# UNIVERSITY OF DUBLIN 

TRINITY COLLEGE

Faculty of Science

SCHOOL OF MATHEMATICS

JF Mathematics<br>Trinity Term 2011<br>JF Theoretical Physics<br>JF Two Subject Mod

Course 1111, a sample exam paper

Dr. Vladimir Dotsenko

For each task, the number of points you can get for a complete solution of that task is printed next to it.

You may use all statements proved in class and in home assignments; when using some statement, you should formulate it clearly, e.g. "in class, we proved that if $A$ is invertible, then the reduced row echelon form of $A$ is the identity matrix".

All vector spaces unless otherwise specified are over complex numbers.
Non-programmable calculators are permitted for this examination.

1. (25 points) Denote by $A$ the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$ and by $b$ the vector $\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right)$. List all minors and all cofactors of $A$, and write down the expansion of $\operatorname{det}(A)$ along the second row and along the third column. Show how to use the Cramer's rule to solve the system $A x=b$.
2. (25 points) Describe all possible values of $i, j, k$ and $l$ for which the term

$$
a_{4 k} a_{35} a_{i l} a_{67} a_{j 1} a_{23} a_{14}
$$

occurs in the expansion of a $7 \times 7$ determinant with coefficient -1 .
3. (25 points) Compute the determinant of the $n \times n$-matrix $\left(\begin{array}{ccccc}0 & 1 & 1 & \ldots & 1 \\ 1 & 0 & 1 & \ldots & 1 \\ \vdots & \ldots & \ddots & \ldots & \vdots \\ \vdots & \ldots & \ldots & \ddots & \vdots \\ 1 & 1 & \ldots & 1 & 0\end{array}\right)$ (all diagonal entries are equal to 0 , all off-diagonal entries are equal to 1 ).
4. ( 25 points) A $3 \times 3$-checkboard whose cells are filled in with 9 real numbers is called a magic square if all its row sums are pairwise equal, and equal to all of its column sums. Prove that the set of all magic squares forms a subspace of $\mathbb{R}^{9}$, compute the dimension of this space, and find a basis of this space.

