MA1S11 (Dotsenko) Solutions to Tutorial/Exercise Sheet 1

Week 2, Michaelmas 2013

1. Using the factorisation $x^{2}-x-6=(x+2)(x-3)$, find the natural domain of $\sqrt{x^{2}-x-6}$.

Solution. For the square root to make sense in real numbers, $x^{2}-x-6$ must be nonnegative, which happens when either both factors are nonnegative or both factors are nonpositive:

$$
\begin{aligned}
& x+2 \geq 0, x-3 \geq 0, \\
& x+2 \leq 0, x-3 \leq 0,
\end{aligned}
$$

in other words $x \leq-2$ or $x \geq 3$. Answer: $(-\infty,-2] \cup[3,+\infty)$.
2. Explain why the domain of $\sqrt{x+2} \sqrt{x-3}$ is different from that of $\sqrt{x^{2}-x-6}$.

Solution. For $\sqrt{x+2} \sqrt{x-3}$ to be defined, both factors have to be defined, so in this case the domain is $[3,+\infty)$.
3. Plot the graph of the function

$$
\operatorname{sign}(x):=\frac{x}{|x|},
$$

and determine the natural domain and the range of this function.
Solution. Since $|x|$ is equal to x for positive x and to $-x$ for negative x, we get the graph

The domain of this function consists of all nonzero x (since it is only undefined when the denominator is equal to zero). The range consists of two numbers, 1 and -1 .
4. Plot the graphs of $\operatorname{sign}(x+1)$ and of $\operatorname{sign}(-x)$.

Solution. Since adding 1 to the independent variable shifts graphs by 1 to the left, and
multiplying by -1 reflects about the vertical axis, we get the following graphs:

5. What is the domain of $f \circ g \circ h$, if $f(x)=1-x, g(x)=\frac{1}{x}$, and $h(x)=x^{2}+1$?

Solution. The function $h(x)$ is defined for all x, and assumes positive values, since x^{2} is nonnegative for all x. Thus, $g \circ h$ is defined for all x. Finally, since f is defined everywhere, the composition $f \circ g \circ h$ is defined everywhere. Answer: $(-\infty,+\infty)$.

