
1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 21

Finishing the case of a general linear transformation

Recall that last time we proved that for the sequence of subspaces N1 = ker(ϕ), N2 = Ker(ϕ2), . . . ,
Nm = ker(ϕm), . . . , once we have Nk = Nk+1 for some k, we have Nk+l = Nk for all l > 0, and moreover
Ker(ϕk) ∩ Im(ϕk) = {0} and V = Ker(ϕk)⊕ Im(ϕk).

Note that the latter result explains the difference between the case ϕ2 = ϕ and ϕ2 = 0 that we discussed
last week. In the case ϕ2 = ϕ we of course have Ker(ϕ) = Ker(ϕ2), so V = Ker(ϕ) ⊕ Im(ϕ), while in
the case ϕ2 = 0, usually Ker(ϕ) 6= Ker(ϕ2) but Ker(ϕ2) = Ker(ϕ3) always, so we cannot expect that
V = Ker(ϕ)⊕ Im(ϕ).

Lemma 1. 1. Both Ker(ϕk) and Im(ϕk) are invariant subspaces of ϕ.
2. On the first subspace, the linear transformation ϕ has just the zero eigenvalue.
3. On the second subspace, all eigenvalues of ϕ are different from zero.

Proof. 1. The invariance is straightforward: if v ∈ Ker(ϕk), so that ϕk(v) = 0, then of course

ϕk(ϕ(v)) = ϕk+1(v) = 0,

so ϕ(v) ∈ Ker(ϕk), and similarly, if v ∈ Im(ϕk), so that v = ϕk(w), then of course

ϕ(v) = ϕ(ϕk(w)) = ϕk+1(w) = ϕk(ϕ(w)),

so ϕ(v) ∈ Im(ϕk).
2. If ϕ(v) = µv for some 0 6= v ∈ Ker(ϕk), then 0 = ϕk(v) = µkv, so µ = 0.
3. If ϕ(v) = 0 for some 0 6= v ∈ Im(ϕk), then ϕk(v) = 0, but we know that Im(ϕk) ∩ Ker(ϕk) = {0},

which is a contradiction.

The end of the proof utilises these results to proceed by induction, namely by induction by the number
of distinct eigenvalues of ϕ.

We shall decompose V into a direct sum of invariant subspaces for each of which ϕ has only one eigenvalue,
proving the following theorem.

Theorem 1. For every linear transformation ϕ : V → V whose (different) eigenvalues are λ1, . . . , λk, there
exist integers m1, . . . , mk such that

V = Ker(ϕ− λ1I)
m1 ⊕ . . .⊕Ker(ϕ− λkI)

mk .

Proof. We shall prove this result by induction on the number of distinct eigenvalues of ϕ.
Let λ be an eigenvalue of ϕ, and let us consider the transformation Bλ = ϕ− λI. Considering kernels of

its powers, we find the first place k where they stabilise, so that Ker(Bkλ) = Ker(Bk+1λ ) = . . ..
Note that the subspaces Ker(Bkλ) and Im(Bkλ) are invariant subspaces of ϕ. (Indeed, we already know

that these are invariant subspaces of Bλ, and ϕ = Bλ + λI). Note also that we have V = Ker(Bkλ)⊕ Im(Bkλ).
On the invariant subspace Ker(Bkλ), Bλ has only the eigenvalue 0, so ϕ = Bλ+λI has only the eigenvalue

λ. Also, on the invariant subspace Im(Bkλ), Bλ has no zero eigenvalues, hence ϕ has no eigenvalues equal
to λ. Hence, we may apply the induction hypothesis to the linear transformation ϕ on the vector space
V ′ = Im(Bkλ) where it has fewer eigenvalues.

1



Let us see what happens for each individual subspace Ker(ϕ−λI)m. Naturally, the linear transformation
Bλ = ϕ − λI is nilpotent when restricted to that subspace. Therefore, the results of last week allow us to
find a basis of threads for this linear transformation, and its matrix is block-diagonal made of blocks

Jl =



0 0 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . . 0 0
0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0


,

one block Jl for each thread of length l. Recalling that ϕ = Bλ + λI, we see that relative to the same basis
of threads that we found, the linear transformation ϕ has a block-diagonal matrix made of blocks

Jl(λ) =



λ 0 0 0 . . . 0 0
1 λ 0 0 . . . 0 0
0 1 λ 0 . . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . . 0 0
0 0 0 0 . . . λ 0
0 0 0 0 . . . 1 λ


,

one block Jl(λ) for each thread of length l.
Summing up, we obtain the following theorem (which is usually called Jordan normal form theorem, or

Jordan decomposition theorem):
Jordan normal form theorem. Let V be a finite-dimesional vector space. For a linear transformation

ϕ : V → V, there exist

• a decomposition of V
V = V1 ⊕ V2 ⊕ . . .⊕ Vp

into a direct sum of invariant subspaces of ϕ;

• a basis e
(i)
1 , . . . , e

(i)
ni

of Vi for each i = 1, . . . , p such that

(ϕ− λiI)e
(i)
1 = e

(i)
2 ;

(ϕ− λiI)e
(i)
2 = e

(i)
3 ;

. . .

(ϕ− λiI)e
(i)
ni

= 0

for some λi (which may coincide or be different for different i). Dimensions of these subspaces and
numbers λi are determined uniquely up to re-ordering.

Examples

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear trans-
formation ϕ on a vector space V, one can use the following plan:

• Find all eigenvalues ofϕ (that is, compute the characteristic polynomial det(A−cI) of the corresponding
matrix A, and determine its roots λ1, . . . , λk).
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• For each eigenvalue λ, form the linear transformation Bλ = ϕ−λI and consider the increasing sequence
of subspaces

KerBλ ⊂ KerB2λ ⊂ . . .
and determine where it stabilizes, that is find k which is the smallest number such that KerBkλ = KerBk+1λ .
Let Uλ = KerBkλ. The subspace Uλ is an invariant subspace of Bλ (and ϕ), and Bλ is nilpotent on
Uλ, so it is possible to find a basis consisting of several “threads” of the form f, Bλf, B

2
λf, . . ., where

Bλ shifts vectors along each thread (as in the previous homework).
• Joining all the threads (for different λ) together, we get a Jordan basis for A. A thread of length p for

an eigenvalue λ contributes a Jordan block Jp(λ) to the Jordan normal form.

Example 1. Let V = R3, and A =

−2 2 1
−7 4 2
5 0 0

.

The characteristic polynomial of A is −t+ 2t2 − t3 = −t(1− t)2, so the eigenvalues of A are 0 and 1.
Furthermore, rk(A) = 2, rk(A2) = 2, rk(A − I) = 2, rk(A − I)2 = 1. Thus, the kernels of powers of

A stabilise instantly, so we should expect a thread of length 1 for the eigenvalue 0, whereas the kernels of
powers of A− I do not stabilise for at least two steps, so that would give a thread of length at least 2, hence
a thread of length 2 because our space is 3-dimensional.

To determine the basis of Ker(A), we solve the system Av = 0 and obtain a vector f =

 0
−1
2

.

To deal with the eigenvalue 1, we see that the kernel of A− I is spanned by the vector

 1
−1
5

, the kernel

of (A− I)2 =

 0 0 0
10 −5 −3
−20 10 6

 is spanned by the vectors

1/21
0

 and

3/100
1

. Reducing the latter vectors

using the former one, we end up with the vector e =

 0
3
−5

, which gives rise to a thread e, (A−I)e =

 1
−1
5

.

Overall, a Jordan basis is given by f, e, (A− I)e, and the Jordan normal form has a block of size 1 with 0 on
the diagonal, and a block of size 2 with 1 on the diagonal:0 0 0

0 1 0
0 1 1

 .

Example 2. Let V = R4, and A =


0 1 0 0
11 6 −4 −4
22 15 −8 −9
−3 −2 1 2

.

The characteristic polynomial of A is 1 − 2t2 + t4 = (1 + t)2(1 − t)2, so the eigenvalues of A are
−1 and 1. To avoid unnecessary calculations (similar to avoiding computing (A − I)3 in the previ-
ous example), let us compute the ranks for both eigenvalues simultaneously. For λ = −1 we have

A + I =


1 1 0 0
11 7 −4 −4
22 15 −7 −9
−3 −2 1 3

, rk(A + I) = 3, (A + I)2 =


12 8 −4 −4
12 8 −4 −4
60 40 −20 −24
−12 −8 4 8

, rk((A + I)2) = 2.

For λ = 1 we have A − I =


−1 1 0 0
11 5 −4 −4
22 15 −9 −9
−3 −2 1 1

, rk(A − I) = 3, (A − I)2 =


12 4 −4 −4
−32 −16 12 12
−28 −20 12 12
0 0 0 0

,
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rk((A − I)2) = 2. Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our
vector space is 4-dimensional, each of the threads should be of length 2, and in each case the stabilisation
happens on the second step.

In the case of the eigenvalue −1, we first determine the kernel of A+ I, solving the system (A+ I)v = 0;

this gives us a vector


−1
1
−1
0

. The equations that determine the kernel of (A + I)2 are t = 0, 3x + 2y = z

so y and z are free variables, and for the basis vectors of that kernel we can take


1/3
0
1
0

 and


−2/3
1
0
0

.

Reducing the basis vectors of Ker(A + I)2 using the basis vector of Ker(A + I), we end up with a relative

basis vector e =


0
1
2
0

, and a thread e, (A+ I)e =


1
−1
1
0

.

In the case of the eigenvalue 1, we first determine the kernel of A−I, solving the system (A−I)v = 0; this

gives us a vector


0
0
1
−1

. The equations that determine the kernel of (A− I)2 are 4x = z+ t, 4y = z+ t so z

and t are free variables, and for the basis vectors of that kernel we can take


1/4
1/4
1
0

 and


1/4
1/4
0
1

. Reducing

the basis vectors of Ker(A− I)2 using the basis vector of Ker(A+ I), we end up with a relative basis vector

f =


1/4
1/4
0
1

, and a thread e, (A− I)e =


0
0
1/4
−1/4

.

Finally, the vectors e, (A + I)e, f, (A − I)f form a Jordan basis for A; the Jordan normal form of A is
−1 0 0 0
1 −1 0 0
0 0 1 0
0 0 1 1

.
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