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General Notation

Z={.,-1,01,2,...}

is the set of integers.
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General Notation

Z={.,-1,01,2,...}

is the set of integers.
Given m, n € Z, we write
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is the set of non-negative integers.
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General Notation

Z={.,-1,01,2,...}

is the set of integers.
Given m, n € Z, we write

[m,n] :=={k € Z| m < k < n}.

N:={0,1,2,...}

is the set of non-negative integers.
Given a map f: X — Y and a subset Z C X,
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General Notation

Z={.,-1,01,2,...}

is the set of integers.
Given m, n € Z, we write

[m,n] :=={k € Z| m < k < n}.

N:={0,1,2,...}

is the set of non-negative integers.
Given a map f: X — Y and a subset Z C X, the restriction of f to Z is the map
flz: Z — Y defined by f|z(z) = f(z) for all z € Z.
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General Notation

Z={.,-1,01,2,...}

is the set of integers.
Given m, n € Z, we write

[m,n] :=={k € Z| m < k < n}.

N:={0,1,2,...}

is the set of non-negative integers.

Given a map f: X — Y and a subset Z C X, the restriction of f to Z is the map
flz: Z — Y defined by f|z(z) = f(z) for all z € Z.

Given a map f: X — X, we write Fix(f) = {x € X| f(x) = x}.
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General Notation

zZ={..,-1012...}
is the set of integers.

Given m, n € Z, we write

[m,n] :=={k € Z| m < k < n}.

N:={0,1,2,...}

is the set of non-negative integers.

Given a map f: X — Y and a subset Z C X, the restriction of f to Z is the map
flz: Z — Y defined by f|z(z) = f(z) for all z € Z.

Given a map f: X — X, we write Fix(f) = {x € X| f(x) = x}.

If X is a finite set, |X| denotes the cardinality of X.
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Configurations

A is a finite set, called the alphabet.
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Configurations

A is a finite set, called the alphabet.

AL = {x:Z — A}

is called the set of configurations (over the alphabet A).
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Configurations

A is a finite set, called the alphabet.

AL = {x:Z — A}

is called the set of configurations (over the alphabet A).
Thus, a configuration x € A” is a bi-infinite sequence

cx(=1)x(0)x(1)x(2) ...

whose terms are elements of A.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 3/29



Configurations

A is a finite set, called the alphabet.

AL = {x:Z — A}

is called the set of configurations (over the alphabet A).
Thus, a configuration x € AZ is a bi-infinite sequence

cx(=1)x(0)x(1)x(2) ...

whose terms are elements of A.

Exercise 1
Show that if |A| > 2 then A% is uncountable. J
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The Topology on AZ

Given configurations x, y € A%, we put

V(X,y) = sup{n € N| X|[7n+1,n71] = }/‘[*nJrl,n—l]}'
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The Topology on AZ

Given configurations x, y € A%, we put

v(x,y) =sup{n € N| x|—pt1,n-1] = ¥l{=n+1,0-1}-
Thus v(x,y) € NU {oo}.
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The Topology on AZ

Given configurations x, y € A%, we put

V(X,y) = sup{n € N| X|[7n+1,n71] = }/‘[*nJrl,n—l]}'

Thus v(x,y) € NU {oo}.
We define d(x,y) by
d(x,y) =27,

where we use the convention 27°° = 0.
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The Topology on AZ

Given configurations x, y € A%, we put

V(X,y) = sup{n € N| X|[7n+1,n71] = }/‘[*nJrl,n—l]}'

Thus v(x,y) € NU {oo}.
We define d(x,y) by
d(x,y) =27,

where we use the convention 27°° = 0.

Thus
11

d 1,-,>
() €{0,1,5, 7,

Y
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The Topology on AZ

Given configurations x, y € A%, we put

V(X,y) = sup{n € N| X|[7n+1,n71] = }/‘[*nJrl,n—l]}'

Thus v(x,y) € NU {oo}.
We define d(x,y) by
d(x,y) =27,

where we use the convention 27°° = 0.
Thus
11

d 1,-,>
() €{0,1,5, 7,

Y

| =

We have that d(x,y) = % if and only if

(x(k) = y(K) ¥k € [~n+1,n—1]) and (x(n) # y(n) or x(~n) # y(~n)).
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The Topology on AZ (continued)

d is a metric on A%,

Proposition 1 J
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The Topology on AZ (continued)

Proposition 1

d is a metric on A%,

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
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The Topology on AZ (continued)

Proposition 1

d is a metric on A%,

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
For all x,y,z € A%, we have that

v(x,y) = min(v(x, 2), v(z,y)).

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 5/29



The Topology on AZ (continued)

Proposition 1

d is a metric on A%,

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
For all x,y,z € AZ, we have that

v(x,y) 2 min(v(x, z), v(z,y))-
This implies

d(x,y) < max(d(x, z),d(z,y)) (ultrametric inequality)
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The Topology on AZ (continued)

Proposition 1

d is a metric on A%,

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
For all x,y,z € AZ, we have that

v(x,y) > min(v(x, z), v(z, y)).
This implies
d(x,y) < max(d(x, z),d(z,y)) (ultrametric inequality)

and hence
d(x,y) <d(x,z)+ d(z,y) (triangle inequality).
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The Topology on AZ (continued)

Proposition 1

d is a metric on A%,

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
For all x,y,z € AZ, we have that

v(x,y) > min(v(x, z), v(z, y)).
This implies
d(x,y) < max(d(x, z),d(z,y)) (ultrametric inequality)

and hence
d(x,y) <d(x,z)+ d(z,y) (triangle inequality).

We equip AZ with the topology defined by d.
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The Topology on AZ (continued)

Proposition 1

d is a metric on A%,

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle
inequality.
For all x,y,z € AZ, we have that

v(x,y) > min(v(x, z), v(z, y)).
This implies
d(x,y) < max(d(x, z),d(z,y)) (ultrametric inequality)

and hence
d(x,y) <d(x,z)+ d(z,y) (triangle inequality).

O
v
We equip AZ with the topology defined by d. This topology is called the prodiscrete
topology on AZ.
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The Topology on AZ (continued)
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The Topology on AZ (continued)

Exercise 2

Let x € AZ. Show that the sets

Va(x) = {y € A* | X|(—nn] = Yl{=mnl}:

with n running over N, form a base of neighborhoods of x. Show that each V,(x) is both
closed and open in AZ.
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The Topology on AZ (continued)

Exercise 2
Let x € A%. Show that the sets
Va(x) = {y € A | Xli—nn = Yli=na}y
with n running over N, form a base of neighborhoods of x. Show that each V,(x) is both

closed and open in A%.
v

Exercise 3

Show that if |A| > 2 then A% has no isolated points.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 6 /29



The Topology on AZ (continued)

Exercise 2

Let x € AZ. Show that the sets
Va(x) ={y € A* | X|i_pn) = Yl{=nni},

with n running over N, form a base of neighborhoods of x. Show that each V,(x) is both

closed and open in A%.
v

Exercise 3

Show that if |A| > 2 then A% has no isolated points.

Exercise 4

Show that a sequence (xn)nen Of elements of AZ converges to y € AZ if and only if

Vk € Z,3ng = no(k) € N such that n > ng = xa(k) = y(k).
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The Topology on AZ (continued)

Exercise 2

Let x € AZ. Show that the sets
Va(x) ={y € A* | X|i_pn) = Yl{=nni},

with n running over N, form a base of neighborhoods of x. Show that each V,(x) is both

closed and open in A%.
v

Exercise 3

Show that if |A| > 2 then A% has no isolated points.

Exercise 4

Show that a sequence (xn)nen Of elements of AZ converges to y € AZ if and only if

Vk € Z,3ng = no(k) € N such that n > ng = xa(k) = y(k).

Exercise 5

Show that A% is compact.
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The Topology on AZ (continued)
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The Topology on AZ (continued)

Exercise 6

For k € Z, let wx: A” — A be the map defined by mx(x) = x(k) for all x € A%. Equip A
with its discrete topology. Show that the topology on AZ is the coarsest topology on A”
such that all maps 7 are continuous.
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The Topology on AZ (continued)

Exercise 6

For k € Z, let wx: A” — A be the map defined by mx(x) = x(k) for all x € A%. Equip A
with its discrete topology. Show that the topology on AZ is the coarsest topology on A”
such that all maps 7 are continuous.

Exercise 7

Show that A% is totally disconnected, that is, every non-empty connected subset of AZ is
reduced to a single configuration.
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The Shift on AZ

The shift on AZ is the map
o: Al — A%
x> o(x) =y,

where
y(k) =x(k—-1) VkeZ.
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The Shift on AZ

The shift on AZ is the map

o AL — A%

x = o(x) =y,

where
y(k) =x(k—-1) VkeZ.
Example
Here A ={0,1}.
x =...11100101001101110000100011... then
o(x)=...?71110010100110111000010001 .. .
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The Shift on AZ (continued)
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The Shift on AZ (continued)

The shift o is bijective with inverse map
o AT A7
x> o Yx) =z,

where
z(k) =x(k+1) VkeZ.
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The Shift on AZ (continued)

The shift o is bijective with inverse map
ot AT o A7

x> o Yx) =z,

where
z(k) =x(k+1) VkeZ.
Example
Here A = {0, 1}.
x =...11100101001101110000100011. .. then
J_l(X =...11001010011011100001000117...
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The Shift on AZ (continued)
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The Shift on AZ (continued)

Proposition 2 J

The shift o: AZ — A” is a homeomorphism.
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The Shift on AZ (continued)

Proposition 2

The shift o: AZ — A” is a homeomorphism.

Proof.
Observe that
v(x,y) =1 < v(o(x),0(y)) < vix,y) +1
so that 1
5d(x.y) < d(a(x),a(y)) < 2d(x,y)

for all x,y € A%, O

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 10 / 29



The Shift on AZ (continued)
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The Shift on AZ (continued)

Exercise 8

Let n > 1 be an integer. Show that Fix(c") is finite and has cardinality | Fix(a")| = |A|".
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The Shift on AZ (continued)

Exercise 8

Let n > 1 be an integer. Show that Fix(c") is finite and has cardinality | Fix(a")| = |A|".

One says that a configuration x € A% is periodic if there exists an integer n > 1 such that
x € Fix(a").

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 11 /29



The Shift on AZ (continued)

Exercise 8

Let n > 1 be an integer. Show that Fix(c") is finite and has cardinality | Fix(a")| = |A|".

One says that a configuration x € A% is periodic if there exists an integer n > 1 such that
x € Fix(a").

Exercise 9 J

Show that the set of periodic configurations is a countable dense subset of AZ.
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The Shift on AZ (continued)

Exercise 8

Let n > 1 be an integer. Show that Fix(c") is finite and has cardinality | Fix(a")| = |A|".

One says that a configuration x € A% is periodic if there exists an integer n > 1 such that
x € Fix(a").

Exercise 9 J

Show that the set of periodic configurations is a countable dense subset of AZ.

Exercise 10 J

Show that there exists x € A” whose positive a-orbit {o"(x)| n > 1} is dense in A”.
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Cellular Automata

Definition

A map 7: AZ — AZ is a cellular automaton
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AY — A such that

(k) = u((e™*())Im) VK € Z.
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AY — A such that

(k) = u((e™*())Im) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AY — A such that

(k) = u((e™*())Im) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.

Let 7: AZ — AZ be a cellular automaton with memory set M. Then:
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AY — A such that

(k) = u((e™*())Im) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.

Let 7: AZ — AL be a cellular automaton with memory set M. Then:

o if x € A%, then the value of 7(x) at k € Z only depends on x|k m;
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AM — A such that

(r())(K) = u((e™ (x))lm) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.

Let 7: AZ — AL be a cellular automaton with memory set M. Then:

o if x € A%, then the value of 7(x) at k € Z only depends on x|xm;

o the local defining map p: AY — A is entirely determined by 7 and M;
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AM — A such that

(r())(K) = u((e™ (x))lm) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.

Let 7: AZ — AL be a cellular automaton with memory set M. Then:

o if x € A%, then the value of 7(x) at k € Z only depends on x|k m;
o the local defining map p: AY — A is entirely determined by 7 and M;

o every finite subset of Z containing M is also a memory set for 7;
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AM — A such that

(r())(K) = u((e™ (x))lm) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.

Let 7: AZ — AL be a cellular automaton with memory set M. Then:

o if x € A%, then the value of 7(x) at k € Z only depends on x|xm;

©

the local defining map p: AM — A is entirely determined by 7 and M;

()

every finite subset of Z containing M is also a memory set for 7;

(4

if M1 and M, are memory sets for 7, then My N M, is also a memory set for 7;
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Cellular Automata

Definition

A map 7: AZ — A% is a cellular automaton if there exists a finite subset M C Z and a
map AM — A such that

(r())(K) = u((e™ (x))lm) VK € Z.

Such a set M is called a memory set for 7 and p is the associated local defining map.

Let 7: AZ — AL be a cellular automaton with memory set M. Then:

©

if x € A%, then the value of 7(x) at k € Z only depends on x|k u;
the local defining map p: AM — A is entirely determined by 7 and M;
every finite subset of Z containing M is also a memory set for 7;

if M1 and M, are memory sets for 7, then My N M, is also a memory set for 7;

e © o ¢

there is a unique memory set for 7 with minimal cardinality. This memory set is
called the minimal memory set of 7. It is contained in every memory set of 7.
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Example 1

Take A := {0,1} and consider the map 7: A” — A” given by
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Example 1

Take A := {0,1} and consider the map 7: A” — A” given by

1 ifx(k)=x(k+1)=1,

) Vx € A% k € Z.
0 otherwise

(G K) 1= x(k) - x(k +1) = {
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Example 1

Take A := {0,1} and consider the map 7: A” — A” given by

1 ifx(k)=x(k+1)=1
() (k) = x(k) - x(k + 1) :{ Ex(k) =x(k+1) =1, o 42 kez
0 otherwise
For example, if
x =...11100101001101110000100011... then

7(x) = ...11000000001001100000000017. . .
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Example 1

Take A := {0,1} and consider the map 7: A” — A” given by

1 ifx(k)=x(k+1)=1
() (k) = x(k) - x(k + 1) :{ Ex(k) =x(k+1) =1, o 42 kez
0 otherwise
For example, if
x =...11100101001101110000100011... then

7(x) = ...11000000001001100000000017. . .

7 is a cellular automaton
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Example 1

Take A := {0,1} and consider the map 7: A” — A” given by

1 ifx(k)=x(k+1)=1
() (k) = x(k) - x(k + 1) :{ Ex(k) =x(k+1) =1, o 42 kez
0 otherwise
For example, if
x =...11100101001101110000100011... then

7(x) = ...11000000001001100000000017. . .

7 is a cellular automaton with minimal memory set M = {0, 1} and local defining map
W AM = A% 5 A given by

00—0, 01~0, 10—0, 11— 1.
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Example 2

Take A := {0,1} and 7: A — A” given by
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Example 2

Take A := {0,1} and 7: A — A” given by

(7(x))(k) = x(k) + x(k+1) mod 2 Vxe A” k € Z.
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Example 2

Take A := {0,1} and 7: A — A” given by

(7(x))(k) = x(k) + x(k+1) mod 2 Vxe A” k € Z.

For example, if

X
I

...11100101001101110000100011 ... then
...00101111010110010001100107. ..

7(x)
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Example 2

Take A := {0,1} and 7: A — A” given by
(7(x))(k) = x(k) + x(k+1) mod 2 Vxe A” k € Z.
For example, if

X

7(x)

...11100101001101110000100011 ... then
...00101111010110010001100107. ..

7 is a cellular automaton
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Example 2

Take A := {0,1} and 7: A — A” given by
(7(x))(k) = x(k) + x(k+1) mod 2 Vxe A” k € Z.
For example, if

X

7(x)

...11100101001101110000100011 ... then
...00101111010110010001100107. ..

7 is a cellular automaton with minimal memory set M = {0, 1} and local defining map
w: AM = A2 5 A given by

00—0, 01~1, 10—1, 11+—0.
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Example 3

Take A := {(shape, color)}, where
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Example 3

Take A := {(shape, color)}, where

shape € {square,disc} color € {green, red, yellow}.
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Example 3

Take A := {(shape, color)}, where
shape € {square,disc} color € {green, red, yellow}.

Thus the alphabet A has cardinality 2 x 3 = 6.
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Example 3

Take A := {(shape, color)}, where
shape € {square,disc} color € {green, red, yellow}.
Thus the alphabet A has cardinality 2 x 3 = 6. The map 7: A — AZ, defined by

shape((7(x))(k)) = shape(x(k—1)) color((7(x))(k)) = color(x(k+1)) Vx € A" k € Z,
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Example 3

Take A := {(shape, color)}, where

shape € {square,disc} color € {green, red, yellow}.
Thus the alphabet A has cardinality 2 x 3 = 6. The map 7: A — AZ, defined by
shape((7(x))(k)) = shape(x(k—1)) color((7(x))(k)) = color(x(k+1)) Vx € A" k € Z,

is a cellular automaton with minimal memory set M = {—1,1}.
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Example 3 (continued)

o - . ‘

7(x) = oo °
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Topological Characterization of Cellular Automata
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Topological Characterization of Cellular Automata

Theorem 1 (Curtis-Hedlund-Lyndon Theorem)

Let 7: AZ — AT be a map. Then the following conditions are equivalent:
(a) 7 is a cellular automaton;

(b) 7 is continuous and 0 oT =T 0 0.
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Topological Characterization of Cellular Automata (continued)
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Topological Characterization of Cellular Automata (continued)

A subset X C A” is called a subshift if X is closed in A” and o(X) = X.
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Topological Characterization of Cellular Automata (continued)

A subset X C A” is called a subshift if X is closed in A” and o(X) = X.

Corollary 1

If7: A2 — AZ is a cellular automaton, then T(A%) is a subshift.
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Topological Characterization of Cellular Automata (continued)

A subset X C A” is called a subshift if X is closed in A” and o(X) = X.
Corollary 1

If7: A2 — AZ is a cellular automaton, then T(A%) is a subshift.

Corollary 2

Let 71, 72: AZ — AT be cellular automata. Then 71 o T is a cellular automaton. J
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Topological Characterization of Cellular Automata (continued)

A subset X C A” is called a subshift if X is closed in A” and o(X) = X.
Corollary 1

If7: A2 — AZ is a cellular automaton, then T(A%) is a subshift.

Corollary 2

Let 71, 72: AZ — AT be cellular automata. Then 71 o T is a cellular automaton.

Corollary 3

1

Let 7: AZ — AT be a bijective cellular automaton. Then 7—: AZ — AZ is also a cellular

automaton.
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Topological Characterization of Cellular Automata (continued)
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Topological Characterization of Cellular Automata (continued)

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift X C {0,1}*
consisting of all configurations x € {0,1}* such that (x(k), x(k + 1), x(k +2)) # (1,0,1)
for every k € 7.
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Topological Characterization of Cellular Automata (continued)

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift X C {0,1}*

consisting of all configurations x € {0,1}* such that (x(k), x(k + 1), x(k +2)) # (1,0,1)
for every k € 7.

v

Exercise 12

Let 7: A — A” be a cellular automaton and let n > 1 be an integer. Show that
7(Fix(o")) C Fix(a").
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Topological Characterization of Cellular Automata (continued)

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift X C {0,1}*
consisting of all configurations x € {0,1}* such that (x(k), x(k + 1), x(k +2)) # (1,0,1)
for every k € 7.

v

Exercise 12

Let 7: A — A” be a cellular automaton and let n > 1 be an integer. Show that
7(Fix(o")) C Fix(a").

Exercise 13

Let 71, 72: A% — AL be cellular automata. Show that if My is a memory set for 7 and
M, is a memory set for 1>, then My + M> is a memory set for 11 o 7.
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Pre-injectivity

One says that the configurations x, y € A” are almost equal and one writes x ~ y if the
set

{k € Z| x(k) # y(k)}

is finite.
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Pre-injectivity

One says that the configurations x, y € A” are almost equal and one writes x ~ y if the
set

{k € Z| x(k) # y(k)}
is finite.
~ is an equivalence relation on AZ.
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Pre-injectivity

One says that the configurations x, y € A” are almost equal and one writes x ~ y if the
set

{k € Z| x(k) # y(k)}
is finite.
~ is an equivalence relation on AZ.
Definition

One says that a cellular automaton 7: A — A” is pre-injective if the restriction of 7 to
each equivalence class of ~ is injective.
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
Theorem 2 (Garden of Eden Theorem)

Let 7: AZ — A% be a cellular automaton. Then
T surjective <> T pre-injective.
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T surjective <> T pre-injective.

@ — is due to Moore,
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
Theorem 2 (Garden of Eden Theorem)

Let 7: A2 — A% be a cellular automaton. Then
T surjective <> T pre-injective.

@ — is due to Moore,
@ <= is due to Myhill.
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
Theorem 2 (Garden of Eden Theorem)

Let 7: A2 — A% be a cellular automaton. Then
T surjective <> T pre-injective.

@ — is due to Moore,
@ <= is due to Myhill.

Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not
injective). Show directly that it is not surjective.
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
Theorem 2 (Garden of Eden Theorem)

Let 7: A2 — A% be a cellular automaton. Then
T surjective <> T pre-injective.

@ — is due to Moore,
@ <= is due to Myhill.
Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not
injective). Show directly that it is not surjective.

Exercise 15

Show that the cellular automaton in Example 2 is pre-injective but not injective. Show
directly that it is surjective.
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The Garden of Eden Theorem

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].
Theorem 2 (Garden of Eden Theorem)

Let 7: A2 — A% be a cellular automaton. Then
T surjective <> T pre-injective.

@ — is due to Moore,
@ <= is due to Myhill.
Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not
injective). Show directly that it is not surjective.

Exercise 15

Show that the cellular automaton in Example 2 is pre-injective but not injective. Show
directly that it is surjective.

Exercise 16

Show that the cellular automaton in Example 3 is injective (and hence pre-injective).
Show directly that it is surjective.

>
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The Garden of Eden Theorem (continued)
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The Garden of Eden Theorem (continued)

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is
the following.
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The Garden of Eden Theorem (continued)

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is
the following.

Corollary 4
Every injective cellular automaton 7: A” — A” is surjective (and hence bijective). J
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The Garden of Eden Theorem (continued)

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is
the following.

Corollary 4

Every injective cellular automaton 7: A” — A” is surjective (and hence bijective).

Exercise 17 (An alternative proof)

Let 7: A” — A% be an injective cellular automaton. Use Exercise 8 and Exercise 12 to

prove that 7(Fix(c")) = Fix(c") for every integer n > 1. Use Exercise 9 to conclude that
T IS surjective.

i
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Proof of the Garden of Eden Theorem
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Proof of the Garden of Eden Theorem

Let X C AZ such that o(X) = X.
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Proof of the Garden of Eden Theorem

Let X C AZ such that o(X) = X.
For every integer n > 1, we write

X, = {X|[17,,] | X € X}
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Proof of the Garden of Eden Theorem

Let X C AZ such that o(X) = X.
For every integer n > 1, we write

X, = {X|[17,,] | X € X}

Lemma 1

[Xotm| < [ Xal - | Xl

for all integers n,m > 1.
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Proof of the Garden of Eden Theorem

Let X C AZ such that o(X) = X.
For every integer n > 1, we write

Xo = {x[pn | x € X}
Lemma 1

[Xntm| < [Xa] - [ Xom]

for all integers n,m > 1.

Definition
The entropy of X is
ent(X) = lim M.

n—o00 n
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Proof of the Garden of Eden Theorem (continued)
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Proof of the Garden of Eden Theorem (continued)

Remark

The limit in the definition of ent(X) is a true limit since the sequence (log |Xn|)n>1 is
subadditive by Lemma 1.

Michel Coornaert (IRMA, Université de Strasbourg) Symbolic Dynamics April 12, 2018 24 /29



Proof of the Garden of Eden Theorem (continued)

Remark

The limit in the definition of ent(X) is a true limit since the sequence (log |Xn|)n>1 is
subadditive by Lemma 1.

Remark
We always have ent(X) < log |A| since |X,| < |A|” and hence log | X,| < nlog |A].
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Proof of the Garden of Eden Theorem (continued)
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let 7: A” — A” be a cellular automaton and let X := 7(A”) denote the image of T.
Then the following conditions are equivalent:

(a) 7 is surjective;

(b) ent(X) = log |A|;

(c) T is pre-injective.
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let 7: A” — A” be a cellular automaton and let X := 7(A”) denote the image of T.
Then the following conditions are equivalent:

(a) 7 is surjective;

(b) ent(X) = log |A|;

(c) T is pre-injective.

Proof. We can assume |A| > 2.
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let 7: A” — A” be a cellular automaton and let X := 7(A”) denote the image of T.
Then the following conditions are equivalent:

(a) 7 is surjective;

(b) ent(X) = log |A|;

(c) T is pre-injective.

Proof. We can assume |A| > 2.
(@) = (b).
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let 7: A” — A” be a cellular automaton and let X := 7(A”) denote the image of T.
Then the following conditions are equivalent:

(a) 7 is surjective;

(b) ent(X) = log |A|;

(c) T is pre-injective.

Proof. We can assume |A| > 2.
(a) = (b). Suppose that 7 is surjective, that is, X = AZ.
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Proof of the Garden of Eden Theorem (continued)

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let 7: A” — A” be a cellular automaton and let X := 7(A”) denote the image of T.
Then the following conditions are equivalent:

(a) 7 is surjective;

(b) ent(X) = log |A|;

(c) T is pre-injective.

Proof. We can assume |A| > 2.
(a) = (b). Suppose that 7 is surjective, that is, X = A%. Then X, = A", so that

log [ X

. . log|A" .
ent(X) = lim = lim og|A”] = lim
n—oo n n—oo n n—o00

nlog |A|
= log|A|.
o og |A|
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Proof of the Garden of Eden Theorem (continued)
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Proof of the Garden of Eden Theorem (continued)

(b) = (a).
Suppose that 7 is not surjective.
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Proof of the Garden of Eden Theorem (continued)

(b) = (a).

Suppose that 7 is not surjective.

As X is a closed subset of A% (cf. Corollary 1), the set A%\ X is a non-empty open
subset of AZ.
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Proof of the Garden of Eden Theorem (continued)

(b) = (a).

Suppose that 7 is not surjective.

As X is a closed subset of A% (cf. Corollary 1), the set A%\ X is a non-empty open
subset of AZ. Consequently, there exists an integer n > 1 such that X, is a proper subset
of A", so that |X,| < |A]" — 1.
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Proof of the Garden of Eden Theorem (continued)

(b) = (a).

Suppose that 7 is not surjective.

As X is a closed subset of A% (cf. Corollary 1), the set A%\ X is a non-empty open
subset of AZ. Consequently, there exists an integer n > 1 such that X, is a proper subset
of A", so that |X,| < |A]" — 1.

For every integer i > 1, we then have

f o ; iz 1
Xl < Pl < (A7 =1 =14 (1= )
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Proof of the Garden of Eden Theorem (continued)

(b) = (a).

Suppose that 7 is not surjective.

As X is a closed subset of A% (cf. Corollary 1), the set A%\ X is a non-empty open
subset of AZ. Consequently, there exists an integer n > 1 such that X, is a proper subset
of A", so that |X,| < |A]" — 1.

For every integer i > 1, we then have

g @ : s 1\
Xl < 1l < (A" — 1) = |A| (“W) .
This implies
im Iog'|X,-,,|
m

i— 00

1
ent(X) = < log|A| + = Iog( Al ) < log |A|.
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Proof of the Garden of Eden Theorem (continued)
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).
Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).
Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ap € a.
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}
We have that |Y| = |A|]".
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}

We have that |Y| = |A|]".
Observe that |[7(Y)] < | Xnt2m|-
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}

We have that |Y| = |A|]".

Observe that |[7(Y)] < | Xnt2m|-

As
i |0g|Xn+2m| = M |0g|Xn+2m‘ _
n—o0 n n— oo n—+ 2m

ent(X) < log|A|,
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}

We have that |Y| = |A|]".
Observe that |[7(Y)] < | Xnt2m|-

As
. log|X . log|X
lim 1081 Xotom| o log [ Xosom| ent(X) < log A,
n—oo n n—oo n+ 2m
There exists n > 1 such that
| Xnsom| < |A[".
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}

We have that |Y| = |A|]".
Observe that |[7(Y)] < | Xnt2m|-

As
. log|X . log|X
lim 1081 Xotom| o log [ Xosom| ent(X) < log A,
n—oo n n—oo n+ 2m
There exists n > 1 such that
| Xnsom| < |A[".

this implies |7(Y)| < |Y].
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}

We have that |Y| = |A|]".
Observe that |[7(Y)] < | Xnt2m|-

As
. log|X . log|X
lim 1081 Xotom| o log [ Xosom| ent(X) < log A,
n—oo n n—oo n+ 2m
There exists n > 1 such that
| Xnsom| < |A[".

this implies |7(Y)| < |Y].
By the pigeon-hole principle, there exist distinct configurations y1, y» € Y such that
T(n) = 7(y2).
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Proof of the Garden of Eden Theorem (continued)

(c) = (b).

Suppose that (b) is not satisfied, i.e., ent(X) < log |A|.
Let m € N such that [—m, m] is a memory set for 7.
Fix some ag € a. Let n > 1 and consider the set

Y ={xe A" x(k)=a0 VkecZ\I1,n]}

We have that |Y| = |A|]".
Observe that |[7(Y)] < | Xnt2m|-

As
. log|X . log|X
lim 1081 Xotom| o log [ Xosom| ent(X) < log A,
n—oo n n—oo n+ 2m
There exists n > 1 such that
| Xnsom| < |A[".

this implies |7(Y)| < |Y].

By the pigeon-hole principle, there exist distinct configurations y1, y» € Y such that
(1) = 7(y2).

As all configurations in Y are almost equal (they coincide outside of [1, n]), this shows
that 7 is not pre-injective.
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Proof of the Garden of Eden Theorem (continued)
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Proof of the Garden of Eden Theorem (continued)

(b) = (o)
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Proof of the Garden of Eden Theorem (continued)

(b) = ()

Suppose that 7 is not pre-injective.
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Proof of the Garden of Eden Theorem (continued)

(b) = (c).

Suppose that 7 is not pre-injective.

Then there exist an integer n > 1 and distinct elements p, g € A" that are mutually
erasable, i.e., if x,y € A% coincide on Z \ [1, n] and satisfy X|,n] = p and y|j1,; = g, then
T(x) =7(y).
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Proof of the Garden of Eden Theorem (continued)

(b) = (o).
Suppose that 7 is not pre-injective.
Then there exist an integer n > 1 and distinct elements p, g € A" that are mutually
erasable, i.e., if x,y € A% coincide on Z \ [1, n] and satisfy X|,n] = p and y|j1,; = g, then
7(x) = 7(y).
We then deduce that, for every i > 1,

Xl < (JAI" = 1) |APP™,

where m is such that [—m, m] is a memory set for 7.
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Proof of the Garden of Eden Theorem (continued)

(b) = (o).

Suppose that 7 is not pre-injective.

Then there exist an integer n > 1 and distinct elements p, g € A" that are mutually
erasable, i.e., if x,y € A% coincide on Z \ [1, n] and satisfy X|,n] = p and y|j1,; = g, then

7(x) = 7(y).
We then deduce that, for every i > 1,
1 Xin| < (JAI" = 1) |AP",

where m is such that [—m, m] is a memory set for 7.
This implies

. log | Xin
ent(X) = Jim Ogi|n | < log|A| + = Iog( A > < log|A].

Exercise 18 J

Compute the entropy of the image subshift of the cellular automaton in Example 1.
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