An Introduction to Symbolic Dynamics

Michel Coornaert

IRMA, Université de Strasbourg

Galatasaray University, Istanbul

Michel Coornaert (IRMA, Université de Strasbourg)

Symbolic Dynamics

April 12, 2018 1 / 29

Michel Coornaert (IRMA, Université de Strasbourg)

$$\mathbb{Z} := \{\ldots, -1, 0, 1, 2, \dots\}$$

is the set of integers.

$$\mathbb{Z} := \{\ldots, -1, 0, 1, 2, \dots\}$$

is the set of integers. Given $m, n \in \mathbb{Z}$, we write

 $[m,n] := \{k \in \mathbb{Z} | m \le k \le n\}.$

$$\mathbb{Z}:=\{\ldots,-1,0,1,2,\dots\}$$

is the set of integers. Given $m, n \in \mathbb{Z}$, we write

$$[m,n] \coloneqq \{k \in \mathbb{Z} | m \le k \le n\}.$$

$$\mathbb{N} \coloneqq \{0, 1, 2, \dots\}$$

is the set of non-negative integers.

$$\mathbb{Z}:=\{\ldots,-1,0,1,2,\dots\}$$

is the set of integers. Given $m, n \in \mathbb{Z}$, we write

$$[m, n] \coloneqq \{k \in \mathbb{Z} | m \le k \le n\}.$$

$$\mathbb{N} \coloneqq \{0,1,2,\dots\}$$

is the set of non-negative integers. Given a map $f: X \to Y$ and a subset $Z \subset X$,

$$\mathbb{Z}:=\{\ldots,-1,0,1,2,\dots\}$$

is the set of integers. Given $m, n \in \mathbb{Z}$, we write

$$[m,n] \coloneqq \{k \in \mathbb{Z} | m \le k \le n\}.$$

$$\mathbb{N} \coloneqq \{0, 1, 2, \dots\}$$

is the set of non-negative integers.

Given a map $f: X \to Y$ and a subset $Z \subset X$, the restriction of f to Z is the map $f|_Z: Z \to Y$ defined by $f|_Z(z) = f(z)$ for all $z \in Z$.

$$\mathbb{Z} := \{\ldots, -1, 0, 1, 2, \ldots\}$$

is the set of integers. Given $m, n \in \mathbb{Z}$, we write

$$[m,n] \coloneqq \{k \in \mathbb{Z} | m \le k \le n\}.$$

$$\mathbb{N} \coloneqq \{0, 1, 2, \dots\}$$

is the set of non-negative integers.

Given a map $f: X \to Y$ and a subset $Z \subset X$, the restriction of f to Z is the map $f|_Z: Z \to Y$ defined by $f|_Z(z) = f(z)$ for all $z \in Z$. Given a map $f: X \to X$, we write $Fix(f) := \{x \in X | f(x) = x\}$.

$$\mathbb{Z}:=\{\ldots,-1,0,1,2,\dots\}$$

is the set of integers. Given $m, n \in \mathbb{Z}$, we write

$$[m,n] \coloneqq \{k \in \mathbb{Z} | m \le k \le n\}.$$

$$\mathbb{N} \coloneqq \{0, 1, 2, \dots\}$$

is the set of non-negative integers.

Given a map $f: X \to Y$ and a subset $Z \subset X$, the restriction of f to Z is the map $f|_Z: Z \to Y$ defined by $f|_Z(z) = f(z)$ for all $z \in Z$. Given a map $f: X \to X$, we write $Fix(f) := \{x \in X | f(x) = x\}$. If X is a finite set, |X| denotes the cardinality of X.

A is a finite set, called the alphabet.

A is a finite set, called the alphabet.

$$A^{\mathbb{Z}} = \{x \colon \mathbb{Z} \to A\}$$

is called the set of configurations (over the alphabet A).

A is a finite set, called the alphabet.

$$A^{\mathbb{Z}} = \{x \colon \mathbb{Z} \to A\}$$

is called the set of configurations (over the alphabet A). Thus, a configuration $x \in A^{\mathbb{Z}}$ is a bi-infinite sequence

 $\ldots x(-1)x(0)x(1)x(2)\ldots$

whose terms are elements of A.

A is a finite set, called the alphabet.

$$A^{\mathbb{Z}} = \{x \colon \mathbb{Z} \to A\}$$

is called the set of configurations (over the alphabet A). Thus, a configuration $x \in A^{\mathbb{Z}}$ is a bi-infinite sequence

 $\ldots x(-1)x(0)x(1)x(2)\ldots$

whose terms are elements of A.

Exercise 1

Show that if $|A| \ge 2$ then $A^{\mathbb{Z}}$ is uncountable.

Given configurations $x, y \in A^{\mathbb{Z}}$, we put

$$v(x,y) := \sup\{n \in \mathbb{N} | x|_{[-n+1,n-1]} = y|_{[-n+1,n-1]}\}.$$

April 12, 2018

Given configurations $x, y \in A^{\mathbb{Z}}$, we put

$$v(x,y) := \sup\{n \in \mathbb{N} | x|_{[-n+1,n-1]} = y|_{[-n+1,n-1]}\}.$$

Thus $v(x, y) \in \mathbb{N} \cup \{\infty\}$.

Given configurations $x, y \in A^{\mathbb{Z}}$, we put

$$v(x,y) := \sup\{n \in \mathbb{N} | x|_{[-n+1,n-1]} = y|_{[-n+1,n-1]}\}.$$

Thus $v(x, y) \in \mathbb{N} \cup \{\infty\}$. We define d(x, y) by

$$d(x,y) \coloneqq 2^{-v(x,y)},$$

where we use the convention $2^{-\infty} = 0$.

Given configurations $x, y \in A^{\mathbb{Z}}$, we put

$$v(x,y) := \sup\{n \in \mathbb{N} | x|_{[-n+1,n-1]} = y|_{[-n+1,n-1]}\}.$$

Thus $v(x, y) \in \mathbb{N} \cup \{\infty\}$. We define d(x, y) by

$$d(x,y) \coloneqq 2^{-v(x,y)},$$

where we use the convention $2^{-\infty}=0.$ Thus

$$d(x,y) \in \{0,1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\dots\}.$$

Given configurations $x, y \in A^{\mathbb{Z}}$, we put

$$v(x,y) := \sup\{n \in \mathbb{N} | x|_{[-n+1,n-1]} = y|_{[-n+1,n-1]}\}.$$

Thus $v(x, y) \in \mathbb{N} \cup \{\infty\}$. We define d(x, y) by

$$d(x,y) \coloneqq 2^{-v(x,y)},$$

where we use the convention $2^{-\infty}=0.$ Thus

$$d(x,y) \in \{0,1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\dots\}.$$

We have that $d(x, y) = \frac{1}{2^n}$ if and only if

 $(x(k) = y(k) \quad \forall k \in [-n+1, n-1]) \text{ and } (x(n) \neq y(n) \text{ or } x(-n) \neq y(-n)).$

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle inequality.

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle inequality.

For all $x, y, z \in A^{\mathbb{Z}}$, we have that

 $v(x,y) \geq \min(v(x,z),v(z,y)).$

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle inequality.

For all $x, y, z \in A^{\mathbb{Z}}$, we have that

$$v(x,y) \geq \min(v(x,z),v(z,y)).$$

This implies

 $d(x, y) \le \max(d(x, z), d(z, y))$ (ultrametric inequality)

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle inequality.

For all $x, y, z \in A^{\mathbb{Z}}$, we have that

$$v(x,y) \geq \min(v(x,z),v(z,y)).$$

This implies

 $d(x, y) \le \max(d(x, z), d(z, y))$ (ultrametric inequality)

and hence

 $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle inequality.

For all $x, y, z \in A^{\mathbb{Z}}$, we have that

$$v(x,y) \geq \min(v(x,z),v(z,y)).$$

This implies

 $d(x, y) \le \max(d(x, z), d(z, y))$ (ultrametric inequality)

and hence

 $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

We equip $A^{\mathbb{Z}}$ with the topology defined by *d*.

Proposition 1

d is a metric on $A^{\mathbb{Z}}$.

Proof.

Since the other properties are obvious, it suffices to check that d satisfies the triangle inequality.

For all $x, y, z \in A^{\mathbb{Z}}$, we have that

$$v(x,y) \geq \min(v(x,z),v(z,y))$$

This implies

 $d(x, y) \le \max(d(x, z), d(z, y))$ (ultrametric inequality)

and hence

$$d(x,y) \leq d(x,z) + d(z,y)$$
 (triangle inequality).

We equip $A^{\mathbb{Z}}$ with the topology defined by *d*. This topology is called the prodiscrete topology on $A^{\mathbb{Z}}$.

Exercise 2

Let $x \in A^{\mathbb{Z}}$. Show that the sets

$$V_n(x) := \{ y \in A^{\mathbb{Z}} \mid x|_{[-n,n]} = y|_{[-n,n]} \},$$

with n running over \mathbb{N} , form a base of neighborhoods of x. Show that each $V_n(x)$ is both closed and open in $A^{\mathbb{Z}}$.

Exercise 2

Let $x \in A^{\mathbb{Z}}$. Show that the sets

$$V_n(x) := \{ y \in A^{\mathbb{Z}} \mid x|_{[-n,n]} = y|_{[-n,n]} \},$$

with n running over \mathbb{N} , form a base of neighborhoods of x. Show that each $V_n(x)$ is both closed and open in $A^{\mathbb{Z}}$.

Exercise 3

Show that if $|A| \ge 2$ then $A^{\mathbb{Z}}$ has no isolated points.

Exercise 2

Let $x \in A^{\mathbb{Z}}$. Show that the sets

$$V_n(x) := \{ y \in A^{\mathbb{Z}} \mid x|_{[-n,n]} = y|_{[-n,n]} \},$$

with n running over \mathbb{N} , form a base of neighborhoods of x. Show that each $V_n(x)$ is both closed and open in $A^{\mathbb{Z}}$.

Exercise 3

Show that if $|A| \ge 2$ then $A^{\mathbb{Z}}$ has no isolated points.

Exercise 4

Show that a sequence $(x_n)_{n\in\mathbb{N}}$ of elements of $A^{\mathbb{Z}}$ converges to $y\in A^{\mathbb{Z}}$ if and only if

$$\forall k \in \mathbb{Z}, \exists n_0 = n_0(k) \in \mathbb{N} \text{ such that } n \ge n_0 \implies x_n(k) = y(k).$$

Exercise 2

Let $x \in A^{\mathbb{Z}}$. Show that the sets

$$V_n(x) := \{ y \in A^{\mathbb{Z}} \mid x|_{[-n,n]} = y|_{[-n,n]} \},$$

with n running over \mathbb{N} , form a base of neighborhoods of x. Show that each $V_n(x)$ is both closed and open in $A^{\mathbb{Z}}$.

Exercise 3

Show that if $|A| \ge 2$ then $A^{\mathbb{Z}}$ has no isolated points.

Exercise 4

Show that a sequence $(x_n)_{n\in\mathbb{N}}$ of elements of $A^{\mathbb{Z}}$ converges to $y\in A^{\mathbb{Z}}$ if and only if

$$\forall k \in \mathbb{Z}, \exists n_0 = n_0(k) \in \mathbb{N} \text{ such that } n \ge n_0 \implies x_n(k) = y(k).$$

Exercise 5

Show that $A^{\mathbb{Z}}$ is compact.

Exercise 6

For $k \in \mathbb{Z}$, let $\pi_k : A^{\mathbb{Z}} \to A$ be the map defined by $\pi_k(x) = x(k)$ for all $x \in A^{\mathbb{Z}}$. Equip A with its discrete topology. Show that the topology on $A^{\mathbb{Z}}$ is the coarsest topology on $A^{\mathbb{Z}}$ such that all maps π_k are continuous.

Exercise 6

For $k \in \mathbb{Z}$, let $\pi_k : A^{\mathbb{Z}} \to A$ be the map defined by $\pi_k(x) = x(k)$ for all $x \in A^{\mathbb{Z}}$. Equip A with its discrete topology. Show that the topology on $A^{\mathbb{Z}}$ is the coarsest topology on $A^{\mathbb{Z}}$ such that all maps π_k are continuous.

Exercise 7

Show that $A^{\mathbb{Z}}$ is totally disconnected, that is, every non-empty connected subset of $A^{\mathbb{Z}}$ is reduced to a single configuration.
The Shift on $A^{\mathbb{Z}}$

The Shift on $A^{\mathbb{Z}}$

The shift on $A^{\mathbb{Z}}$ is the map

$$\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$x \mapsto \sigma(x) = y$$

where

$$y(k) = x(k-1) \quad \forall k \in \mathbb{Z}.$$

The Shift on $A^{\mathbb{Z}}$

The shift on $A^{\mathbb{Z}}$ is the map

$$\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$x \mapsto \sigma(x) = y$$

where

$$y(k) = x(k-1) \quad \forall k \in \mathbb{Z}.$$

The shift σ is bijective with inverse map

$$\sigma^{-1} \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$

 $x \mapsto \sigma^{-1}(x) = z,$

where

$$z(k) = x(k+1) \quad \forall k \in \mathbb{Z}$$

The shift σ is bijective with inverse map

$$\sigma^{-1} \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$

 $x \mapsto \sigma^{-1}(x) = z,$

where

$$z(k) = x(k+1) \quad \forall k \in \mathbb{Z}.$$

Proposition 2

The shift $\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a homeomorphism.

Proposition 2

The shift $\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a homeomorphism.

Proof.

Observe that

$$v(x,y) - 1 \leq v(\sigma(x),\sigma(y)) \leq v(x,y) + 1$$

so that

$$\frac{1}{2}d(x,y) \le d(\sigma(x),\sigma(y)) \le 2d(x,y)$$

for all $x, y \in A^{\mathbb{Z}}$.

Exercise 8

Let $n \ge 1$ be an integer. Show that $Fix(\sigma^n)$ is finite and has cardinality $|Fix(\sigma^n)| = |A|^n$.

Exercise 8

Let $n \ge 1$ be an integer. Show that $Fix(\sigma^n)$ is finite and has cardinality $|Fix(\sigma^n)| = |A|^n$.

One says that a configuration $x \in A^{\mathbb{Z}}$ is periodic if there exists an integer $n \ge 1$ such that $x \in Fix(\sigma^n)$.

Exercise 8

Let $n \ge 1$ be an integer. Show that $Fix(\sigma^n)$ is finite and has cardinality $|Fix(\sigma^n)| = |A|^n$.

One says that a configuration $x \in A^{\mathbb{Z}}$ is periodic if there exists an integer $n \ge 1$ such that $x \in Fix(\sigma^n)$.

Exercise 9

Show that the set of periodic configurations is a countable dense subset of $A^{\mathbb{Z}}$.

Exercise 8

Let $n \ge 1$ be an integer. Show that $Fix(\sigma^n)$ is finite and has cardinality $|Fix(\sigma^n)| = |A|^n$.

One says that a configuration $x \in A^{\mathbb{Z}}$ is periodic if there exists an integer $n \ge 1$ such that $x \in Fix(\sigma^n)$.

Exercise 9

Show that the set of periodic configurations is a countable dense subset of $A^{\mathbb{Z}}$.

Exercise 10

Show that there exists $x \in A^{\mathbb{Z}}$ whose positive σ -orbit $\{\sigma^n(x) \mid n \ge 1\}$ is dense in $A^{\mathbb{Z}}$.

Definition

A map $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton

Definition

A map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Definition

A map $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set *M* is called a memory set for τ and μ is the associated local defining map.

Definition

A map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set *M* is called a memory set for τ and μ is the associated local defining map.

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton with memory set M. Then:

Definition

A map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set M is called a memory set for τ and μ is the associated local defining map.

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton with memory set M. Then: • if $x \in A^{\mathbb{Z}}$, then the value of $\tau(x)$ at $k \in \mathbb{Z}$ only depends on $x|_{k+M}$;

Definition

A map $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set M is called a memory set for τ and μ is the associated local defining map.

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton with memory set M. Then:

- if $x \in A^{\mathbb{Z}}$, then the value of $\tau(x)$ at $k \in \mathbb{Z}$ only depends on $x|_{k+M}$;
- the local defining map $\mu \colon A^M \to A$ is entirely determined by τ and M;

Definition

A map $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set M is called a memory set for τ and μ is the associated local defining map.

Let $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton with memory set M. Then:

- if $x \in A^{\mathbb{Z}}$, then the value of $\tau(x)$ at $k \in \mathbb{Z}$ only depends on $x|_{k+M}$;
- the local defining map $\mu: A^M \to A$ is entirely determined by τ and M;
- every finite subset of \mathbb{Z} containing M is also a memory set for τ ;

Definition

A map $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set M is called a memory set for τ and μ is the associated local defining map.

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton with memory set M. Then:

- if $x \in A^{\mathbb{Z}}$, then the value of $\tau(x)$ at $k \in \mathbb{Z}$ only depends on $x|_{k+M}$;
- the local defining map $\mu: A^M \to A$ is entirely determined by τ and M;
- every finite subset of \mathbb{Z} containing M is also a memory set for τ ;
- if M_1 and M_2 are memory sets for τ , then $M_1 \cap M_2$ is also a memory set for τ ;

Definition

A map $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton if there exists a finite subset $M \subset \mathbb{Z}$ and a map $A^M \to A$ such that

$$(\tau(x))(k) = \mu((\sigma^{-k}(x))|_M) \quad \forall k \in \mathbb{Z}.$$

Such a set M is called a memory set for τ and μ is the associated local defining map.

Let $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton with memory set M. Then:

- if $x \in A^{\mathbb{Z}}$, then the value of $\tau(x)$ at $k \in \mathbb{Z}$ only depends on $x|_{k+M}$;
- the local defining map $\mu: A^M \to A$ is entirely determined by τ and M;
- every finite subset of \mathbb{Z} containing M is also a memory set for τ ;
- if M_1 and M_2 are memory sets for τ , then $M_1 \cap M_2$ is also a memory set for τ ;
- there is a unique memory set for τ with minimal cardinality. This memory set is called the minimal memory set of τ. It is contained in every memory set of τ.

$\mathsf{Example}\ 1$

Take $A := \{0,1\}$ and consider the map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by

$\mathsf{Example}\ 1$

Take $A := \{0,1\}$ and consider the map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by

$$(au(x))(k) := x(k) \cdot x(k+1) = egin{cases} 1 & ext{if } x(k) = x(k+1) = 1, \ 0 & ext{otherwise} \end{cases} \quad orall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$$

Take ${\mathcal A}:=\{0,1\}$ and consider the map $au\colon {\mathcal A}^{\mathbb Z} o {\mathcal A}^{\mathbb Z}$ given by

$$(\tau(x))(k) := x(k) \cdot x(k+1) = \begin{cases} 1 & \text{if } x(k) = x(k+1) = 1, \\ 0 & \text{otherwise} \end{cases} \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$$

For example, if

 $x = \dots 11100101001101110000100011\dots$ then $\tau(x) = \dots 1100000000100110000000001?\dots$

Take $A := \{0,1\}$ and consider the map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by

$$(au(x))(k) := x(k) \cdot x(k+1) = \begin{cases} 1 & \text{if } x(k) = x(k+1) = 1, \\ 0 & \text{otherwise} \end{cases} \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$$

For example, if

 $x = \dots 1110010100110111000010011\dots$ then $\tau(x) = \dots 110000000100110000000001?\dots$

 τ is a cellular automaton

Take ${\mathcal A}:=\{0,1\}$ and consider the map $au\colon {\mathcal A}^{\mathbb Z} o {\mathcal A}^{\mathbb Z}$ given by

$$(au(x))(k) := x(k) \cdot x(k+1) = egin{cases} 1 & ext{if } x(k) = x(k+1) = 1, \ 0 & ext{otherwise} \end{cases} \quad orall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$$

For example, if

$$x = \dots 11100101001101110000100011\dots$$
 then $\tau(x) = \dots 1100000000100110000000001?\dots$

au is a cellular automaton with minimal memory set $M = \{0, 1\}$ and local defining map $\mu \colon A^M = A^2 \to A$ given by

$$00 \mapsto 0, \quad 01 \mapsto 0, \quad 10 \mapsto 0, \quad 11 \mapsto 1.$$

Take $A \coloneqq \{0,1\}$ and $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by

Take $A := \{0, 1\}$ and $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by $(\tau(x))(k) := x(k) + x(k+1) \mod 2 \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$

Take $A := \{0, 1\}$ and $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by $(\tau(x))(k) := x(k) + x(k+1) \mod 2 \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$

For example, if

 $x = \dots 11100101001101110000100011\dots$ then $\tau(x) = \dots 001011110101000110010?\dots$

Take $A := \{0, 1\}$ and $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by $(\tau(x))(k) := x(k) + x(k+1) \mod 2 \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$

For example, if

 $x = \dots 11100101001101110000100011\dots$ then $\tau(x) = \dots 001011110101000110010?\dots$

 τ is a cellular automaton

Take $A \coloneqq \{0,1\}$ and $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ given by

 $(\tau(x))(k) := x(k) + x(k+1) \mod 2 \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}.$

For example, if

 $x = \dots 11100101001101110000100011\dots$ then $\tau(x) = \dots 001011110101000110010?\dots$

au is a cellular automaton with minimal memory set $M = \{0, 1\}$ and local defining map $\mu \colon A^M = A^2 \to A$ given by

$$00\mapsto 0, \quad 01\mapsto 1, \quad 10\mapsto 1, \quad 11\mapsto 0.$$

Michel Coornaert (IRMA, Université de Strasbourg)
Example 3

shape \in {square, disc} color \in {green, red, yellow}.

् ् २ २ २ २ २ २

shape \in {square, disc} color \in {green, red, yellow}.

Thus the alphabet A has cardinality $2 \times 3 = 6$.

shape \in {square, disc} color \in {green, red, yellow}.

Thus the alphabet A has cardinality $2 \times 3 = 6$. The map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$, defined by

 $\mathsf{shape}((\tau(x))(k)) = \mathsf{shape}(x(k-1)) \quad \mathsf{color}((\tau(x))(k)) = \mathsf{color}(x(k+1)) \quad \forall x \in \mathcal{A}^{\mathbb{Z}}, k \in \mathbb{Z},$

shape \in {square, disc} color \in {green, red, yellow}.

Thus the alphabet A has cardinality $2 \times 3 = 6$. The map $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$, defined by

 $\mathsf{shape}((\tau(x))(k)) = \mathsf{shape}(x(k-1)) \quad \mathsf{color}((\tau(x))(k)) = \mathsf{color}(x(k+1)) \quad \forall x \in A^{\mathbb{Z}}, k \in \mathbb{Z}, k \in \mathbb{$

is a cellular automaton with minimal memory set $M = \{-1, 1\}$.

Example 3 (continued)

Topological Characterization of Cellular Automata

April 12, 2018

Topological Characterization of Cellular Automata

Theorem 1 (Curtis-Hedlund-Lyndon Theorem)

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a map. Then the following conditions are equivalent:

- (a) τ is a cellular automaton;
- (b) τ is continuous and $\sigma \circ \tau = \tau \circ \sigma$.

● ● ■ ■ ● ●

A subset $X \subset A^{\mathbb{Z}}$ is called a subshift if X is closed in $A^{\mathbb{Z}}$ and $\sigma(X) = X$.

A subset $X \subset A^{\mathbb{Z}}$ is called a subshift if X is closed in $A^{\mathbb{Z}}$ and $\sigma(X) = X$.

Corollary 1

If $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton, then $\tau(A^{\mathbb{Z}})$ is a subshift.

A subset $X \subset A^{\mathbb{Z}}$ is called a subshift if X is closed in $A^{\mathbb{Z}}$ and $\sigma(X) = X$.

Corollary 1

If $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton, then $\tau(A^{\mathbb{Z}})$ is a subshift.

Corollary 2

Let $\tau_1, \tau_2 \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be cellular automata. Then $\tau_1 \circ \tau_2$ is a cellular automaton.

A subset $X \subset A^{\mathbb{Z}}$ is called a subshift if X is closed in $A^{\mathbb{Z}}$ and $\sigma(X) = X$.

Corollary 1

If $\tau \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is a cellular automaton, then $\tau(A^{\mathbb{Z}})$ is a subshift.

Corollary 2

Let $\tau_1, \tau_2 \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be cellular automata. Then $\tau_1 \circ \tau_2$ is a cellular automaton.

Corollary 3

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a bijective cellular automaton. Then $\tau^{-1}: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is also a cellular automaton.

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all configurations $x \in \{0,1\}^{\mathbb{Z}}$ such that $(x(k), x(k+1), x(k+2)) \neq (1,0,1)$ for every $k \in \mathbb{Z}$.

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all configurations $x \in \{0,1\}^{\mathbb{Z}}$ such that $(x(k), x(k+1), x(k+2)) \neq (1,0,1)$ for every $k \in \mathbb{Z}$.

Exercise 12

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $n \ge 1$ be an integer. Show that $\tau(\operatorname{Fix}(\sigma^n)) \subset \operatorname{Fix}(\sigma^n)$.

Exercise 11

Show that the image of the cellular automaton in Example 1 is the subshift $X \subset \{0,1\}^{\mathbb{Z}}$ consisting of all configurations $x \in \{0,1\}^{\mathbb{Z}}$ such that $(x(k), x(k+1), x(k+2)) \neq (1,0,1)$ for every $k \in \mathbb{Z}$.

Exercise 12

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $n \ge 1$ be an integer. Show that $\tau(\operatorname{Fix}(\sigma^n)) \subset \operatorname{Fix}(\sigma^n)$.

Exercise 13

Let $\tau_1, \tau_2: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be cellular automata. Show that if M_1 is a memory set for τ_1 and M_2 is a memory set for τ_2 , then $M_1 + M_2$ is a memory set for $\tau_1 \circ \tau_2$.

One says that the configurations $x, y \in A^{\mathbb{Z}}$ are almost equal and one writes $x \sim y$ if the set

$$\{k \in \mathbb{Z} | x(k) \neq y(k)\}$$

is finite.

One says that the configurations $x, y \in A^{\mathbb{Z}}$ are almost equal and one writes $x \sim y$ if the set

$$\{k \in \mathbb{Z} | x(k) \neq y(k)\}$$

is finite.

 \sim is an equivalence relation on $A^{\mathbb{Z}}$.

One says that the configurations $x, y \in A^{\mathbb{Z}}$ are almost equal and one writes $x \sim y$ if the set

$$\{k \in \mathbb{Z} | x(k) \neq y(k)\}$$

is finite.

 \sim is an equivalence relation on $A^{\mathbb{Z}}$.

Definition

One says that a cellular automaton $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is pre-injective if the restriction of τ to each equivalence class of \sim is injective.

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem) Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

* 車 *

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem) Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

ullet \implies is due to Moore,

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem) Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

- ullet \implies is due to Moore,
- \Leftarrow is due to Myhill.

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem) Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

- ullet \implies is due to Moore,
- \Leftarrow is due to Myhill.

Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not injective). Show directly that it is not surjective.

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem) Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

- ullet \implies is due to Moore,
- \Leftarrow is due to Myhill.

Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not injective). Show directly that it is not surjective.

Exercise 15

Show that the cellular automaton in Example 2 is pre-injective but not injective. Show directly that it is surjective.

The following theorem is due to Moore [Mo-1963] and Myhill [My-1963].

Theorem 2 (Garden of Eden Theorem) Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton. Then τ surjective $\iff \tau$ pre-injective.

- ullet \implies is due to Moore,
- \Leftarrow is due to Myhill.

Exercise 14

Show that the cellular automaton in Example 1 is not pre-injective (and hence not injective). Show directly that it is not surjective.

Exercise 15

Show that the cellular automaton in Example 2 is pre-injective but not injective. Show directly that it is surjective.

Exercise 16

Show that the cellular automaton in Example 3 is injective (and hence pre-injective). Show directly that it is surjective.

Michel Coornaert (IRMA, Université de Strasbourg)

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is the following.

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is the following.

Corollary 4

Every injective cellular automaton $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is surjective (and hence bijective).

As injectivity implies pre-injectivity, an immediate consequence of the GOE theorem is the following.

Corollary 4

Every injective cellular automaton $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is surjective (and hence bijective).

Exercise 17 (An alternative proof)

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be an injective cellular automaton. Use Exercise 8 and Exercise 12 to prove that $\tau(\operatorname{Fix}(\sigma^n)) = \operatorname{Fix}(\sigma^n)$ for every integer $n \ge 1$. Use Exercise 9 to conclude that τ is surjective.

Proof of the Garden of Eden Theorem

Proof of the Garden of Eden Theorem

Let $X \subset A^{\mathbb{Z}}$ such that $\sigma(X) = X$.
Proof of the Garden of Eden Theorem

Let $X \subset A^{\mathbb{Z}}$ such that $\sigma(X) = X$. For every integer $n \ge 1$, we write

 $X_n := \{x|_{[1,n]} \mid x \in X\}.$

Proof of the Garden of Eden Theorem

Let $X \subset A^{\mathbb{Z}}$ such that $\sigma(X) = X$. For every integer $n \ge 1$, we write

$$X_n := \{x|_{[1,n]} \mid x \in X\}.$$

 $|X_{n+m}| \leq |X_n| \cdot |X_m|$

for all integers $n, m \ge 1$.

Proof of the Garden of Eden Theorem

Let $X \subset A^{\mathbb{Z}}$ such that $\sigma(X) = X$. For every integer $n \ge 1$, we write

$$X_n := \{x|_{[1,n]} \mid x \in X\}.$$

$$|X_{n+m}| \le |X_n| \cdot |X_m|$$

for all integers $n, m \ge 1$.

Definition

The entropy of X is

$$\operatorname{ent}(X) \coloneqq \lim_{n \to \infty} \frac{\log |X_n|}{n}.$$

Remark

The limit in the definition of ent(X) is a true limit since the sequence $(\log |X_n|)_{n\geq 1}$ is subadditive by Lemma 1.

Remark

The limit in the definition of ent(X) is a true limit since the sequence $(\log |X_n|)_{n\geq 1}$ is subadditive by Lemma 1.

Remark

We always have $ent(X) \le \log |A|$ since $|X_n| \le |A|^n$ and hence $\log |X_n| \le n \log |A|$.

We shall prove the following more general version of the GOE theorem.

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $X \coloneqq \tau(A^{\mathbb{Z}})$ denote the image of τ . Then the following conditions are equivalent:

- (a) τ is surjective;
- (b) $\operatorname{ent}(X) = \log |A|;$
- (c) τ is pre-injective.

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $X \coloneqq \tau(A^{\mathbb{Z}})$ denote the image of τ . Then the following conditions are equivalent:

- (a) τ is surjective;
- (b) $\operatorname{ent}(X) = \log |A|;$
- (c) τ is pre-injective.

Proof. We can assume $|A| \ge 2$.

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $X \coloneqq \tau(A^{\mathbb{Z}})$ denote the image of τ . Then the following conditions are equivalent:

- (a) τ is surjective;
- (b) $\operatorname{ent}(X) = \log |A|;$
- (c) τ is pre-injective.

Proof. We can assume $|A| \ge 2$. (a) \implies (b).

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $X \coloneqq \tau(A^{\mathbb{Z}})$ denote the image of τ . Then the following conditions are equivalent:

- (a) τ is surjective;
- (b) $\operatorname{ent}(X) = \log |A|;$
- (c) τ is pre-injective.

Proof. We can assume $|A| \ge 2$. (a) \implies (b). Suppose that τ is surjective, that is, $X = A^{\mathbb{Z}}$.

We shall prove the following more general version of the GOE theorem.

Theorem 3

Let $\tau: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ be a cellular automaton and let $X := \tau(A^{\mathbb{Z}})$ denote the image of τ . Then the following conditions are equivalent:

- (a) τ is surjective;
- (b) $\operatorname{ent}(X) = \log |A|;$
- (c) τ is pre-injective.

Proof. We can assume $|A| \ge 2$. (a) \implies (b). Suppose that τ is surjective, that is, $X = A^{\mathbb{Z}}$. Then $X_n = A^n$, so that

$$\operatorname{ent}(X) = \lim_{n \to \infty} \frac{\log |X_n|}{n} = \lim_{n \to \infty} \frac{\log |A^n|}{n} = \lim_{n \to \infty} \frac{n \log |A|}{n} = \log |A|.$$

(b) \implies (a). Suppose that τ is not surjective.

> ◆ ◆ ● ● ■ ■ ■ ● ● ● ● ● ● ● ● ● ●

(b) \implies (a). Suppose that τ is not surjective. As X is a closed subset of $A^{\mathbb{Z}}$ (cf. Corollary 1), the set $A^{\mathbb{Z}} \setminus X$ is a non-empty open subset of $A^{\mathbb{Z}}$.

(b) \implies (a). Suppose that τ is not surjective. As X is a closed subset of $A^{\mathbb{Z}}$ (cf. Corollary 1), the set $A^{\mathbb{Z}} \setminus X$ is a non-empty open subset of $A^{\mathbb{Z}}$. Consequently, there exists an integer $n \ge 1$ such that X_n is a proper subset of A^n , so that $|X_n| \le |A|^n - 1$.

(b) \implies (a). Suppose that τ is not surjective. As X is a closed subset of $A^{\mathbb{Z}}$ (cf. Corollary 1), the set $A^{\mathbb{Z}} \setminus X$ is a non-empty open subset of $A^{\mathbb{Z}}$. Consequently, there exists an integer $n \ge 1$ such that X_n is a proper subset of A^n , so that $|X_n| \le |A|^n - 1$. For every integer $i \ge 1$, we then have

$$|X_{in}| \le |X_n|^i \le (|A|^n - 1)^i = |A|^{in} \left(1 - \frac{1}{|A|^n}\right)^i.$$

(b) \implies (a). Suppose that τ is not surjective. As X is a closed subset of $A^{\mathbb{Z}}$ (cf. Corollary 1), the set $A^{\mathbb{Z}} \setminus X$ is a non-empty open subset of $A^{\mathbb{Z}}$. Consequently, there exists an integer $n \ge 1$ such that X_n is a proper subset of A^n , so that $|X_n| \le |A|^n - 1$. For every integer $i \ge 1$, we then have

$$|X_{in}| \le |X_n|^i \le (|A|^n - 1)^i = |A|^{in} \left(1 - rac{1}{|A|^n}
ight)^i.$$

This implies

$$\operatorname{ent}(X) = \lim_{i \to \infty} \frac{\log |X_{in}|}{in} \le \log |A| + \frac{1}{n} \log \left(1 - \frac{1}{|A|^n}\right) < \log |A|.$$

Michel Coornaert (IRMA, Université de Strasbourg)

(c) \implies (b).

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$.

> ◆ ◆ 本 ◆ 本 を を を や へ の の

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $\operatorname{ent}(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ .

```
(c) \implies (b).
Suppose that (b) is not satisfied, i.e., ent(X) < \log |A|.
Let m \in \mathbb{N} such that [-m, m] is a memory set for \tau.
Fix some a_0 \in a.
```

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n]\}$$

◆ ■ ■ ◆

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

We have that $|Y| = |A|^n$.

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

We have that $|Y| = |A|^n$. Observe that $|\tau(Y)| \le |X_{n+2m}|$.

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

We have that
$$|Y| = |A|^n$$
.
Observe that $|\tau(Y)| \le |X_{n+2m}|$.
As

$$\lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n} = \lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n+2m} = \operatorname{ent}(X) < \log |A|,$$

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

We have that
$$|Y| = |A|^n$$
.
Observe that $|\tau(Y)| \le |X_{n+2m}|$.
As

$$\lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n} = \lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n+2m} = \operatorname{ent}(X) < \log |A|,$$
There exists $n \ge 1$ such that

$$|X_{n+2m}| \le |A|^n$$

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

We have that
$$|Y| = |A|^n$$
.
Observe that $|\tau(Y)| \le |X_{n+2m}|$.
As

$$\lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n} = \lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n+2m} = \operatorname{ent}(X) < \log |A|,$$
There exists $n \ge 1$ such that
 $|X_{n+2m}| < |A|^n$.

this implies $|\tau(Y)| < |Y|$.

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

We have that
$$|Y| = |A|^n$$
.
Observe that $|\tau(Y)| \le |X_{n+2m}|$.
As

$$\lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n} = \lim_{n \to \infty} \frac{\log |X_{n+2m}|}{n+2m} = \operatorname{ent}(X) < \log |A|,$$
There exists $n \ge 1$ such that
 $|X_{n+2m}| < |A|^n$.

this implies $|\tau(Y)| < |Y|$. By the pigeon-hole principle, there exist distinct configurations $y_1, y_2 \in Y$ such that $\tau(y_1) = \tau(y_2)$.

(c) \implies (b). Suppose that (b) is not satisfied, i.e., $ent(X) < \log |A|$. Let $m \in \mathbb{N}$ such that [-m, m] is a memory set for τ . Fix some $a_0 \in a$. Let $n \ge 1$ and consider the set

$$Y \coloneqq \{x \in A^{\mathbb{Z}} | x(k) = a_0 \quad \forall k \in \mathbb{Z} \setminus [1, n] \}.$$

As all configurations in Y are almost equal (they coincide outside of [1, n]), this shows that τ is not pre-injective.

(b) \implies (c).

(b) \implies (c). Suppose that τ is not pre-injective.

(b) \implies (c).

Suppose that τ is not pre-injective.

Then there exist an integer $n \ge 1$ and distinct elements $p, q \in A^{[1,n]}$ that are mutually erasable, i.e., if $x, y \in A^{\mathbb{Z}}$ coincide on $\mathbb{Z} \setminus [1, n]$ and satisfy $x|_{[1,n]} = p$ and $y|_{[1,n]} = q$, then $\tau(x) = \tau(y)$.
Proof of the Garden of Eden Theorem (continued)

(b) \implies (c). Suppose that τ is not pre-injective. Then there exist an integer $n \ge 1$ and distinct elements $p, q \in A^{[1,n]}$ that are mutually erasable, i.e., if $x, y \in A^{\mathbb{Z}}$ coincide on $\mathbb{Z} \setminus [1, n]$ and satisfy $x|_{[1,n]} = p$ and $y|_{[1,n]} = q$, then $\tau(x) = \tau(y)$. We then deduce that for every $i \ge 1$

We then deduce that, for every $i \ge 1$,

$$|X_{in}| \leq (|A|^n - 1)^i |A|^{2m},$$

where *m* is such that [-m, m] is a memory set for τ .

Proof of the Garden of Eden Theorem (continued)

(b) \implies (c).

Suppose that τ is not pre-injective.

Then there exist an integer $n \ge 1$ and distinct elements $p, q \in A^{[1,n]}$ that are mutually erasable, i.e., if $x, y \in A^{\mathbb{Z}}$ coincide on $\mathbb{Z} \setminus [1, n]$ and satisfy $x|_{[1,n]} = p$ and $y|_{[1,n]} = q$, then $\tau(x) = \tau(y)$.

We then deduce that, for every $i \ge 1$,

$$|X_{in}| \leq (|A|^n - 1)^i |A|^{2m},$$

where m is such that [-m,m] is a memory set for $\tau.$ This implies

$$\operatorname{ent}(X) = \lim_{i \to \infty} \frac{\log |X_{in}|}{in} \leq \log |A| + \frac{1}{n} \log \left(1 - \frac{1}{|A|^n}\right) < \log |A|.$$

Exercise 18

Compute the entropy of the image subshift of the cellular automaton in Example 1.

[CC-2010] T. Ceccherini-Silberstein, M. Coornaert, *Cellular automata and groups*, Springer Monographs in Mahtematics, Springer, Berlin, 2010.

[LM-1995] D. Lind, B. Marcus, *An introduction to symbolic dynamics and coding*, Cambridge University Press, Cambridge, 1995.

[Mo-1963] E. F. Moore, *Machine models of self-reproduction*, vol. 14 of Proc. Symp. Appl. Math., American Mathematical Society, Providence, 1963, pp. 17–34.

[My-1963] J. Myhill, *The converse of Moore's Garden-of-Eden theorem*, Proc. Amer. Math. Soc. **14** (1963), 685–686.