
Orthonormal bases, orthogonal complements,

and orthogonal direct sums

A system of vectors e1, . . . , ek of a Euclidean space V is said to be orthogonal,
if it consists of nonzero vectors, which are pairwise orthogonal: (ei, ej) = 0

for i 6= j. An orthogonal system is said to be orthonormal, if all its vectors
are of length 1: (ei, ei) = 1.

Lemma 1. An orthogonal system is linearly independent.
Indeed, assuming c1e1 + . . .+ ckek = 0, we have

0 = (0, ep) = (c1e1+ . . .+ckek, ep) = c1(e1, ep)+ . . .+ck(ek, ep) = cp(ep, ep),

which implies cp = 0, since ep 6= 0. (By the way, we have (0, v) = 0 for
every vector v since (0, v) = (2 · 0, v) = 2(0, v).) Thus our system is linearly
independent.

Lemma 2. Every finite-dimensional Euclidean space contains orthonor-
mal bases.

We shall start from some basis f1, . . . , fn, and transform it into an or-
thonormal basis. Namely, we shall prove by induction that there exists a basis
e1, . . . , ek−1, fk, . . . , fn, where the first (k− 1) vectors form an orthonormal
system and are equal to linear combinations of the first (k−1) vectors of the
original basis. Induction base is an empty statement and is trivial. Assume
that our statement is proved for some k, and let us show how to deduce it for
k+1. Let us search for ek of the form fk−a1e1− . . .−ak−1ek−1; this way the
condition on linear combinations on the first k vectors of the original basis
is automatically satisfied. Conditions (ek, ej) = 0 for j = 1, . . . , k − 1 mean
that

0 = (fk−a1e1− . . .−ak−1ek−1, ej) = (fk, ej)−a1(e1, ej)− . . .−ak−1(ek−1, ej),

and the induction hypothesis guarantees that the latter is equal to

(fk, ej) − aj(ej, ej) = (fk, ej) − aj,

so we can put aj = (fk, ej) for all j = 1, . . . , k−1. Let us show that the vector
thus obtained is nonzero. By the induction hypothesis, a1e1+ . . .+ak−1ek−1
is a linear combination of f1, . . . , fk−1, so in the linear combination

fk − a1e1 − . . .− ak−1ek−1,

expressed as a combination of f1, . . . , fk, the vector fk appears with coeffi-
cient 1 and hence this combination is nonzero since f1, . . . , fn form a basis.
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To complete the proof of the induction step, we normalise the vector ek,
replacing it by 1√

(ek,ek)
ek.

The procedure described above is called Gram-Schmidt orthogonalisation
procedure.

Lemma 3. For every scalar product and every basis e1, . . . , en of V , we
have

(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) =

n∑
i,j=1

aijxiyj,

where aij = (ei, ej).
This follows immediately from the bilinearity property of scalar products.
Corollary. A basis e1, . . . , en is orthonormal if and only if

(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) = x1y1 + . . .+ xnyn.

In other words, an orthonormal basis provides us with a system of coor-
dinates that identifies V with Rn with the standard scalar product.

Corollary. A basis e1, . . . , en is orthonormal if and only if for every
vector v its kth coordinate is equal to (v, ek):

v = (v, e1)e1 + . . .+ (v, en)en.

Lemma 4. Every orthonormal system of vectors in an n-dimensional
Euclidean space can be included in an orthonormal basis.

Indeed, a reasoning similar to the one given above would show that this
system is linearly independent. Thus it can be extended to a basis. If we
apply the orthogonalisation procedure to this basis, we shall end up with
an orthonormal basis containing our system (nothing would happen to our
vectors during orthogonalisation).

Definition 1. Let U be a subspace of a Euclidean space V . The set
of all vectors v such that (v, u) = 0 for all u ∈ U is called the orthogonal
complement of U, and is denoted by U⊥.

Lemma 5. For every subspace U, U⊥ is also a subspace.
This follows immediately from the bilinearity property of inner products.
Lemma 6. For every subspace U, we have U ∩U⊥ = {0}.
Indeed, if u ∈ U ∩U⊥, we have (u, u) = 0, so u = 0.
Lemma 7. For every finite-dimensional subspace U ⊂ V , we have

V = U⊕U⊥. (This justifies the name “orthogonal complement” for U⊥.)
Let e1, . . . , ek be an orthonormal basis of U. To prove that the direct

sum coincides with V , it is enough to prove that every vector v ∈ V can be
represented in the form u + u⊥, where u ∈ U, u⊥ ∈ U⊥, or, equivalently,
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in the form c1e1 + . . . + ckek + u
⊥, where c1, . . . , ck are unknown coeffi-

cients. Computing inner products with ej for j = 1, . . . , k, we get a system
of equations to determine ci:

(c1e1 + . . .+ ckek + u
⊥, ej) = (v, ej).

Due to orthonormality of our basis and the definition of the orthogonal com-
plement, the left hand side of this equation is cj. On the other hand, it is
easy to see that for every v, the vector

v− (v, e1)e1 − . . . , (v, ek)ek

is orthogonal to all ej, and so to all vectors from U, and so belongs to U⊥.
The lemma is proved.

Corollary (Bessel’s inequality). For any vector v ∈ V and any or-
thonormal system e1, . . . , ek (not necessarily a basis) we have

(v, v) > (v, e1)
2 + . . .+ (v, ek)

2.

Indeed, we can take U = span(e1, . . . , ek) and represent v = u + u⊥.
Then

|v|2 = |u|2 + |u⊥|2 > |u|2 = (u, e1)
2 + . . .+ (u, ek)

2 = (v, e1)
2 + . . .+ (v, ek)

2.

Example 1. Consider the Eucludean space of all continuous functions
on [−1, 1] with the inner product

(f(t), g(t)) =

∫ 1
−1

f(t)g(t)dt.

It is easy to see that the functions

e0 =
1√
2
, e1 = cosπt, f1 = sinπt, . . . , en = cosπnt, fn = sinπnt

form an orthonormal system there. Consider the function h(t) = t. We have

(h(t), h(t)) =
2

3
,

(h(t), e0) = 0),

(h(t), ek) = 0,

(h(t), fk) =
2(−1)k+1

kπ
,
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(the latter integral requires integration by parts to compute it), so Bessel’s
inequality implies that

2

3
>
4

π2
+

4

4π2
+

4

9π2
+ . . .+

4

n2π2
,

which can be rewritten as

π2

6
> 1+

1

4
+
1

9
+ . . .+

1

n2
.

Actually
∞∑
k=1

1
k2

= π2

6
, which was first proved by Euler. We are not able to

establish it here, but it is worth mentioning that Bessel’s inequality gives a
sharp bound for this sum.
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