MA 1111: Linear Algebra I
Selected answers/solutions to the assignment due December 17, 2015
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and iterating that, we get
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1. (a) We have

(b) Eigenvalues are roots of t* —3t+1 = 0, i.e. A =
corresponding eigenvectors are 1 and ] . Clearly, C = L is the transition
}\] )\2 7\] }\2

matrix from the basis of standard unit vectors to the basis of eigenvectors. Then in the

basis of eigenvectors we obtain the matrix C~' 0 1 C= A0 , SO
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2. We have det(A —cl3) = —c® +4c? —5¢c +2 = —(c — 1)%(c — 2), so the eigenvalues
of this matrix are 1 and 2. Solving the systems of equations Ax = x and Ax = 2x, we see
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that each solution is proportional to, respectively, | T | and | 1 |, so there is no basis of
0 1

eigenvectors, and the answer is “no”.

3. This can be done by a direct computation: let A = <2 ?1)’ then

A? —tr(A)-A+det(A) -1, =
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4. Note that det(A3) = (det(A))3, so if A®> =0, then det(A) = 0. According to the
previous question, we then have A2 —tr(A)A = 0, so A? = tr(A)A. If tr(A) = 0, we
conclude that A? = 0. Otherwise, we have

0=A>=A2- A =tr(A)A- A =tr(A)A? = (tr(A))*- A,

which for tr(A) # 0 implies A = 0.



