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This is joint work with Tullio Ceccherini-Silberstein.

Our motivation came from the following phrase of Gromov [Gro-1999, p. 195]:

“. . . the Garden of Eden theorem can be generalized to a suitable class of
hyperbolic actions . . . ”

Michel Coornaert (IRMA, University of Strasbourg) A Garden of Eden theorem April 6, 2016 2 / 18



This is joint work with Tullio Ceccherini-Silberstein.
Our motivation came from the following phrase of Gromov [Gro-1999, p. 195]:

“. . . the Garden of Eden theorem can be generalized to a suitable class of
hyperbolic actions . . . ”

Michel Coornaert (IRMA, University of Strasbourg) A Garden of Eden theorem April 6, 2016 2 / 18



Dynamical systems

A dynamical system is a pair (X , f ), where

X is a compact metrizable topological space,

f : X → X is a homeomorphism.

The space X is called the phase space of the dynamical system.
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Examples of Dynamical systems

Example (Arnold’s cat)

This is the d.s. (T2, f ), where f is the homeomorphism of the 2-torus T2 = R/Z× R/Z
given by

∀x =

(
x1
x2

)
∈ T2, f (x) =

(
x2

x1 + x2

)
.

Thus we have f (x) = Ax , where A =

(
0 1
1 1

)
is the cat matrix.

Example (Shifts and subshifts)

We take a finite set A, called the alphabet or the set of states. The associated shift is the
d.s. (AZ, σ), where

AZ = {x : Z→ A}

is equipped with the topology of pointwise convergence and σ : AZ → AZ is given by

σ(x)(i) := x(i − 1) ∀i ∈ Z, ∀x ∈ AZ.

An element of AZ is called a configuration. A subsystem of the shift (i.e., a pair (X , σ),
were X ⊂ AZ is a closed σ-invariant subspace) is called a subshift.
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Homoclinicity

Let (X , f ) be a dynamical system. Let d be a metric on X that is compatible with the
topology.

Definition

Two points x , y ∈ X are caled homoclinic if their orbits are asymptotic both in the past
and the future, i. e.,

lim
|n|→∞

d(f n(x), f n(y)) = 0.

Homoclinicity is an equivalence relation on X . This relation does not depend on the
choice of d .
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Homoclinicity (continued)

Example

Consider Arnold’s cat (T2, f ).
Equip T2 = R2/Z2 with its Euclidean structure.
The homoclinicity class of a point x ∈ T2 is D ∩ D ′, where D is the line passing through
x whose slope is the golden mean φ = 1.618 . . . and D ′ is the line passing through x and
orthogonal to D ′. The slopes of D and D ′ are the eigenvalues of the cat matrix. Each
homoclinicity class is countably-infinite and dense in T2.

Example

Consider the full shift (AZ, σ) over a finite alphabet A. Two configurations x , y : Z→ A
are homoclinic if and only if they coincide outside of a finite subset of Z. Each
homoclinicity class is dense in AZ, and countably-infinite as soon as the alphabet A has
more than one element.
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Pre-injective endomorphisms

Let (X , f ) be a dynamical system.

Definition

An endomorphism of the d.s. (X , f ) is a continuous map τ : X → X such that τ
commutes with f , i. e., τ ◦ f = f ◦ τ .

Remark

An endomorphism of a shift (or subshift) is also called a cellular automaton.

Definition

An endomorphism τ : X → X of the d.s. (X , f ) is called pre-injective if its restriction to
each f -homoclinicity class is injective.

Of course
τ injective =⇒ τ pre-injective

but the converse implication is false in general.
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Examples of pre-injective but not injective endomorphisms

Example (Arnold’s cat)

The group endomorphism τ : T2 → T2, given by τ(x) := 2x for all x ∈ T2, is an
endomorphism of Arnold’s cat (T2, f ).
The kernel of τ consists of four points:

Ker(τ) =

{(
0
0

)
,

(
1/2

0

)
,

(
0

1/2

)
,

(
1/2
1/2

)}
.

The endomorphism τ is surjective and pre-injective but not injective.

Example (Full shift on {0, 1})

The endomorphism τ of the full shift (AZ, σ) on the alphabet

A := Z/2Z = {0, 1}

defined by
τ(x)(i) := x(i + 1) + x(i) ∀x ∈ AZ, ∀i ∈ Z

is surjective and pre-injective but not injective.
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The Moore-Myhill GOE theorem

The following result is known as the Garden of Eden theorem:

Theorem (Moore-Myhill GOE theorem)

Let A be a finite set. Then every endomorphism τ of the full shift (AZ, σ) satisfies

τ surjective ⇐⇒ τ pre-injective.

Moore [Moo-1963] proved =⇒,

Myhill [Myh-1963] proved ⇐=.

The proof consists in showing that

τ surjective ⇐⇒ htop(τ(AZ), f ) = htop(AZ, f ) ⇐⇒ τ pre-injective,

where htop(X , f ) denotes the topological entropy of the d.s. (X , f ).
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The Moore and the Myhill properties

Let (X , f ) be a dynamical system.

Definition

The d.s. (X , f ) has the Moore property if every surjective endomorphism of (X , f ) is
pre-injective.

Definition

The d.s. (X , f ) has the Myhill property if every pre-injective endomorphism of (X , f ) is
surjective.

Definition

A d.s. has the Moore-Myhill property if it has both the Moore and the Myill property.
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The Moore and the Myhill property (continued)

Example

Arnold’s cat (T2, f ) has the Moore-Myhill property. Indeed, it is easy to show using
spectral analysis that any endomorphism τ of the cat is of the form τ = m Id +nf , for
some m, n ∈ Z. Thus, with the exception of the 0-endomorphism, every endomorphism of
the cat is both surjective and pre-injective.

Example

The GOE theorem says that the full shift (AZ, σ) has the Moore-Myhill property for every
finite set A.
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The Moore and the Myhill properties (continued)

Example

Let X be a compact metrizable space and take f = Id. The endomorphisms of (X , f )
consist of all continuous maps τ : X → X . Every f -homoclinicity class is reduced to a
single point so that each endomorphism of (X , f ) is pre-injective. Thus (X , f ) has the
Moore property. However, (X , f ) does not have the Myhill property as soon as X has
more than one point.

Example

The even subshift is the subshift X ⊂ {0, 1}Z consisting of all bi-infinite sequences
x : Z→ {0, 1} such that the number of 1s between any two 0s is even. Fiorenzi
[Fio-2000] proved that the even subshift has the Myhill property but not the Moore
property.

Remark

The Moore property is a finiteness condition (i.e., every d.s. (X , f ) with X finite has the
Moore property) whereas the Myhill property is not (consider a d.s. (X , Id), where X is a
discrete finite space with more than one point).
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Anosov diffeomorphisms

Let f : M → M be a diffeomorphism of a smooth compact manifold M.
One says that f is Anosov if the tangent bundle TM of M continuously splits as a direct
sum TM = Es ⊕ Eu of two df -invariant subbundles Es and Eu such that, with respect to
some (or equivalently any) Riemannian metric on M, the differential df is exponentially
contracting on Es and exponentially expanding on Eu, i. e., there are constants C > 0
and 0 < λ < 1 such that

‖df n(v)‖ ≤ Cλn‖v‖,
‖df −n(w)‖ ≤ Cλn‖w‖

for all x ∈ M, v ∈ Es(x), w ∈ Eu(x), and n ≥ 0.

Example

Arnold’s cat is Anosov. If we identify the tangent space at x ∈ T2 with R2, the two
eigenlines of the cat matrix yield Eu(x) and Es(x).
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Hyperbolic toral automorphisms

Example

Arnold’s cat can be generalized as follows.
Consider a matrix A ∈ GLn(Z) with no eigenvalue of modulus 1. Then the map

f : Tn → Tn

x 7→ Ax

is an Anosov diffeomorphism of the n-dimensional torus Tn := Rn/Zn.
One says that f is the hyperbolic toral automorphism associated with A.
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The GOE theorem for Anosov diffeomorphisms on tori

Theorem (CC-2015a)

Let f be an Anosov diffeomorphism of the n-dimensional torus Tn. Then the d.s. (Tn, f )
has the Moore-Myhill property.

The proof uses two classical results:

Result 1 (Franks [Fra-1970], Manning [Man-1974]) Every Anosov diffeomorphisms of Tn

is topologically conjugate to a hyperbolic toral automorphism.

Result 2 (Walters [Wal-1968]) Every endomorphism of a hyperbolic toral automorphism
on Tn is affine, i. e., of the form x 7→ Bx + c, where B is an integral n × n
matrix and c ∈ Tn.
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Some definitions

A dynamical system (X , f ) is expansive if there exists a constant δ > 0 such that, for
every pair of distinct points x , y ∈ X , there exists n = n(x , y) ∈ Z such that
d(f n(x), f n(y)) ≥ δ.
A d.s. (X , f ) is topologically mixing if, given any two non-empty open subsets U,V ⊂ X ,
one has f n(U) ∩ V 6= ∅ for all but finitely many n ∈ Z.
A subshift Σ ⊂ AZ is said to be of finite type if there is an integer m ≥ 1 and a subset
P ⊂ Am such that X consists of the configurations x ∈ AZ that satisfy

(x(i), x(i + 1), . . . , x(i + m − 1)) ∈ P

for all i ∈ Z.
Given two d.s. (Y , g) and (X , f ), a continuous map π : Y → X is called a factor map if
π is surjective and satisfies π ◦ g = f ◦ π. A factor map π : Y → X is uniformly
bounded-to-one if there is an integer K ≥ 1 such that card(π−1(x)) ≤ K for all x ∈ X .
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The Myhill property for topologically mixing Anosov diffeomorphisms

Theorem (CC-2015b)

Suppose that the d.s. (X , f ) is expansive and that there exist a finite set A, a
topologically mixing subshift of finite type Σ ⊂ AZ, and a uniformly bounded-to-one
factor map π : Σ→ X . Then the dynamical system (X , f ) has the Myhill property.

Remark

The even subshift satisfies the hypotheses of the previous theorem but does not have the
Moore property.

Corollary (CC-2015b)

Let f be a topologically mixing Anosov diffeomorphism of a smooth compact manifold
M. Then (M, f ) has the Myhill property.

Remark

All known examples of Anosov diffeomorphisms are topologically mixing.
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