1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 21

Finishing the case of a general linear transformation

Recall that last time we proved that for the sequence of subspaces N7 = ker(¢), N2 = Ker(p?), ...,
N = ker(@™), ..., once we have Ny = Ny 1 for some k, we have Ny = Ny for all 1 > 0, and moreover
Ker(@*) NIm(¢*) ={0} and V = Ker(¢@*) @ Im(¢*).

Note that the latter result explains the difference between the case @2 = ¢ and @? = 0 that we discussed
last week. In the case @? = @ we of course have Ker(@) = Ker(¢@?), so V = Ker(p) ® Im(¢), while in
the case @? = 0, usually Ker(¢) # Ker(@?) but Ker(p?) = Ker(p3) always, so we cannot expect that
V = Ker(¢) ® Im(g).

Lemma 1. 1. Both Ker(¢¥) and Im(@*) are invariant subspaces of @.
2. On the first subspace, the linear transformation @ has just the zero eigenvalue.
3. On the second subspace, all eigenvalues of @ are different from zero.

Proof. 1. The invariance is straightforward: if v € Ker(¢*), so that @*(v) =0, then of course

e (p(v) = 9 (v) =0,
so @(v) € Ker(¢*), and similarly, if v € Im(¢@¥), so that v = @*(w), then of course

e(v) = p(e (W) = 9 (W) = p*(p(w)),

so @(v) € Im(@*).

2. If @(v) = pv for some 0 # v € Ker(@¥), then 0 = @*(v) = p*v, so p = 0.

3. If @(v) =0 for some 0 # v € Im(@*), then @*(v) = 0, but we know that Im(@*) N Ker(¢@*) = {0},
which is a contradiction. L]

The end of the proof utilises these results to proceed by induction, namely by induction by the number
of distinct eigenvalues of @.

We shall decompose V into a direct sum of invariant subspaces for each of which ¢ has only one eigenvalue,
proving the following theorem.

Theorem 1. For every linear transformation @: V — V whose (different) eigenvalues are Ay, ..., A, there
exist integers my, ..., My such that

V=Ker(@p—AMD™ @...5Ker(@ — A I)™,

Proof. We shall prove this result by induction on the number of distinct eigenvalues of .

Let A be an eigenvalue of @, and let us consider the transformation By = ¢ — Al. Considering kernels of
its powers, we find the first place k where they stabilise, so that Ker(BY) = Ker(B}f“) =...

Note that the subspaces Ker(BX) and Im(BX) are invariant subspaces of @. (Indeed, we already know
that these are invariant subspaces of By, and ¢ = By + Al). Note also that we have V = Ker(BX) & Im(B%).

On the invariant subspace Ker(BX), Bj has only the eigenvalue 0, so ¢ = B + Al has only the eigenvalue
A. Also, on the invariant subspace Im(B}f), B has no zero eigenvalues, hence @ has no eigenvalues equal
to A. Hence, we may apply the induction hypothesis to the linear transformation ¢ on the vector space
V’ = Im(BY) where it has fewer eigenvalues. O



Let us see what happens for each individual subspace Ker(¢@ —AI)™. Naturally, the linear transformation
Bx = @ — Al is nilpotent when restricted to that subspace. Therefore, the results of last week allow us to
find a basis of threads for this linear transformation, and its matrix is block-diagonal made of blocks

0 0 0 O 0 0
10 0 O 0 0
010 O 0 0
T T
A
000 0 ... 00
0 00 O 10

one block ]| for each thread of length 1. Recalling that @ = Bj + Al, we see that relative to the same basis
of threads that we found, the linear transformation ¢ has a block-diagonal matrix made of blocks

A0 O O ... 00
T A0 0 ... 00
01T A 0 ... 00
N =1 o s |
T
000 0 A0
000 0 T A

one block Ji(A) for each thread of length 1.

Summing up, we obtain the following theorem (which is usually called Jordan normal form theorem, or
Jordan decomposition theorem):

Jordan normal form theorem. Let V be a finite-dimesional vector space. For a linear transformation
©:V — 'V, there exist

e a decomposition of V
V=V @Vz@...@vp

into a direct sum of invariant subspaces of @;

e a basis e%i), RN eS} of Vi for each i =1,...,p such that

(@ —ADell) =0

for some A; (which may coincide or be different for different i). Dimensions of these subspaces and
numbers A; are determined uniquely up to re-ordering.

Examples

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear trans-
formation ¢ on a vector space V, one can use the following plan:

e Find all eigenvalues of ¢ (that is, compute the characteristic polynomial det(A—cI) of the corresponding
matrix A, and determine its roots A1, ..., Ax).



e For each eigenvalue A, form the linear transformation By = @ —Al and consider the increasing sequence

of subspaces
Ker B, C KerB% cC...

and determine where it stabilizes, that is find k which is the smallest number such that Ker B = Ker BX*™!.
Let Uy = Ker B}f. The subspace U, is an invariant subspace of B, (and ¢), and By is nilpotent on
Uy, so it is possible to find a basis consisting of several “threads” of the form f, BAf, B%f,..., where
By shifts vectors along each thread (as in the previous homework).

e Joining all the threads (for different A) together, we get a Jordan basis for A. A thread of length p for
an eigenvalue A contributes a Jordan block J,(A) to the Jordan normal form.
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Example 1. Let V=R3 and A= | -7 4 2
5 00

The characteristic polynomial of A is —t 4+ 2t> —t3 = —t(1 —t)?, so the eigenvalues of A are 0 and 1.

Furthermore, rk(A) = 2, rk(A?) = 2, k(A — 1) = 2, k(A —I)2 = 1. Thus, the kernels of powers of
A stabilise instantly, so we should expect a thread of length 1 for the eigenvalue 0, whereas the kernels of
powers of A —1I do not stabilise for at least two steps, so that would give a thread of length at least 2, hence
a thread of length 2 because our space is 3-dimensional.

0

To determine the basis of Ker(A), we solve the system Av = 0 and obtain a vector f = | —1

2
1
To deal with the eigenvalue 1, we see that the kernel of A —1 is spanned by the vector [ —1 |, the kernel

5
0 0 o0 1/2 3/10
of ( A=1)2=| 10 —5 —3| isspanned by the vectors [ 1 | and 0 |. Reducing the latter vectors
-20 10 6 0 1
using the former one, we end up with the vector e = | 3 |, which gives rise to a thread e, (A—I)e = | —1
-5 5

Overall, a Jordan basis is given by f, e, (A —I)e, and the Jordan normal form has a block of size 1 with 0 on
the diagonal, and a block of size 2 with 1 on the diagonal:

0 00

010

0 11
0 1 0 0

11 6 —4 —4
22 15 -8 -9
-3 =2 1 2
The characteristic polynomial of A is 1T — 2t +t* = (1 + t)?(1 — t)2, so the eigenvalues of A are
—1 and 1. To avoid unnecessary calculations (similar to avoiding computing (A — I)® in the previ-

Example 2. Let V=R* and A =

ous example), let us compute the ranks for both eigenvalues simultaneously. For A = —1 we have
1 1 0 0 12 8 —4 4
7 -4 4 _ > |12 8 —4 4 2
A+l=|,, 5 —7 _o k(A +1) =3, (A+1)?2 = €0 40 20 —24 , tk((A + 1)%) = 2.
-3 =2 1 3 —-12 -8 4 8
-1 1 0 0 12 4 -4 —4
_ |15 -4 4 B > |32 —16 12 12
For A = 1 we have A —1 = 2 15 —9 _9 ,tk(A—=1) =3, (A=-1D)° = 58 —20 12 12|
-3 -2 1 1 0 0 0 0



tk((A —I)?) = 2. Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our
vector space is 4-dimensional, each of the threads should be of length 2, and in each case the stabilisation
happens on the second step.
In the case of the eigenvalue —1, we first determine the kernel of A + I, solving the system (A + I)v = 0;
—1

this gives us a vector . The equations that determine the kernel of (A 4+ 1) are t = 0,3x +2y = z

1
—1

0
1/3 —2/3
so Yy and z are free variables, and for the basis vectors of that kernel we can take (1) and (])
0 0
Reducing the basis vectors of Ker(A + I)? using the basis vector of Ker(A + I), we end up with a relative
0 1
basis vector e = ; , and a thread e, (A + I)e = _]]
0 0
In the case of the eigenvalue 1, we first determine the kernel of A —1I, solving the system (A —I)v = 0; this
0
gives us a vector (]) . The equations that determine the kernel of (A —1)? are 4x =z +t,4y =z +tsoz

—1

1/4 1/4
. . 1/4 1/4 .
and t are free variables, and for the basis vectors of that kernel we can take 1 and o |- Reducing
0 1
the basis vectors of Ker(A — I)? using the basis vector of Ker(A + 1), we end up with a relative basis vector
1/4 0
f= 1(/)4 , and a thread e, (A —I)e = 134
1 —1/4
Finally, the vectors e, (A + I)e, f, (A — I)f form a Jordan basis for A; the Jordan normal form of A is
-1 0 0 0
1 =1 0 0
0o o0 1 0
0o o0 1 1



