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Shifts and subshifts

Take:
• a group G ,
• a set A (called the alphabet).
Consider the set

AG = {x : G → A}

endowed with its prodiscrete topology and the left action of G given by

G × AG → AG

(g , x) 7→ gx

where
gx(h) = x(g−1h) ∀h ∈ G .

This action is called the G -shift. It is continuous w. r. to the prodiscrete topology on AG .

The space AG is called the space of configurations or the full shift over the group G and
the alphabet A.
A closed G -invariant subset X ⊂ AG is called a subshift.
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Cellular automata

Definition

Let X ⊂ AG be a subshift. A cellular automaton over X is a map

τ : X → X

satisfying the following condition:
there exist a finite subset M ⊂ G and a map µ : AM → A such that:

(τ(x))(g) = µ((g−1x)|M) ∀x ∈ X ,∀g ∈ G ,

where (g−1x)|M denotes the restriction of the configuration g−1x to M.

Such a set M is called a memory set and µ is called a local defining map for τ .
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Example: Conway’s Game of Life

Here G = Z2 and A = {0, 1}.
Life is the cellular automaton

τ : {0, 1}Z2

→ {0, 1}Z2

over the full shift X = {0, 1}Z2

obtained by taking M = {−1, 0, 1}2 ⊂ Z2 and
µ : AM → A given by

µ(y) =

8>>>><>>>>:
1 if

8>><>>:
X
m∈M

y(m) = 3

or
X
m∈M

y(m) = 4 and y((0, 0)) = 1

0 otherwise

∀y ∈ AM .

Michel Coornaert (IRMA, Strasbourg) A Garden of Eden Theorem for Linear Subshifts May 20, 2010 4 / 12



Example: Conway’s Game of Life

Michel Coornaert (IRMA, Strasbourg) A Garden of Eden Theorem for Linear Subshifts May 20, 2010 5 / 12



Example: Conway’s Game of Life

Michel Coornaert (IRMA, Strasbourg) A Garden of Eden Theorem for Linear Subshifts May 20, 2010 6 / 12



Amenable groups

Definition

The group G is called amenable if there exists a finitely-additive left-invariant probability
measure defined on the set P(G) of all subsets of G , that is, a map m : P(G) → [0, 1]
such that

(Amen-1) m(G) = 1

(Amen-2) A ∩ B = ∅ ⇒ m(A ∪ B) = m(A) + m(B)

(Amen-3) m(gA) = m(A)

for all g ∈ G and A, B ∈ P(G).

• Every finite group (and, more generally, every locally finite group) is amenable.
• Every abelian group (and, more generally, every solvable group) is amenable.
• Every finitely generated group with subexponential growth is amenable.
• An example of a non-amenable group is provided by the free group on 2 generators.
More generally, every group containing a non-abelian free subgroup is non-amenable.
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The Garden of Eden theorem

Definition

A cellular automaton τ : X → X over a subshift X ⊂ AG is called pre-injective if:

τ(x) = τ(x ′)
and

{g ∈ G | x(g) 6= x ′(g)} is finite

9=; =⇒ x = x ′.

The following theorem is the Garden of Eden Theorem due to Ceccherini-Silberstein,
Mach̀ı and Scarabotti. It was first proved for G = Z2 by Moore and Myhill and then
extended to finitely generated groups of subexponential growth by Mach̀ı and Mignosi.

Theorem (CMS,1999)

Let G be an amenable group and let A be a finite set. Let τ : AG → AG be a cellular
automaton defined over the full shift AG . Then

τ surjective ⇐⇒ τ pre-injective.
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A Garden of Eden theorem for subshifts

Let G be a group and let A be a set.

Definition

A subshift X ⊂ AG is said to be of finite type if there exist a finite subset D ⊂ G and a
subset L ⊂ AD such that

X = X (D, L)
def
= {x ∈ AG : (g−1x)|D ∈ L for all g ∈ G}.

Definition

A subshift X ⊂ AG is said to be strongly irreducible if there exists a finite subset ∆ ⊂ G
with the following property:
if Ω1 and Ω2 are finite subsets of G such that there is no element g ∈ Ω2 such that the
set g∆ meets Ω1 then, given any two configurations x1, x2 ∈ X , there exists a
configuration x ∈ X such that x |Ω1 = x1|Ω1 and x |Ω2 = x2|Ω2 .

Fiorenzi proved the following extension of the Garden of Eden theorem:

Theorem (F, 1999)

Let G be an amenable group and let A be a finite set. Let τ : X → X be a cellular
automaton defined over a strongly irreducible subshift of finite type X ⊂ AG . Then

τ surjective ⇐⇒ τ pre-injective.

Michel Coornaert (IRMA, Strasbourg) A Garden of Eden Theorem for Linear Subshifts May 20, 2010 9 / 12



A Garden of Eden theorem for subshifts

Let G be a group and let A be a set.

Definition

A subshift X ⊂ AG is said to be of finite type if there exist a finite subset D ⊂ G and a
subset L ⊂ AD such that

X = X (D, L)
def
= {x ∈ AG : (g−1x)|D ∈ L for all g ∈ G}.

Definition

A subshift X ⊂ AG is said to be strongly irreducible if there exists a finite subset ∆ ⊂ G
with the following property:
if Ω1 and Ω2 are finite subsets of G such that there is no element g ∈ Ω2 such that the
set g∆ meets Ω1 then, given any two configurations x1, x2 ∈ X , there exists a
configuration x ∈ X such that x |Ω1 = x1|Ω1 and x |Ω2 = x2|Ω2 .

Fiorenzi proved the following extension of the Garden of Eden theorem:

Theorem (F, 1999)

Let G be an amenable group and let A be a finite set. Let τ : X → X be a cellular
automaton defined over a strongly irreducible subshift of finite type X ⊂ AG . Then

τ surjective ⇐⇒ τ pre-injective.

Michel Coornaert (IRMA, Strasbourg) A Garden of Eden Theorem for Linear Subshifts May 20, 2010 9 / 12



A Garden of Eden theorem for subshifts

Let G be a group and let A be a set.

Definition

A subshift X ⊂ AG is said to be of finite type if there exist a finite subset D ⊂ G and a
subset L ⊂ AD such that

X = X (D, L)
def
= {x ∈ AG : (g−1x)|D ∈ L for all g ∈ G}.

Definition

A subshift X ⊂ AG is said to be strongly irreducible if there exists a finite subset ∆ ⊂ G
with the following property:
if Ω1 and Ω2 are finite subsets of G such that there is no element g ∈ Ω2 such that the
set g∆ meets Ω1 then, given any two configurations x1, x2 ∈ X , there exists a
configuration x ∈ X such that x |Ω1 = x1|Ω1 and x |Ω2 = x2|Ω2 .

Fiorenzi proved the following extension of the Garden of Eden theorem:

Theorem (F, 1999)

Let G be an amenable group and let A be a finite set. Let τ : X → X be a cellular
automaton defined over a strongly irreducible subshift of finite type X ⊂ AG . Then

τ surjective ⇐⇒ τ pre-injective.
Michel Coornaert (IRMA, Strasbourg) A Garden of Eden Theorem for Linear Subshifts May 20, 2010 9 / 12



A Garden of Eden theorem for linear subshifts

Let G be a group and let A = V be a vector space over an arbitrary field K.

A linear subshift is a subshift X ⊂ V G which is also a vector subspace of V G .
A linear cellular automaton over a linear subshift X ⊂ V G is a cellular automaton
τ : X → X which is K-linear.
This is joint work with Tullio Ceccherini-Silberstein:

Theorem (CC)

Let G be an amenable group, K a field, and V a finite-dimensional vector space over K.
Let τ : X → X be a linear cellular automaton defined over a strongly irreducible linear
subshift of finite type X ⊂ V G . Then

τ surjective ⇐⇒ τ pre-injective.

Corollary

τ injective ⇒ τ surjective.
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Sketch of proof

We use Følner criterion for amenability: a group G is amenable if and only if it admits a
Følner net, i.e., a net (Fi )i∈I of nonempty finite subsets of G such that

lim
i

|Fi \ Fig |
|Fi |

= 0 for all g ∈ G .

We define the mean dimension mdim(Y ) of a vector subspace Y ⊂ V G by

mdim(Y ) = lim sup
i

dim(πFi (Y ))

|Fi |
,

where πFi : V G → V Fi is the natural projection map and dim(·) denotes dimension of
finite-dimensional K-vector spaces.
Then we show that the surjectivity and the pre-injectivity of τ are both equivalent to the
condition mdim(τ(X )) = mdim(X ).
In this proof mean dimension plays the role played by entropy in the classical (finite
alphabet) case.
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