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The space of configurations

Take:
• a group G ,
• a set A (called the alphabet or the set of symbols).
The set

AG = {x : G → A}

is endowed with its prodiscrete topology, i.e., the product topology obtained by taking
the discrete topology on each factor A of AG .

Thus, a base of open neighborhoods of x ∈ AG is provided by the sets

V (x , Ω) := {y ∈ AG : x |Ω = y |Ω},

where Ω runs over all finite subsets of G (we denote by x |Ω ∈ AΩ the restriction of
x ∈ AG to Ω).

Example

If G is countably infinite, A is finite of cardinality |A| ≥ 2, then AG is homeomorphic to
the Cantor set. This is the case for G = Z and A = {0, 1}, where AG is the space of
bi-infinite sequences of 0’s and 1’s.

The space AG is called the space of configurations over the group G and the alphabet A.
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The shift action

There is a natural continuous left action of G on AG given by

G × AG → AG

(g , x) 7→ gx

where
gx(h) = x(g−1h) ∀h ∈ G .

This action is called the G -shift on AG .

Example

The Z-shift on {0, 1}Z:

x(n) : . . . 101001101000110111001010011 . . .

3x(n) = x(n − 3) : . . . 101001101000110111001010011 . . .

The study of the shift action on AG is the central theme in symbolic dynamics.
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Cellular automata

Definition

A cellular automaton over the group G and the alphabet A is a map

τ : AG → AG

satisfying the following condition:
there exist a finite subset M ⊂ G and a map µM : AM → A such that:

(τ(x))(g) = µM((g−1x)|M) ∀x ∈ AG ,∀g ∈ G ,

where (g−1x)|M denotes the restriction of the configuration g−1x to M.

Such a set M is called a memory set and the map µM : AM → A is called the associated
local defining map.
• Every cellular automaton τ : AG → AG admits a minimal memory set M0. It is
characterized by the fact that a finite subset M ⊂ G is a memory set for τ if and only if
M0 ⊂ M. Moreover, one then has

µM = µM0 ◦ π,

where π : AM → AM0 denotes the projection map.
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Example: Conway’s Game of Life

Life was introduced by J. H. Conway in the 1970’s.
Take G = Z2 and A = {0, 1}.
Life is the cellular automaton

τ : {0, 1}Z2

→ {0, 1}Z2

with memory set M = {−1, 0, 1}2 ⊂ Z2 and local defining map µ : AM → A given by

µM(y) =

8>>>><>>>>:
1 if

8>><>>:
X
m∈M

y(m) = 3

or
X
m∈M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

∀y ∈ AM .
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The Curtis-Hedlund theorem

From the definition, it easily follows that:
• Every cellular automaton τ : AG → AG is G -equivariant, i.e.,

τ(gx) = gτ(x) ∀x ∈ AG ,∀g ∈ G .

• Every cellular automaton τ : AG → AG is continuous (w.r. to the prodiscrete topology
on AG ).
Conversely, one has the Curtis-Hedlund theorem:

Theorem (He-1969)

Let G be a group and let A be a finite set. Let τ : AG → AG be a map. Then the
following conditions are equivalent:

(a) τ is a cellular automaton;

(b) τ is continuous (w.r. to the prodiscrete topology on AG ) and G-equivariant.

when A is infinite and the group G is non-periodic, one can always construct a
G -equivariant continuous self-mapping of AG which is not a cellular automaton.

Example (CC-2008)

For G = A = Z, the map τ : AG → AG , defined by τ(x)(n) = x(x(n) + n), is
G -equivariant and continuous, but τ is not a cellular automaton.
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Uniform spaces

Let X be a set.
∆X = {(x , x) : x ∈ X} denote the diagonal in X × X .

Definition

A uniform structure on X is a non–empty set U of subsets of X × X called entourages
satisfying the following conditions:

(UN-1) if V ∈ U , then ∆X ⊂ V ;

(UN-2) if V ∈ U and V ⊂ V ′ ⊂ X × X , then V ′ ∈ U ;

(UN-3) if V ∈ U and W ∈ U , then V ∩W ∈ U ;

(UN-4) if V ∈ U , then
−1

V := {(x , y) : (y , x) ∈ V } ∈ U ;

(UN-5) if V ∈ U , then there exists W ∈ U such that
W ◦W := {(x , y) : ∃z ∈ X s. t. (x , z), (z , y) ∈ W } ⊂ V .

A set equipped with a uniform structure is called a uniform space.
The discrete uniform structure on X is the one for which every subset of X × X
containing the diagonal is an entourage.
A map f : X → Y between uniform spaces is said to be uniformly continuous if

∀W entourage of Y ,∃V entourage of X s. t.

(f × f )(V ) ⊂ W
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The generalized Curtis-Hedlund theorem

The product uniform structure on a product X =
Q

i∈I Xi of uniform spaces is the
smallest uniform structure on X for which each projection map is uniformly continuous.

Let G be a group and let A be a set.
The prodiscrete uniform structure on AG is the product uniform structure obtained by
taking the discrete uniform structure on each factor A of AG .
A base of entourages for the prodiscrete uniform structure on AG is provided by the sets:

N(Ω) = {(x , y) ∈ AG × AG : x |Ω = y |Ω} ⊂ AG × AG ,

where Ω runs over all finite subsets of G .

Theorem (CC-2008)

Let G be a group and let A be a set. Let τ : AG → AG be a map. Then the following
conditions are equivalent:

(a) τ is a cellular automaton;

(b) τ is uniformly continuous (w.r. to the uniform prodiscrete structure on AG ) and
G-equivariant.
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Algebraic subsets

Let K be a field.

Definition

A subset A ⊂ Km is called an algebraic subset if there exists a subset S ⊂ K [t1, . . . , tm]
such that A is the set of common zeroes of the polynomials in S , i.e.,

A = Z(S) = {a = (a1, . . . , am) ∈ Km : P(a) = 0 ∀P ∈ S}.

A map P : Km → K n is called polynomial if there exist polynomials
P1, . . . , Pn ∈ K [t1, . . . , tn] such that

P(a) = (P1(a), . . . , Pn(a)) ∀a ∈ Km.

Definition

Let A ⊂ Km and B ⊂ K n be algebraic subsets.
A map f : A → B is called regular if f is the restriction of some polynomial map
P : Km → K n.
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The category of affine algebraic sets

The identity map on any algebraic subset is regular. The composite of two regular maps
is regular.
Thus, the algebraic subsets of Km, m = 0, 1, . . . , are the objects of a category whose
morphisms are the regular maps.

This category is the category of affine algebraic sets over K .
This category admits finite direct products. Indeed, if A ⊂ Km and B ⊂ K n are algebraic
subsets then

A× B ⊂ Km × K n = Km+n

is also an algebraic subset. It is the direct product of A and B in the category of
algebraic sets over K .
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Algebraic cellular automata

Definition

Let G be a group and let K be a field. One says that a cellular automaton τ : AG → AG

is an algebraic cellular automaton over K if:
• A is an affine algebraic set over K ;
• for some (or, equivalently, any) memory set M, the associated local defining map
µM : AM → A is regular.
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Examples of algebraic cellular automata

1) The map τ : KZ → KZ defined by

τ(x)(n) = x(n + 1)− x(n)2 ∀x ∈ KZ,∀n ∈ Z,

is an algebraic cellular automaton with memory set M = {0, 1}.

2) Let G be a group, A an affine algebraic set, f : A → A a regular map, and g0 ∈ G .
Then the map τ : AG → AG , defined by

τ(x)(g) = f (x(gg0)) ∀x ∈ AG , g ∈ G ,

is an algebraic cellular automaton.

3) Let A be an affine algebraic group (e.g. A = SLn(K)). Then the map τ : AZ → AZ,
defined by

τ(x)(n) = x(n)−1x(n + 1) ∀x ∈ AZ, n ∈ Z,

is an algebraic cellular automaton with memory set M = {0, 1}.

Remark

Every cellular automaton with finite alphabet A may be regarded as an algebraic cellular
automaton (embed A in some field K).
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The Closed Image Property

One says that a map f : X → Y between topological spaces X and Y has the closed
image property (= CIP) if its image set f (X ) is closed in Y .

Example

If X is compact and Y Hausdorff, then every continuous map f : X → Y has the CIP. In
particular, if A is a finite set, then every cellular automaton τ : AG → AG has the CIP.

Remark

When A is infinite and the group G is non-periodic, one can always construct a cellular
automaton τ : AG → AG which does not satisfy the closed image property [CC-2011].

Theorem (Gr-1999, CC-2010a)

Let G be a group, K an uncountable algebraically closed field, and A an affine algebraic
set over K. Then every algebraic cellular automaton τ : AG → AG over K has the CIP
with respect to the prodiscrete topology on AG .
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An application of the CIP theorem

A group G is called residually finite if the intersection of its finite-index subgroups is
reduced to the identity element.

• The group Z is residually finite since
T

n≥1 nZ = {0}.
• The direct product of two residually finite groups is residually finite.
• It follows that Zd is residually finite for every integer d ≥ 1.
• More generally, by a result of Malcev, any finitely generated linear group is residually
finite. Recall that a group is called linear if one can find a field K such that G embeds
into GLn(K) for n large enough.

Corollary

Let G be a residually finite group (e.g., G = Zd), and K an uncountable algebraically
closed field. Then every injective algebraic cellular automaton τ : AG → AG over K is
surjective and hence bijective.
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The Ax-Grothendieck theorem

For the proof of the corollary, we need the following result from algebraic geometry:

Theorem (Ax-Grothendieck)

Let K be an algebraically closed field and let A be an affine algebraic set over K. Then
every injective regular map f : A → A is surjective and hence bijective.

Remark

The polynomial map f : Q → Q given by f (t) = t3 is injective but not surjective.
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Proof of the corollary

A configuration x ∈ AG is periodic if its orbit under the G -shift is finite.

The fact that G is residually finite implies that periodic configurations are dense in AG .
Let x ∈ AG be a periodic configuration and H = {g ∈ G : gx = x} its stabilizer.
Then H is a finite-index subgroup of G and there is a bijective map

ρ∗ : AH\G ∼=→ Fix(H) ⊂ AG defined by ρ∗(y) = y ◦ ρ, where ρ : G → H\G is the canonical
surjection.
One has a commutative diagram:

AH\G ρ∗−−−−−→ Fix(H)

f

??y ??yτ |Fix(H)

AH\G −−−−−→
ρ∗

Fix(H)

If τ is injective, then f is injective and hence surjective by the Ax-Grothendieck theorem.
Thus τ(Fix(H)) = Fix(H). As x ∈ Fix(H), this implies that every periodic configuration
is in the image of τ .
By density of periodic configurations and the CIP theorem, this implies that
τ(AG ) = AG .
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First ingredient in the proof of the CIP theorem

Let K be a field. If A is an affine algebraic set over K , the algebraic subsets of A are the
closed subsets of a topology.

This topology is called the Zariski topology on A.
Given a topological space X , a subset L ⊂ X is called locally closed if L = U ∩ V , where
U is open and V is closed in X .
A subset C ⊂ X is called constructible if C is a finite union of locally closed subsets of X .

Theorem (Chevalley)

Let K be an algebraically closed field. Let A and B be affine algebraic sets over K, and
let f : A → B be a regular map. Then every constructible subset C ⊂ A has a
constructible image f (C) ⊂ B. In particular, f (A) is a constructible subset of B.

Remark

The image of the polynomial map f : R → R defined by f (t) = t2 is [0,∞) which is not
constructible in R for the Zariski topology (the only constructible subsets of R for the
Zariski topology are the finite subsets of R and their complements).
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Second ingredient in the proof of the CIP theorem

Lemma 1

Let K be an uncountable algebraically closed field and let A be an affine algebraic set
over K. Suppose that C0, C1, C2, . . . is a sequence of nonempty constructible subsets of
A such that

C0 ⊃ C1 ⊃ C2 ⊃ . . .

Then one has
T

n≥0 Cn 6= ∅.

Remark

The preceding lemma becomes false if the field K is countable, e.g., K = Q or K = Fp.
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A real counterexample to the CIP

Here we take G = Z and A = R.
Consider the algebraic cellular automaton τ : RZ → RZ defined by

τ(x)(n) = x(n + 1)− x(n)2 ∀x ∈ RZ,∀n ∈ Z.

The image of τ is dense in RZ (for the prodiscrete topology).
Indeed, if y ∈ RZ is an arbitrary configuration and [−k, k] ⊂ Z, we can construct by
induction a configuration x ∈ RZ such that(

x(n) = 0 ∀n ≤ −k,

x(n + 1)− x(n)2 = y(n) ∀n ≥ −k.

Then y and τ(x) coincide on [−k, k]. This shows that τ(RZ) is dense in RZ.
However, τ is not surjective.
Indeed the constant configuration z ∈ RZ, given by z(n) = 1 for all n ∈ Z, is not in the
image of τ .
Otherwise, there would be x ∈ RZ such that x(n + 1)− x(n)2 = 1 for all n ∈ Z.
This implies x(n) increasing and x(n) ≥ 1 for all n.
Thus x(n) would have a finite limit as n → −∞.
This is impossible since α− α2 = 1 has no real roots.
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Reversibility

Definition

Let G be a group and let A be a set. A cellular automaton τ : AG → AG is called
reversible if τ is bijective and its inverse map τ−1 : AG → AG is also a cellular automaton.

Proposition

Let G be a group and let A be a finite set. Then every bijective cellular automaton
τ : AG → AG is reversible.

Proof.

Let τ : AG → AG be a bijective cellular automaton. As τ is continuous and
G -equivariant, its inverse map τ−1 is also G -equivariant and continuous by compactness
of AG . We deduce that τ−1 is a cellular automaton by the Curtis-Hedlund theorem.

Remark

When A is infinite and the group G is non-periodic, one can always construct a bijective
cellular automaton τ : AG → AG which is not reversible [CC-2011].
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Reversibility of algebraic cellular automata

Theorem (CC-2010a)

Let G be a group, and K an uncountable algebraically closed field. Then every bijective
algebraic cellular automaton τ : AG → AG over K is reversible.

Under the hypotheses of the preceding theorem, it may happen that the inverse cellular
automaton is not algebraic.

Example

Let K be an uncountable algebraically closed field of characteristic p > 0 and consider
the Frobenius automorphism f : K → K given by λ 7→ λp. Then the map τ : KG → KG ,
defined by

τ(x)(g) = f (x(g)) ∀x ∈ KG ,∀g ∈ G ,

is a bijective algebraic cellular automaton with memory set {1G} and local defining map
f . The inverse cellular automaton τ−1 : KG → KG is given by

τ−1(x)(g) = f −1(x(g)) ∀x ∈ KG ,∀g ∈ G ,

Therefore τ−1 is not algebraic since f −1 is not polynomial.
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Questions

The following questions are natural :

(Q1) — Does there exist a bijective algebraic cellular automaton τ : AZ → AZ over C
whose inverse cellular automaton τ−1 : AZ → AZ is not algebraic ?

(Q2) — Does there exist an injective algebraic cellular automaton τ : AZ → AZ over R
which is not surjective ?

(Q3) — For K = Q or K = Fp, does there exist an injective algebraic cellular automaton
τ : AZ → AZ over K which is not surjective ?

(Q4) — For K = Q or K = Fp, does there exist an algebraic cellular automaton
τ : AZ → AZ over K which does not satisfy the closed image property ?
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Questions

The following questions are natural :

(Q1) — Does there exist a bijective algebraic cellular automaton τ : AZ → AZ over C
whose inverse cellular automaton τ−1 : AZ → AZ is not algebraic ?

(Q2) — Does there exist an injective algebraic cellular automaton τ : AZ → AZ over R
which is not surjective ?

(Q3) — For K = Q or K = Fp, does there exist an injective algebraic cellular automaton
τ : AZ → AZ over K which is not surjective ?

(Q4) — For K = Q or K = Fp, does there exist an algebraic cellular automaton
τ : AZ → AZ over K which does not satisfy the closed image property ?
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