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Dr. Vladimir Dotsenko (Vlad)

Lecture 10

Orthogonal 3 x 3-matrices

We begin, as promised last time, with discussing a geometric way to view orthogonal 3 x 3-matrices.
Let us first consider an orthogonal 3 x 3-matrix A with det(A) = 1. We begin with showing that A has
an eigenvalue 1. We have

xa(t) = det(A —tl) = det(A) + art + art? —t3 =T+ art + apt? — t3.

Since this is a polynomial of degree 3, it assumes values of opposite signs as t — 00, so by the intermediate
value theorem, it has a real root, so A has a real eigenvalue A. Let v be such that Av = Av. Then
(v,v) = (Av, Av) = (Av,Av) = A%(v,V), so A2 = 1. If A = 1, we are done. Otherwise, A has an eigenvalue —1,
and so xa (t) = (1+1)(1+ at—1?), where the polynomial 14 at —t? must have real roots because it assumes
a positive value at 0 and negative values as t — d+o0o0. Therefore, all eigenvalues of A are real. If one of them
is equal to 1, we are done; otherwise they are all equal to —1, and xa (t) is proportional to (1 + t)3, which
is impossible (compare the leading coefficients and the constant terms).

If Av =v, then U = span(v)™' is an invariant subspace. Indeed, u € U if and only if (u,v) =0. If u € U,
we have

(ALL,\)) = (U, ATV) = ('LL, A_1V) = ('LL,V) =0

since A is orthogonal and Av =v. On U, the transformation A induces an orthogonal linear transformation.
Moreover, it is easy to see that the determinant of that linear transformation is equal to 1, so it is a 2D
rotation. Consequently, in 3D the original matrix A represents a rotation about the line containing v.

If A is an orthogonal 3 x 3-matrix with determinant —1, then —A is an orthogonal 3 x 3-matrix with
determinant (—1)3 det(A) = 1, so every orthogonal matrix in 3D with determinant —1 is a rotation about
some axis followed by a central symmetry about the origin.

General bilinear and quadratic forms: motivation

Right now, we are going to change our outlook temporarily, and examine symmetric matrices in a different
context. While until now matrices represented linear transformations, we shall take the outlook which views
symmetric matrices in the spirit of one of the proofs from last week, and interpret them via the associated
quadratic forms. Let us start with a motivating example.

Example 1. Consider a function f(x1,...,%n) of n scalar real arguments. Let x° = x%ej + --- +x%e, be
a point in R™, and assume that the function f is smooth enough to consider its Taylor series to order two
near the point x°:
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Suppose that we would like to know whether f attains its locally minimal /maximal value at x°. Then, since
in the first order of magnitude we have
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we conclude that a necessary condition is aa—xfi(xo) =0 for all i, that is the gradient of f vanishes at x°. In

this case, we have
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so the difference between f(x) and f(x°), when x is close to x°, is approximately equal to %q(x —x%), where

q(y) = a11y? +2a12y1y2 + - +2a1nYy1yn + Y3 +2a23Yy2Yy3 + - + annyi,
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The function q(y) is a very typical example of a quadratic form.

where for brevity we denote ai; = (x°); we have aij = a;j; whenever the function f is smooth enough.

Definition 1. Let V be a vector space. A function q: V — R is said to be a quadratic form if for some
basis e1,...,en of V we have

q(xier +---+xnen) = E aijXxixj,
1<i<j<n

that is values of q are quadratic polynomials in coordinates of a vector.

Remark 1. It is easy to see that if the condition from the definition holds for some basis, then it holds for
any basis, since coordinates relative to different bases are related by transition matrices in a linear way.

One simple example of a quadratic form is

alx) =i+ 2.

In general, if V is a Euclidean vector space then q(x) = (x,x) is certainly a quadratic form. This can be
generalised; every bilinear form gives rise to a quadratic form.

Definition 2. Let V be a vector space. A function V x V — R, vi,v, — b(vq,Vv3) is called a bilinear form
if for all vectors v,v1,v, the following conditions are satisfied:

b(civi + cav2,v) = c1b(vi,v) +cab(va,v)  and b(v,c1vi +c2v2) =c1b(v,v1) + c2b(v,v2).



