and open in AZ.

Exercise 3

Show that if |A| ≥ 2 then AZ has no isolated points.

Exercise 4

Show that a sequence (xn)n∈N of elements of AZ converges to y ∈ AZ if and only if

∀k ∈ Z, ∃n0 = n0(k) ∈ N such that n ≥ n0 =⇒ xn(k) = y(k).

Exercise 5

Show that AZ is compact.
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The Topology on AZ (continued)

Exercise 6

For k ∈ Z, let πk : AZ → A be the map defined by πk(x) = x(k) for all x ∈ AZ. Equip A
with its discrete topology. Show that the topology on AZ is the coarsest topology on AZ

such that all maps πk are continuous.

Exercise 7

Show that AZ is totally disconnected, that is, every non-empty connected subset of AZ is
reduced to a single configuration.
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The Shift on AZ

The shift on AZ is the map

σ : AZ → AZ

x 7→ σ(x) = y ,

where
y(k) = x(k − 1) ∀k ∈ Z.

Example

Here A = {0, 1}.

x = . . . 11100101001101110000100011 . . . then

σ(x) = . . . ?1110010100110111000010001 . . .
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The Shift on AZ (continued)

The shift σ is bijective with inverse map

σ−1 : AZ → AZ

x 7→ σ−1(x) = z ,
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The Shift on AZ (continued)

Proposition 2

The shift σ : AZ → AZ is a homeomorphism.

Proof.

Observe that
v(x , y)− 1 ≤ v(σ(x), σ(y)) ≤ v(x , y) + 1

so that
1

2
d(x , y) ≤ d(σ(x), σ(y)) ≤ 2d(x , y)

for all x , y ∈ AZ.
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Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 10 / 29



The Shift on AZ (continued)

Proposition 2

The shift σ : AZ → AZ is a homeomorphism.

Proof.

Observe that
v(x , y)− 1 ≤ v(σ(x), σ(y)) ≤ v(x , y) + 1

so that
1

2
d(x , y) ≤ d(σ(x), σ(y)) ≤ 2d(x , y)

for all x , y ∈ AZ.
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The Shift on AZ (continued)

Exercise 8

Let n ≥ 1 be an integer. Show that Fix(σn) is finite and has cardinality |Fix(σn)| = |A|n.

One says that a configuration x ∈ AZ is periodic if there exists an integer n ≥ 1 such that
x ∈ Fix(σn).

Exercise 9

Show that the set of periodic configurations is a countable dense subset of AZ.

Exercise 10

Show that there exists x ∈ AZ whose positive σ-orbit {σn(x)| n ≥ 1} is dense in AZ.
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Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 11 / 29



The Shift on AZ (continued)

Exercise 8
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Cellular Automata

Definition

A map τ : AZ → AZ is a cellular automaton if there exists a finite subset M ⊂ Z and a
map AM → A such that

(τ(x))(k) = µ((σ−k(x))|M) ∀k ∈ Z.

Such a set M is called a memory set for τ and µ is the associated local defining map.

Let τ : AZ → AZ be a cellular automaton with memory set M. Then:

if x ∈ AZ, then the value of τ(x) at k ∈ Z only depends on x |k+M ;

the local defining map µ : AM → A is entirely determined by τ and M;

every finite subset of Z containing M is also a memory set for τ ;

if M1 and M2 are memory sets for τ , then M1 ∩M2 is also a memory set for τ ;

there is a unique memory set for τ with minimal cardinality. This memory set is
called the minimal memory set of τ . It is contained in every memory set of τ .
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Example 1

Take A := {0, 1} and consider the map τ : AZ → AZ given by

(τ(x))(k) := x(k) · x(k + 1) =

{
1 if x(k) = x(k + 1) = 1,

0 otherwise
∀x ∈ AZ, k ∈ Z.

For example, if

x = . . . 11100101001101110000100011 . . . then

τ(x) = . . . 1100000000100110000000001? . . .

τ is a cellular automaton with minimal memory set M = {0, 1} and local defining map
µ : AM = A2 → A given by

00 7→ 0, 01 7→ 0, 10 7→ 0, 11 7→ 1.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 13 / 29



Example 1

Take A := {0, 1} and consider the map τ : AZ → AZ given by

(τ(x))(k) := x(k) · x(k + 1) =

{
1 if x(k) = x(k + 1) = 1,

0 otherwise
∀x ∈ AZ, k ∈ Z.

For example, if

x = . . . 11100101001101110000100011 . . . then

τ(x) = . . . 1100000000100110000000001? . . .

τ is a cellular automaton with minimal memory set M = {0, 1} and local defining map
µ : AM = A2 → A given by

00 7→ 0, 01 7→ 0, 10 7→ 0, 11 7→ 1.
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Example 2

Take A := {0, 1} and τ : AZ → AZ given by

(τ(x))(k) := x(k) + x(k + 1) mod 2 ∀x ∈ AZ, k ∈ Z.

For example, if

x = . . . 11100101001101110000100011 . . . then

τ(x) = . . . 0010111101011001000110010? . . .

τ is a cellular automaton with minimal memory set M = {0, 1} and local defining map
µ : AM = A2 → A given by

00 7→ 0, 01 7→ 1, 10 7→ 1, 11 7→ 0.
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Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 14 / 29



Example 2

Take A := {0, 1} and τ : AZ → AZ given by

(τ(x))(k) := x(k) + x(k + 1) mod 2 ∀x ∈ AZ, k ∈ Z.

For example, if

x = . . . 11100101001101110000100011 . . . then

τ(x) = . . . 0010111101011001000110010? . . .

τ is a cellular automaton with minimal memory set M = {0, 1} and local defining map
µ : AM = A2 → A given by

00 7→ 0, 01 7→ 1, 10 7→ 1, 11 7→ 0.
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Example 3

Take A := {(shape, color)}, where

shape ∈ {square, disc} color ∈ {green, red, yellow}.

Thus the alphabet A has cardinality 2× 3 = 6. The map τ : AZ → AZ, defined by

shape((τ(x))(k)) = shape(x(k−1)) color((τ(x))(k)) = color(x(k+1)) ∀x ∈ AZ, k ∈ Z,

is a cellular automaton with minimal memory set M = {−1, 1}.
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Example 3 (continued)

x := •• ••

τ(x) = •• • • ••
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Topological Characterization of Cellular Automata

Theorem 1 (Curtis-Hedlund-Lyndon Theorem)

Let τ : AZ → AZ be a map. Then the following conditions are equivalent:

(a) τ is a cellular automaton;

(b) τ is continuous and σ ◦ τ = τ ◦ σ.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 17 / 29



Topological Characterization of Cellular Automata

Theorem 1 (Curtis-Hedlund-Lyndon Theorem)

Let τ : AZ → AZ be a map. Then the following conditions are equivalent:

(a) τ is a cellular automaton;

(b) τ is continuous and σ ◦ τ = τ ◦ σ.
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Topological Characterization of Cellular Automata (continued)

A subset X ⊂ AZ is called a subshift if X is closed in AZ and σ(X ) = X .

Corollary 1

If τ : AZ → AZ is a cellular automaton, then τ(AZ) is a subshift.

Corollary 2

Let τ1, τ2 : AZ → AZ be cellular automata. Then τ1 ◦ τ2 is a cellular automaton.

Corollary 3

Let τ : AZ → AZ be a bijective cellular automaton. Then τ−1 : AZ → AZ is also a cellular
automaton.
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Topological Characterization of Cellular Automata (continued)

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift X ⊂ {0, 1}Z
consisting of all configurations x ∈ {0, 1}Z such that (x(k), x(k + 1), x(k + 2)) 6= (1, 0, 1)
for every k ∈ Z.

Exercise 12

Let τ : AZ → AZ be a cellular automaton and let n ≥ 1 be an integer. Show that
τ(Fix(σn)) ⊂ Fix(σn).

Exercise 13

Let τ1, τ2 : AZ → AZ be cellular automata. Show that if M1 is a memory set for τ1 and
M2 is a memory set for τ2, then M1 + M2 is a memory set for τ1 ◦ τ2.
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Pre-injectivity

One says that the configurations x , y ∈ AZ are almost equal and one writes x ∼ y if the
set

{k ∈ Z| x(k) 6= y(k)}

is finite.
∼ is an equivalence relation on AZ.

Definition

One says that a cellular automaton τ : AZ → AZ is pre-injective if the restriction of τ to
each equivalence class of ∼ is injective.
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem)

Let τ : AZ → AZ be a cellular automaton. Then
τ surjective ⇐⇒ τ pre-injective.

=⇒ is due to Moore,
⇐= is due to Myhill.

Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not
injective). Show directly that it is not surjective.

Exercise 15

Show that the cellular automaton in Example 2 is pre-injective but not injective. Show
directly that it is surjective.

Exercise 16

Show that the cellular automaton in Example 3 is injective (and hence pre-injective).
Show directly that it is surjective.
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The Garden of Eden Theorem (continued)

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is
the following.

Corollary 4

Every injective cellular automaton τ : AZ → AZ is surjective (and hence bijective).

Exercise 17 (An alternative proof)

Let τ : AZ → AZ be an injective cellular automaton. Use Exercise 8 and Exercise 12 to
prove that τ(Fix(σn)) = Fix(σn) for every integer n ≥ 1. Use Exercise 9 to conclude that
τ is surjective.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 22 / 29



The Garden of Eden Theorem (continued)

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is
the following.

Corollary 4

Every injective cellular automaton τ : AZ → AZ is surjective (and hence bijective).

Exercise 17 (An alternative proof)

Let τ : AZ → AZ be an injective cellular automaton. Use Exercise 8 and Exercise 12 to
prove that τ(Fix(σn)) = Fix(σn) for every integer n ≥ 1. Use Exercise 9 to conclude that
τ is surjective.
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Proof of the Garden of Eden Theorem

Let X ⊂ AZ such that σ(X ) = X .
For every integer n ≥ 1, we write

Xn := {x |[1,n] | x ∈ X}.

Lemma 1

|Xn+m| ≤ |Xn| · |Xm|

for all integers n,m ≥ 1.

Definition

The entropy of X is

ent(X ) := lim
n→∞

log |Xn|
n

.
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Proof of the Garden of Eden Theorem (continued)

Remark

The limit in the definition of ent(X ) is a true limit since the sequence (log |Xn|)n≥1 is
subadditive by Lemma 1.

Remark

We always have ent(X ) ≤ log |A| since |Xn| ≤ |A|n and hence log |Xn| ≤ n log |A|.
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let τ : AZ → AZ be a cellular automaton and let X := τ(AZ) denote the image of τ .
Then the following conditions are equivalent:

(a) τ is surjective;

(b) ent(X ) = log |A|;
(c) τ is pre-injective.

Proof. We can assume |A| ≥ 2.
(a) =⇒ (b). Suppose that τ is surjective, that is, X = AZ. Then Xn = An, so that

ent(X ) = lim
n→∞

log |Xn|
n

= lim
n→∞

log |An|
n

= lim
n→∞

n log |A|
n

= log |A|.
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Proof of the Garden of Eden Theorem (continued)

(b) =⇒ (a).
Suppose that τ is not surjective.
As X is a closed subset of AZ (cf. Corollary 1), the set AZ \ X is a non-empty open
subset of AZ. Consequently, there exists an integer n ≥ 1 such that Xn is a proper subset
of An, so that |Xn| ≤ |A|n − 1.
For every integer i ≥ 1, we then have

|Xin| ≤ |Xn|i ≤ (|A|n − 1)i = |A|in
(

1− 1

|A|n

)i

.

This implies

ent(X ) = lim
i→∞

log |Xin|
in

≤ log |A|+ 1

n
log

(
1− 1

|A|n

)
< log |A|.
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Proof of the Garden of Eden Theorem (continued)
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Proof of the Garden of Eden Theorem (continued)

(c) =⇒ (b).
Suppose that (b) is not satisfied, i.e., ent(X ) < log |A|.
Let m ∈ N such that [−m,m] is a memory set for τ .
Fix some a0 ∈ a. Let n ≥ 1 and consider the set

Y := {x ∈ AZ| x(k) = a0 ∀k ∈ Z \ [1, n]}.

We have that |Y | = |A|n.
Observe that |τ(Y )| ≤ |Xn+2m|.
As

lim
n→∞

log |Xn+2m|
n

= lim
n→∞

log |Xn+2m|
n + 2m

= ent(X ) < log |A|,

There exists n ≥ 1 such that
|Xn+2m| < |A|n.

this implies |τ(Y )| < |Y |.
By the pigeon-hole principle, there exist distinct configurations y1, y2 ∈ Y such that
τ(y1) = τ(y2).
As all configurations in Y are almost equal (they coincide outside of [1, n]), this shows
that τ is not pre-injective.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 27 / 29



Proof of the Garden of Eden Theorem (continued)

(c) =⇒ (b).

Suppose that (b) is not satisfied, i.e., ent(X ) < log |A|.
Let m ∈ N such that [−m,m] is a memory set for τ .
Fix some a0 ∈ a. Let n ≥ 1 and consider the set

Y := {x ∈ AZ| x(k) = a0 ∀k ∈ Z \ [1, n]}.

We have that |Y | = |A|n.
Observe that |τ(Y )| ≤ |Xn+2m|.
As

lim
n→∞

log |Xn+2m|
n

= lim
n→∞

log |Xn+2m|
n + 2m

= ent(X ) < log |A|,

There exists n ≥ 1 such that
|Xn+2m| < |A|n.

this implies |τ(Y )| < |Y |.
By the pigeon-hole principle, there exist distinct configurations y1, y2 ∈ Y such that
τ(y1) = τ(y2).
As all configurations in Y are almost equal (they coincide outside of [1, n]), this shows
that τ is not pre-injective.
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Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 27 / 29



Proof of the Garden of Eden Theorem (continued)

(c) =⇒ (b).
Suppose that (b) is not satisfied, i.e., ent(X ) < log |A|.
Let m ∈ N such that [−m,m] is a memory set for τ .

Fix some a0 ∈ a. Let n ≥ 1 and consider the set

Y := {x ∈ AZ| x(k) = a0 ∀k ∈ Z \ [1, n]}.

We have that |Y | = |A|n.
Observe that |τ(Y )| ≤ |Xn+2m|.
As

lim
n→∞

log |Xn+2m|
n

= lim
n→∞

log |Xn+2m|
n + 2m

= ent(X ) < log |A|,

There exists n ≥ 1 such that
|Xn+2m| < |A|n.

this implies |τ(Y )| < |Y |.
By the pigeon-hole principle, there exist distinct configurations y1, y2 ∈ Y such that
τ(y1) = τ(y2).
As all configurations in Y are almost equal (they coincide outside of [1, n]), this shows
that τ is not pre-injective.
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Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 27 / 29



Proof of the Garden of Eden Theorem (continued)

(c) =⇒ (b).
Suppose that (b) is not satisfied, i.e., ent(X ) < log |A|.
Let m ∈ N such that [−m,m] is a memory set for τ .
Fix some a0 ∈ a. Let n ≥ 1 and consider the set

Y := {x ∈ AZ| x(k) = a0 ∀k ∈ Z \ [1, n]}.

We have that |Y | = |A|n.
Observe that |τ(Y )| ≤ |Xn+2m|.
As

lim
n→∞

log |Xn+2m|
n

= lim
n→∞

log |Xn+2m|
n + 2m

= ent(X ) < log |A|,

There exists n ≥ 1 such that
|Xn+2m| < |A|n.

this implies |τ(Y )| < |Y |.
By the pigeon-hole principle, there exist distinct configurations y1, y2 ∈ Y such that
τ(y1) = τ(y2).
As all configurations in Y are almost equal (they coincide outside of [1, n]), this shows
that τ is not pre-injective.
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Proof of the Garden of Eden Theorem (continued)

(b) =⇒ (c).
Suppose that τ is not pre-injective.
Then there exist an integer n ≥ 1 and distinct elements p, q ∈ A[1,n] that are mutually
erasable, i.e., if x , y ∈ AZ coincide on Z \ [1, n] and satisfy x |[1,n] = p and y |[1,n] = q, then
τ(x) = τ(y).
We then deduce that, for every i ≥ 1,

|Xin| ≤ (|A|n − 1)i |A|2m,

where m is such that [−m,m] is a memory set for τ .
This implies

ent(X ) = lim
i→∞

log |Xin|
in

≤ log |A|+ 1

n
log

(
1− 1

|A|n

)
< log |A|.

Exercise 18

Compute the entropy of the image subshift of the cellular automaton in Example 1.
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