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Poisson manifolds

M a manifold, a bivector field ν on M with [ν, ν]SN = 0  a
Poisson bracket on C∞(M).

Properties:

anti-symmetry: {f , g} = −{g , f },
linearity: {f , ag1 + bg2} = a{f , g1}+ b{f , g2} for scalars a, b,

Jacobi identity: {{f , g}, h}+ {{g , h}, f }+ {{h, f }, g} = 0,

Leibniz rule: {f , gh} = {f , g}h + g{f , h}.
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Two examples

Example 1 (Kostant–Kirillov Poisson bracket): Let g be a Lie
algebra, then g∗ is a Poisson manifold: the space of linear
functions on g∗ is g, so we have a Lie bracket

{g1, g2}(ξ) = ξ([g1, g2]),

which we then extend by Leibniz rule.

Example 2 (constant bracket): In the previous example, fix
γ ∈ Λ2g∗, and let

{g1, g2}(ξ) = γ(g1, g2),

which we then extend by Leibniz rule.

For instance, if g is the 2-dimensional solvable Lie algebra,
g = span{p, q | [p, q] = q}, we have the Kostant–Kirillov bracket
{p, q} = q, and a constant bracket {p, q} = 1.
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(Autonomous) Hamiltonian formalism
Let M be a Poisson manifold. To every function f ∈ C∞(M), we
relate the corresponding Hamiltonian vector field Xf ∈ Γ(TM)
satisfying

Xf (g) := {f , g}.

H ∈ C∞(M) a function (energy, Hamiltonian of the system).
Hamilton evolution equation associated to H:

df

dt
= XH(f ) = {H, f },

where f ∈ C∞(M).
Example: g from the previous slide, {p, q} = 1:

dp

dt
= {H, p} = −∂H

∂q
,

dq

dt
= {H, q} =

∂H

∂p
.
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Integrable systems (for algebraists)

Two functions f , g ∈ C∞(M) are said to be in involution if
{f , g} = 0. A set of functions is said to be involutive if any two
elements of this set are in involution.

A “system” (Poisson manifold) is said to be (Liouville) integrable if
it admits a maximal independent involutive set of functions
{F1, . . . ,Fn−r}. [Here n = dim M, and 2r is the rank of the
Poisson structure at generic point.]

Hamiltonian vector fields XFi
, i = 1, . . . , n − r , commute and so

define an integrable distribution; thus, locally

XFi
=
∂

∂ti
.

It can be shown that the coordinates ti can be obtained by
algebraic operations, inverting functions and integration. Thus,
integrable systems are solvable in quadratures, hence the name.
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Bi-Hamiltonian systems — 1

Assume that M has two Poisson brackets {·, ·}1 and {·, ·}2. These
brackets are said to be compatible if a{·, ·}1 + b{·, ·}2 is a Poisson
bracket for any choice of scalars a, b.
Such a manifold M is called bi-Hamitonian, and every vector field
on M which is Hamiltonian with respect to both structures — a
bi-Hamiltonian vector field.

Let X be a bi-Hamiltonian vector field, that is
X = {F1, ·}1 = {F2, ·}2. Then F1 and F2 are in involution with
respect to both Poisson structures:

{F1,F2}1 = {F2,F2}2 = 0,

{F1,F2}2 = −{F2,F1}2 = −{F1,F1}1 = 0.
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Bi-Hamiltonian systems — 2

Lenard recursion formula: Generalizing the previous example, we
call a sequence of functions F0,F1,F2, . . . a bi-Hamiltonian
hierarchy if

{Fi , ·}1 = {Fi+1, ·}2
for all i . Then a similar computation shows that Fi form an
involutive system with respect to both brackets.

If we assume in addition that {F0, ·}2 = 0, these conditions
together mean that we require Fλ = F0 + F1λ+ F2λ

2 + . . . to be
in the Poisson centre for the generic bracket λ{·, ·}1 − {·, ·}2.

(Lenard ’67, published by Gardner–Greene–Kruskal–Miura ’74,
studied in depth by Magri ’78 and Gel’fand–Dorfman ’79. . . )
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Example: KdV

The Korteweg–de Vries (KdV) equation

ut = 6uux + uxxx .

Can be rewritten as

ut = P0
δH0

δu
,

where H0 =
∫

(u3 − 1
2u2

x ) dx and P0 = ∂
∂x defines the Poisson

bracket

{F ,G}0 =

∫
δF

δu
P0
δG

δu
dx .

( δδu is the Frèchet derivative,
δ

R
f dx
δu =

∑
k≥0

(−d
dx )k ∂f

∂u(k) .)
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( δδu is the Frèchet derivative,
δ

R
f dx
δu =

∑
k≥0

(−d
dx )k ∂f

∂u(k) .)



Example: KdV

Also, the KdV equation can be rewritten as

ut = P1
δH1

δu
,

where H1 =
∫

u2

2 dx and P1 = ∂3

∂x3 + 4u ∂∂x + 2ux defines the
Poisson bracket

{f , g}1 =

∫
δf

δu
P1
δg

δu
dx .
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Example: KdV

We have

P1
δH1

δu
= P0

δH0

δu
,

so our system is bi-Hamiltonian:

{H1, ·}1 = {H0, ·}0.

Furthermore, Lenard recursion formula

{Fk , ·}1 = {Fk+1, ·}0,

applied to F0 =
∫

u
2 dx , F1 = H1 =

∫
u2

2 dx , gives the commuting

family F1 =
∫

u2

2 dx , F2 = H0 =
∫

(u3 − u2
x
2 ) dx ,

F3 =
∫

(5u4

2 − 5uu2
x + u2

xx
2 ) dx , . . .

Note that δF0
δu = 1

2 , so F0 is in the Poisson centre for {·, ·}0.
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Examples arising from Lie algebras

Let g be a Lie algebra. When is the constant bracket arising from
γ ∈ Λ2g∗ compatible with the Kostant–Kirillov bracket?

Precisely
when γ is a 2-cocycle.

Remark 1: if γ is a coboundary, γ(g1, g2) = ζ([g1, g2]) for some
ζ ∈ g∗, then Fλ(ξ) = F (ξ + λζ) is in the generic centre, if F is in
the Poisson centre for the Kostant–Kirillov bracket  shift of
argument method (Mishchenko–Fomenko ’79, Vinberg ’90 . . . ).
Recently used to study generalized Gaudin hamiltonians (Rybnikov
’06), G -opers with irregular singularity (Feigin–Frenkel–Rybnikov
’07) etc.

Remark 2: if g is the algebra of vector fields on the circle, and γ
is the 2-cocycle defining the Virasoro algebra, one obtains the
above bi-Hamiltonian interpretation of KdV. (P0 = ∂

∂x produces

the Kostant–Kirillov bracket, while P1 = ∂3

∂x3 + 4u ∂∂x + 2ux is
responsible for the Virasoro cocycle.)
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Algebras with two compatible Lie brackets

Definition: g is an algebra with two compatible Lie brackets, if
there are two brackets {·, ·}1 and {·, ·}2 on g such that
a{·, ·}1 + b{·, ·}2 is a Lie bracket for any choice of scalars a, b.

If g is an algebra with two compatible Lie brackets, g∗ has a
natural structure of a bi-Hamiltonian manifold: two
Kostant–Kirillov brackets are compatible.
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Algebras with two compatible products

In the case of one Lie bracket, one can obtain Lie algebras taking
commutators of associative algebras: if A is an associative algebra,
then the operation ab − ba defines a Lie bracket on A.

Similarly, we call A an algebra with two compatible products, if
there are two products (· ?1 ·) and (· ?2 ·) on A such that the
product a(· ?1 ·) + b(· ?2 ·) is associative for any choice of scalars
a, b.

Claim: if A is an algebra with two compatible products, then the
operations (a ?1 b)− (b ?1 a) and (a ?2 b)− (b ?2 a) make it an
algebra with two compatible Lie brackets.
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a ?′ b = (x ? a− a ? x) ? (y ? b − b ? y)
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Further examples
Example: Ak is the space of polynomials in t of degree at most
k − 1, α1(t) and α2(t) two polynomials of degree k without
common roots. Then, by Euclid,

f (t)g(t) = x1(t)α1(t) + x2(t)α2(t)

for unique pair (x1(t), x2(t)) ∈ Ak × Ak . We let
f (t) ?i g(t) = xi (t).

This has important generalizations for elliptic
curves where polynomials are replaced by matrix-valued
θ-functions. (Odesskii–Sokolov ’05)

Example: If A is an algebra with two compatible products and B
is an associative algebra then A⊗ B is an algebra with two
compatible products. Consequently, Matn(A) is an algebra with
two compatible brackets.This descends on GLn-invariants, and
leads to bi-Hamiltonian interpretations of some “integrable ODEs
on associative algebras” (Olver–Sokolov ’98, Mikhailov–Sokolov
’99).
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Results on algebras with two compatible
products

Towards the classification: Odesskii–Sokolov ’05, classification
of ways to make ⊕i Matni an algebra with two compatible
products. The arising combinatorial data is a representation of a
quiver associated to an affine simply laced Dynkin diagram (with
some additional marking of vertices).

On the other extremal side: free algebras with two compatible
products. For one product, the free algebra is just a tensor algebra.
Is there a simple description for the case of two products?

YES!
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Main theorem

Denote by RT(S) the collection of all planar rooted trees whose
non-root vertices are labelled by elements of a finite set S .

Theorem (D. ’08)

The vector space kRT(S) has two compatible products; with those
products it becomes the free algebra with two compatible products
generated by S.

Corollary (on Catalan numbers)

The component of degree n in the free algebra with two
compatible brackets generated by S has dimension 1

n+1

(2n
n

)
|S |n.
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Compatible products of trees

Let T1,T2 ∈ RT(S). Assume that the root of T1 has k children.
Define the products T1 ?1 T2 and T1 ?2 T2 as follows:

T1 ?1 T2 =
∑

f : [k]→Vertices(T2)

T1 af T2,

T1 ?2 T2 =
∑

g : [k]→Int(T2)

T1 ag T2,

where the tree T1 af T2 is obtained as follows. We split T1 into k
parts T1[1], . . . ,T1[k], and for a vertex v of T2 with

f −1(v) = {i1 < . . . < is},

we graft T1[i1], . . . ,T1[is ] at vertex v (keeping the label of v) to
the left of all the children of v in T2.
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Example

For the trees

T1 =
a

, T2 =

b c

the product T1 ?1 T2 is equal to

a b c

+

a

b c

+

a

b
c

while the product T1 ?2 T2 is equal to

a b c



Example

For the trees

T1 =
a

, T2 =

b c

the product T1 ?1 T2 is equal to

a b c

+

a

b c

+

a

b
c

while the product T1 ?2 T2 is equal to

a b c



Example

For the trees

T1 =
a

, T2 =

b c

the product T1 ?1 T2 is equal to

a b c

+

a

b c

+

a

b
c

while the product T1 ?2 T2 is equal to

a b c



Proof strategy for compatibility

Observation 1: The compatibility condition can be rewritten in
the form

(T1?2T2)?1T3−T1?2(T2?1T3) = T1?1(T2?2T3)−(T1?1T2)?2T3.

Observation 2: For two products on the space of trees that we
defined both the left hand side and the right hand side have
positive integer coefficients.
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Proof of compatibility

In the compatibility condition

(T1?2T2)?1T3−T1?2(T2?1T3) = T1?1(T2?2T3)−(T1?1T2)?2T3,

the trees that appear on the left hand side are those for which
there exist subtrees of T1 that are attached to some leaves of T3.

The right hand side has the same interpretation.
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Proof of freeness

The proof of freeness goes in two steps:

as an algebra with two compatible products, kRT(S) is
generated by elements of degree 1, i.e. trees with one
non-root vertex. Proof by induction, rather easy.

free algebra with two compatible products generated by S has
the same dimensions of graded components as kRT(S).
Original proof was using a result of Strohmayer ’07 that
involved heavy homological machinery (Koszul duality for
operads), however now it is clear that using Gröbner bases for
operads (D.–Khoroshkin ’08) can simplify the proof
substantially.
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Remarks

The first product T1 ?1 T2 on Q RT(S) was defined by Grossman
and Larson ’89 in their works about Hopf algebras based on trees
(combinatorial Hopf algebras describing solving differential
equations etc.). Our results yield an easy proof of their theorem
stating that the algebra of planar rooted trees is a free associative
algebra generated by trees whose root has only one child.

Our strategy to construct a compatible product (grafting to
internal vertices only) applies to a variety of cases of algebras
based on trees, e.g. numerous “Hopf algebras of renormalization”
(Brouder–Frabetti ’03, Connes–Kreimer ’98, Foissy ’02).
(Vague) question: relate renormalization techniques to
bi-Hamiltonian integrability.
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Free bi-Hamiltonian algebras

What about free algebras with two compatible Lie brackets (a
more natural candidate to study)?

Bad news: similarly to the case of one product/bracket, where
free Lie algebras are more complicated than free associative
algebras, for free algebras with compatible Lie brackets both the
dimension formulas and combinatorics are quite disastrous.

Good news: the operadic part (the space of multilinear elements
in the free algebra with n generators) is a very interesting object.
It has dimension nn−1 and interesting combinatorics
(D.–Khoroshkin ’06, Liu ’09).

Even better news: for free bi-Hamiltonian algebras, the
corresponding dimensions are (n + 1)n−1 (op. cit.), which makes
one think of diagonal harmonics. . .
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Thank you for your patience!


