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Shifts and subshifts

Take:
• a group G ,
• a set A (called the alphabet).
The set

AG = {x : G → A}

is endowed with its prodiscrete topology and the left action of G given by

G × AG → AG

(g , x) 7→ gx

where
gx(h) = x(g−1h) ∀h ∈ G .

This action is called the G -shift. It is continuous w. r. to the prodiscrete topology on AG .

The space AG is called the space of configurations or the full shift over the group G and
the alphabet A.
A closed G -invariant subset X ⊂ AG is called a subshift.
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Cellular automata

Definition

Let X ⊂ AG be a subshift. A cellular automaton over X is a map

τ : X → X

satisfying the following condition:
there exist a finite subset M ⊂ G and a map µ : AM → A such that:

(τ(x))(g) = µ((g−1x)|M) ∀x ∈ X ,∀g ∈ G ,

where (g−1x)|M denotes the restriction of the configuration g−1x to M.

Such a set M is called a memory set and µ is called a local defining map for τ .
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Example: Conway’s Game of Life

Here G = Z2 and A = {0, 1}.
Life is the cellular automaton

τ : {0, 1}Z2

→ {0, 1}Z2

over the full shift X = {0, 1}Z2

obtained by taking M = {−1, 0, 1}2 ⊂ Z2 and
µ : AM → A given by

µ(y) =

8>>>><>>>>:
1 if

8>><>>:
X
m∈M

y(m) = 3

or
X
m∈M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

∀y ∈ AM .

Michel Coornaert (IRMA, Strasbourg, France) Some extensions of the Moore-Myhill Garden of Eden Theorem December 15, 2010 4 / 20



Example: Conway’s Game of Life

Michel Coornaert (IRMA, Strasbourg, France) Some extensions of the Moore-Myhill Garden of Eden Theorem December 15, 2010 5 / 20



Example: Conway’s Game of Life

Michel Coornaert (IRMA, Strasbourg, France) Some extensions of the Moore-Myhill Garden of Eden Theorem December 15, 2010 6 / 20



Pre-injectivity

Definition

A cellular automaton τ : X → X over a subshift X ⊂ AG is called pre-injective if:

τ(x) = τ(x ′)
and

{g ∈ G | x(g) 6= x ′(g)} is finite

9=; =⇒ x = x ′.

Example

The cellular automaton τ : {0, 1}Z2

→ {0, 1}Z2

associated with Conway’s Game of Life is
not pre-injective.

Example

The cellular automaton τ : {0, 1}Z → {0, 1}Z defined by

∀x ∈ {0, 1}Z,∀n ∈ Z, τ(x)(n) = x(n + 1) + x(n) mod 2,

is pre-injective. However, it is not injective since the two constant configurations have
the same image.
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The Moore-Myhill GOE theorem

The following theorem is the Garden of Eden Theorem:

Theorem (Moo-1963 and Myh-1963)

Let G = Zd and let A be a finite set. Let τ : AG → AG be a cellular automaton defined
over the full shift AG . Then

τ surjective ⇐⇒ τ pre-injective.

Moore proved the implication “surjective =⇒ pre-injective” and Myhill proved the
converse.

Corollary

τ injective =⇒ τ surjective.

Example

The cellular automaton τ : {0, 1}Z2

→ {0, 1}Z2

associated with Conway’s Game of Life is
not pre-injective. Therefore it is not surjective.

Example

The cellular automaton τ : {0, 1}Z → {0, 1}Z defined by τ(x)(n) = x(n + 1) + x(n)
mod 2 is pre-injective. Therefore it is surjective.
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Sketch of proof of the Moore-Myhill GOE theorem

Consider the cube
Cn := {0, 1, . . . , n − 1}d ⊂ Zd

and the restriction map

πn : AZd

→ ACn .

The entropy of a subset Y ⊂ AZd

is defined by

ent(Y ) := lim sup
n→∞

log |πn(Y )|
|Cn|

= lim sup
n→∞

log |πn(Y )|
nd

,

where | · | denotes cardinality for finite sets.

One shows that

τ surjective ⇐⇒ ent(τ(AG )) = log |A| ⇐⇒ τ pre-injective.
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Amenable groups

Definition

The group G is called amenable if there exists a finitely-additive left-invariant probability
measure defined on the set P(G) of all subsets of G , that is, a map m : P(G) → [0, 1]
such that

(Amen-1) m(G) = 1

(Amen-2) A ∩ B = ∅ ⇒ m(A ∪ B) = m(A) + m(B)

(Amen-3) m(gA) = m(A)

for all g ∈ G and A, B ∈ P(G).

In this definition, “left-invariant” may be replace by “right-invariant” or by
“bi-invariant”. This gives the same class of groups.
• Every finite group (and, more generally, every locally finite group) is amenable.
• Every abelian group (and, more generally, every solvable group) is amenable.
• Every finitely generated group with subexponential growth is amenable.
• An example of a non-amenable group is provided by the free group on 2 generators.
More generally, every group containing a non-abelian free subgroup is non-amenable.
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The GOE theorem over amenable groups

The following extension of the Moore-Myhill GOE theorem is due to
Ceccherini-Silberstein, Mach̀ı and Scarabotti.

Theorem (CMS-1999)

Let G be an amenable group and let A be a finite set. Let τ : AG → AG be a cellular
automaton defined over the full shift AG . Then

τ surjective ⇐⇒ τ pre-injective.

It extends the Moore-Myhill GOE theorem since Zd is commutative and hence amenable.
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Sketch of proof of the GOE theorem for amenable groups

One uses Følner criterion for amenability: a group G is amenable if and only if it admits
a Følner net, i.e., a net (Fi )i∈I of nonempty finite subsets of G such that

lim
i

|Fi \ Fig |
|Fi |

= 0 for all g ∈ G .

The cubes Cn are replaced by the Følner sets Fi in the definition of the entropy of
Y ⊂ AG :

ent(Y ) := lim sup
i

log |πi (Y )|
|Fi |

,

where
πi : AG → AFi

is the restriction map.
One shows that

τ surjective ⇐⇒ ent(τ(AG )) = log |A| ⇐⇒ τ pre-injective.
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Strongly irreducible subshifts of finite type

Let G be a group and let A be a set.

Definition

A subshift X ⊂ AG is said to be of finite type if there exist a finite subset D ⊂ G and a
subset L ⊂ AD such that

X = X (D, L)
def
= {x ∈ AG : (g−1x)|D ∈ L for all g ∈ G}.

Definition

A subshift X ⊂ AG is said to be strongly irreducible if there exists a finite subset ∆ ⊂ G
with the following property:
if Ω1 and Ω2 are finite subsets of G such that there is no element g ∈ Ω2 such that the
set g∆ meets Ω1 then, given any two configurations x1, x2 ∈ X , there exists a
configuration x ∈ X such that x |Ω1 = x1|Ω1 and x |Ω2 = x2|Ω2 .
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A GOE theorem for subshifts

Fiorenzi proved the following extension of the GOE theorem:

Theorem (F-2003)

Let G be an amenable group and let A be a finite set. Let τ : X → X be a cellular
automaton defined over a strongly irreducible subshift of finite type X ⊂ AG . Then

τ surjective ⇐⇒ τ pre-injective.

Proof.

Here one shows

τ surjective ⇐⇒ ent(τ(X )) = ent(X ) ⇐⇒ τ pre-injective.
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Some counterexamples

Example

Let X = {x0, x1} ⊂ {0, 1}Z be the subshift consisting of the two constant configurations:

x0 = . . . 000000000000 . . . and x1 = . . . 111111111111 . . .

Then X is of finite type. The cellular automaton τ : X → X defined by
τ(x0) = τ(x1) = x0 is pre-injective but not surjective.

Example

Consider the subshift of finite type X = X (D, L) ⊂ {0, 1, 2}Z, where D = {1, 2} and
L = {00, 01, 11, 12, 22}. Then the cellular automaton τ : X → X defined by the
substitution rule 12 7→ 11 is injective but not surjective.
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Some counterexamples

Example

Let X ⊂ {0, 1, 2}Z be the subshift consisting of the sequences where the words 01 and 02
are forbidden. Then X is of finite type. The cellular automaton τ : X → X defined by the
substitution rule ?0 7→ 00 is surjective but not pre-injective.

Example

Let X ⊂ {0, 1}Z be the even subshift, i.e., the subshift formed by all sequences in which
every chain of 0s which is bounded by two 1 has even length. The subshift X is not of
finite type but it is strongly irreducible. Fiorenzi [F-2003] constructed a cellular
automaton τ : X → X which is surjective but not pre-injective.
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The Myhill property for strongly irreducible subshifts

The following result was obtained jointly with Ceccherini-Silberstein:

Theorem (CC-2010a)

Let G be an amenable group and let A be a finite set. Let τ : X → X be a cellular
automaton defined over a strongly irreducible subshift X ⊂ AG . Then

τ pre-injective =⇒ τ surjective
(Myhill implication).

Proof.

Here one shows

τ pre-injective =⇒ ent(τ(X )) = ent(X ) =⇒ τ surjective.
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A GOE theorem for linear subshifts

Let G be a group, K a field, and A = V a vector space over K .

A linear subshift is a subshift X ⊂ V G which is also a vector subspace of V G .
A linear cellular automaton over a linear subshift X ⊂ V G is a cellular automaton
τ : X → X which is K -linear.

Theorem (CC-2010b)

Let G be an amenable group, K a field, and V a finite-dimensional vector space over K.
Let τ : X → X be a linear cellular automaton defined over a strongly irreducible linear
subshift of finite type X ⊂ V G . Then

τ surjective ⇐⇒ τ pre-injective.

The case of the full shift X = V G had been previously obtained in [CC-2006].
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Sketch of proof

Given a Følner net (Fi )i∈I for G , we define the mean dimension mdim(Y ) of a vector
subspace Y ⊂ V G by

mdim(Y ) = lim sup
i

dim(πFi (Y ))

|Fi |
,

where πFi : V G → V Fi is the natural projection map and dim(·) denotes dimension for
finite-dimensional K -vector spaces.

Here one shows

τ surjective ⇐⇒ mdim(τ(X )) = mdim(X ) ⇐⇒ τ pre-injective.

In this proof mean dimension plays the role played by entropy in the classical (finite
alphabet) case.
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