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Motivation

Batalin–Vilkovisky algebra: a (graded) commutative associative
algebra equipped with an linear operator ∆ of degree 1
satisfying ∆2 = 0 and

∆(a · b · c) = ∆(a · b) · c + ∆(b · c) · a + ∆(c · a) · b−
−∆(a) · b · c −∆(b) · c · a −∆(c) · a · b

(signs needed for elements of degree , 0), which expresses
the fact that ∆ is a “differential operator of order at most 2”.
Often presented together with an auxiliary operation

[a,b] = ∆(ab) −∆(a)b − a∆(b),

but we shall not need it.
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Motivation

BV-algebras, among other things, lead to connections between:

mathematical formulations of field theory (e.g. 2d TFT /
CFT / CohFT)
algebraic geometry (Calabi–Yau manifolds, mirror
symmetry conjecture, moduli spaces of curves)
homotopical algebra in general

Getzler ’94, Barannikov & Kontsevich ’97, Losev & Shadrin ’05,
and many others
One of recent results (Drummond-Cole & Vallette ’09) reveals a
relationship between the homotopy theory for BV-algebras and
moduli spaces of curves with marked points.
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Motivation
Strict BV-algebras can be interpreted in terms of the Givental
group action on cohomological field theories (Shadrin ’08).

What about the homotopy story? A first step towards answering
is question is explained in this talk.
An early approach to homotopy theory for BV-algebras
(Kravchenko ’99), “commutative homotopy BV-algebras”: the
associativity is still strict, but ∆2 only vanishes up to homotopy.
More precisely: algebra (V ,d) with operators ∆1 = d, ∆2 = ∆,
∆3, . . . , where ∆k is of degree 2k − 3, and∑

i+j=n

∆i∆j = 0.

(For instance, d∆3 + ∆3d + ∆2 = 0, so ∆3 provides a
homotopy for the relation ∆2 = 0.)
Additional requirement: each ∆k is a differential operator of
order at most k . (Needed if we do not want any further higher
structures!)
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Differential operators on commutative algebras

Definition (Grothendieck, EGA IV). Let A be an associative
commutative algebra. A differential operator of order at most 0
is an operator of the form f · (−) : g 7→ f · g for some f ∈ A .

Furthermore, a linear operator D : A → A is a differential
operator of order at most p if [D, f · (−)] is a differential operator
of order at most p − 1 for every f ∈ A .



Differential operators on commutative algebras

Definition (Koszul, 1980s). Let A be an associative
commutative algebra. The hierarchy of brackets
〈−,−, . . . ,−〉Dp : A⊗p

→ A associated to a linear operator
D : A → A is defined recursively by 〈f〉D1 := D(f) and

〈f1, . . . , fp−1, fp , fp+1〉
D
p+1 = 〈f1, . . . , fp−1, fpfp+1〉

D
p −

− 〈f1, . . . , fp−1, fp〉Dp fp+1 − fp〈f1, . . . , fp−1, fp+1〉
D
p .

An operator D is a differential operator order at most p if the
bracket 〈−,−, . . . ,−〉Dp+1 is identically equal to zero.

For algebras with unit, the two definitions are equivalent if we
restrict ourselves to operators that annihilate the unit. In this
talk, we stick to the second definition.
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A hierarchy of formulas

For a differential operator D of order at most p, any n ≥ p + 1,
and integers d0, . . . ,dn ≥ 0 with p + d0 + d1 + · · ·+ dn = n − 1,(

n − 2
d0 + p − 1,d1, . . . ,dn

)
D(f1f2 · · · fn)+

+
∑

i+j=p−2

(−1)j+1
(
|I| − 2

i,di1 , . . . ,dir

)(
|J| − 1

j,d0,dj1 , . . . ,djs

)
D(fI)fJ+

+ (−1)p
n∑

m=1

(
n − 2

d0, . . . ,dm + p − 1, . . . ,dn

)
f1 · · ·D(fm) · · · fn = 0,

where in the last sum the summation is also over all
I = {i1, . . . , ir }, J = {j1, . . . , js} with r ≥ 2, I t J = {1, . . . ,n}, and
i + di1 + . . .+ dir = |I| − 2, j + d0 + dj1 + . . .+ djs = |J| − 1.



A hierarchy of formulas
For example,

For a differential operator D of order at most 1, the whole
hierarchy reduces to

D(f1f2 · · · fn) =

n∑
m=1

D(fm)f1 · · · f̂m · · · fn,

For a differential operator D of order at most 2, the
hierarchy includes

D(f1f2 · · · fn) =
∑

1≤i<j≤n

D(fj fj)f1 · · · f̂i · · · f̂j · · · fn−

− (n − 2)

n∑
m=1

D(fm)f1 · · · f̂m · · · fn,

but also includes infinitely many other ones.
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Moduli spaces of curves

Main characters:

Mg,n, moduli space of (smooth) curves of genus g with n
marked points (2g − 2 + n > 0)
M g,n, Deligne–Mumford compactification, parametrises
“stable curves”
{M g,n}, the topological modular operad of moduli spaces,
equipped with structure maps

2-to-1 mappings σ : M g−1,n+2 →M g,n whose image is the
boundary divisor of irreducible curves with one node;
mappings ρ : M g1,n1+1 ×M g2,n2+1 →M g,n, g1 + g2 = g,
n1 + n2 = n, gluing together two curves along their last
marked points;
(also can include projections π : M g,n+1 →M g,n forgetting
the last marked point, but we shall ignore them most of the
time).
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Modular operads

Generally, an algebraic modular operad is something modelled
on the collection of modular spaces and maps between them,
that is a collection of graded vector spaces Pg,n with
appropriate maps σ, ρ.

Example: the “modular endomorphism operad” of a vector
space with a scalar product: (EndV )g,n = V⊗n, σ and ρ given by
contractions.

An algebra over a modular operad P is a vector space V with a
scalar product together with a morphism of modular operads
P → EndV .
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Cohomological field theories

A cohomological field theory is an algebra over the modular
operad {H•(M g,n)}.

In other words, a cohomological field theory on a vector space
V is a collection of (co)homology classes

αg,n ∈ Hom(H•(M g,n),V⊗n) ' H•(M g,n) ⊗ V⊗n

behaving well with respect to pushforwards via σ and ρ.
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Topological field theories

A cohomological field theory is said to be a topological field
theory if all the classes αg,n are of cohomological degree 0. In
this case, they all are determined by α0,3, which, viewed as an
element of H•(M 0,3) ⊗ V⊗3

' Hom(V⊗2,V), should define a
commutative associative product on V .

Including projections π
amounts to considering algebras with unit.
If we are only interested in the genus 0 part of a CohFT / TFT,
we can “eliminate” the scalar product, using it to identify
V⊗(n+1) with Hom(V⊗n,V). In this case α0,n+1 becomes the
(n − 1)-fold iterated commutative product on V .
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Givental group action on CohFT’s

Let V be a vector space with a scalar product η. The space of
Laurent series with coefficients in V has a symplectic structure

〈v ⊗ f(z),w ⊗ g(z)〉 = η(v ,w) Res(f(−z)g(z)).

The Givental Lie algebra is the Lie algebra of the “upper
triangular subgroup” of the group of symplectomorphisms of
that structure. It consists of all series r1z + r2z2 + . . . , where
rl ∈ End(V) is symmetric for odd l and skew-symmetric for even
l (with respect to the scalar product η).
An action of the Givental Lie algebra on CohFT’s is defined
using “tautological classes” of moduli spaces. Main characters:
tautological classes ψ1, . . . , ψn ∈ H2(M g,n), the Chern classes
of tautological line bundles L1, . . . ,Ln whose fibres are tangent
lines at respective marked points.
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lines at respective marked points.
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Givental group action on CohFT’s
The Givental Lie algebra action on cohomological field theories
takes the system of classes αg,n ∈ H•(M g,n) ⊗ V⊗n to the

system of classes (r̂lz l .α)g,n ∈ H•(M g,n) ⊗ V⊗n given by the
formula

(r̂lz l .α)g,n :=

n∑
m=1

(αg,n · ψ
l
m) ◦m rl+

+
1
2

 l−1∑
i=0

(−1)i+1
(
σ∗(αg−1,n+2 · ψ

i
n+1ψ

l−1−i
n+2 ), η−1rl

)
+

+
∑

i+j=l−1

(−1)j+1
(
ρ∗(αg1,|I|+1 · ψ

i
|I|+1 ⊗ αg2,|J|+1 · ψ

j
|J|+1), η−1rl

) .

The last sum is over all partitions I t J = {1, . . . ,n} and
g1 + g2 = g; the maps σ and ρ identify the points labelled n + 1
and n + 2 in the second sum, and the points |I|+ 1 on
M g1+1,|I|+1 and |J|+ 1 on M g2+1,|J|+1 in the third sum.
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Givental group action on CohFT’s

Proposition (Kazarian, Teleman)
The classes

α̃g,n :=

exp

 ∞∑
l=1

r̂lz l

 .α


g,n

are well-defined cohomology classes with the values in the
tensor powers of V that satisfy CohFT constraints; thus, the
Givental group acts on cohomological field theories.



Givental stabilisers of TFT’s, genus 0

Theorem (D.–Shadrin–Vallette, 2011)
Let A = {α0,n}n≥3 be a genus 0 topological field theory on a
vector space V, making it into a commutative associative
algebra. The Lie algebra of the stabiliser of A is spanned by all
elements ∑

p≥2

Dpzp−1

for which Dp is a differential operator of order at most p on V.



Givental stabilisers of TFT’s, genus 0
Sketch of a proof: first, note that for a TFT A, all contributions
̂Dpzp−1.A live in different cohomological degrees, so we may

explore these conditions separately.

Second, we get rid of
cohomology classes: for a sequence of integers d0, . . . ,dn ≥ 0
with l − 1 + d0 + d1 + · · ·+ dn = n − 2, we compute∫

M 0,n+1

̂Dpzp−1.αn ·

n∏
m=0

ψdm
m .

In fact, this can be rewritten as

〈τd0+p−1τd1 · · · τdn〉0Dp(f1f2 · · · fn)+

+
∑

i+j=p−2

(−1)j+1
〈τiτdi1

· · · τdir
〉0〈τd0τjτdj1

· · · τdjs
〉0Dp(fI)fJ+

+ (−1)p
n∑

m=1

〈τd0τd1 · · · τdm+p−1 · · · τdn〉0f1 · · ·Dp(fm) · · · fn.
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Givental stabilisers of TFT’s, genus 0

On the previous slide, 〈τd0τd1 · · · τdn〉0 are the correlators of our
TFT (integrals of products of ψ-classes).

It is known that

〈τd0τd1 · · · τdn〉0 =


(

n − 2
d0, . . . ,dn

)
if d0 + · · ·+ dn = n − 2,

0 otherwise.

Also, for any i, j we have a topological recursion relation

〈τd1τd2 · · · τdi+1 · · · τdn〉0 + 〈τd1τd2 · · · τdj+1 · · · τdn〉0 =

=
∑

i∈I,j∈J

〈τdi1
· · · τdir

τ0〉0〈τ0τdj1
· · · τdjs

〉0,

hinting that we might be able to prove the theorem by a clever
induction.



Givental stabilisers of TFT’s, genus 0

On the previous slide, 〈τd0τd1 · · · τdn〉0 are the correlators of our
TFT (integrals of products of ψ-classes).
It is known that

〈τd0τd1 · · · τdn〉0 =


(

n − 2
d0, . . . ,dn

)
if d0 + · · ·+ dn = n − 2,

0 otherwise.

Also, for any i, j we have a topological recursion relation

〈τd1τd2 · · · τdi+1 · · · τdn〉0 + 〈τd1τd2 · · · τdj+1 · · · τdn〉0 =

=
∑

i∈I,j∈J

〈τdi1
· · · τdir

τ0〉0〈τ0τdj1
· · · τdjs

〉0,

hinting that we might be able to prove the theorem by a clever
induction.



Givental stabilisers of TFT’s, genus 0
On the previous slide, 〈τd0τd1 · · · τdn〉0 are the correlators of our
TFT (integrals of products of ψ-classes).
It is known that

〈τd0τd1 · · · τdn〉0 =


(

n − 2
d0, . . . ,dn

)
if d0 + · · ·+ dn = n − 2,

0 otherwise.

[Aha! That’s where the all those coefficients in(
n − 2
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D(f1f2 · · · fn)+

+
∑

i+j=p−2

(−1)j+1
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|I| − 2

i,di1 , . . . ,dir

)(
|J| − 1

j,d0,dj1 , . . . ,djs
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D(fI)fJ+

+ (−1)p
n∑

m=1

(
n − 2

d0, . . . ,dm + p − 1, . . . ,dn
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f1 · · ·D(fm) · · · fn,
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Givental stabilisers of TFT’s, genus 0
The actual proof is just a little bit more tricky. First, there is a
series of identities generalising

D(f1f2 · · · fn) =
∑

1≤i<j≤n

D(fj fj)f1 · · · f̂i · · · f̂j · · · fn−

− (n − 2)

n∑
m=1

D(fm)f1 · · · f̂m · · · fn,

for operators of order at most 2.

Namely, for an operator of
order at most p and for any n ≥ p + 1, we have

D(f1f2 · · · fn) =
∑

ItJ={1,...n},
1≤|I|≤p

(−1)p−|I|
(
n − 1 − |I|

p − |I|

)
D(fI)fJ .

(This identity is the identity for d0 = n − p − 1 and
d1 = · · · = dn = 0 above.) All other identities follow by means of
topological recursion relations.
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Givental stabilisers of TFT’s, genus 1

If we want to incorporate the genus 1 information, we can
“eliminate” the scalar product, using it to identify V⊗(n+1) with
Hom(V⊗n,V) in the genus 0 part, and V⊗n with Hom(V⊗n,C) in
the genus 1 part. Main characters: the product α0,3 and the
“trace” α1,1.

For algebras with trace, the relevant properties of differential
operators appear to be Getzler’s 1/12-axiom for order 2:

tr(D2(f · (−))) =
1

12
tr(D2(f) · (−)),

and a (new) property of “being compatible with the trace” for
order 3 and higher:

tr(〈f1, f2, . . . , fp−1〉
Dp

p−1 · (−)) = 0.
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Givental stabilisers of TFT’s, genus 1

Theorem (D.–Shadrin–Vallette, 2011)
Let A = {α0,n}n≥3 ∪ {α1,n}n≥1 be a genus 0 and 1 topological
field theory on a vector space V, making it into a commutative
associative algebra with a trace. The Lie algebra of the
stabiliser of A only contains elements∑

p≥2

Dpzp−1

for which Dp is a differential operator of order at most p on V
that satisfies Getzler’s 1/12-axiom for p = 2 and is compatible
with the trace for p ≥ 3.

Under the Gorenstein conjecture for
genus 1, the Lie algebra of the stabiliser is precisely the linear
span of such elements.
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That’s all

Thank you for your patience!


