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Lecture 16

Given a field F, one can consider vector spaces over F, that is vector spaces where elements of F play the
role of scalars. The flexibility of choosing scalars for the vector space can sometimes be very useful.

Coin weighing problem

Let us look at the following question.

Given 101 coins of various shapes and denominations, one knows that if you remove any one coin,
the remaining 100 coins can be divided into two groups of 50 of equal total weight. Show that
all the coins are of the same weight.

Let us suppose that there exist examples where weights are not all equal to each other.
We proceed in several steps.
First, we consider the case when all weights x1, . . . , x101 of all coins in a counterexample are non-negative

integers.

Lemma 1. The weights of the coins are either all even or all odd.

Proof. Denote S = x1 + · · · + x101. Then S − xi is divisible by 2 for all i, because we can split all coins
except for the coin number i into two groups of equal total weight, so S− xi is twice that weight. Therefore,
xi − xj = (S− xj) − (S− xi) is divisible by 2 also.

Among all examples where weights which are not all equal to each other, let us choose the example with
the least possible total weight. If all the weights are even, we can divide them by 2, and get a set of coins
satisfying our assumption of smaller total weight. If all the weights are odd, we can subtract 1 from each,
and get a set of coins satisfying our assumptions of smaller total weight. In either case we get a contradiction
with the minimality of the total weight in our set. Thus, in this case there may be no counterexamples.

Next, we handle the examples where all weights are integers, possibly negative, even though from the
practical point of view this is absurd. Basically, given such a set, we can add the same large integer to all
weights, obtaining a set where all weights are positive integers; this is a situation we already handled.

Second, we suppose all weights are rational. Then, multiplying by common denominator, we get a set of
coins satisfying our assumptions where all weights are integers; this is a situation we already handled.

Finally, suppose weights are arbitrary real numbers. Note that the conditions we impose can be expressed
as a system of linear equations with rational coefficients! Saying that there is a solution where not all weights
are equal is essentially saying that if we let x1 = 1, there is a solution where not all coordinates are equal
to 1, so this system of equations has at least 2 solutions. But this is a property that “does not depend
on scalars”, — whether we view our system of equations as a system with rational coefficients or with real
coefficients, we do the same, compute the reduced row echelon form. If there is a solution different from the
solution x1 = x2 = · · · = x101 = 1 over real numbers, there must be free unknowns! Setting all these free
unknowns equal to zero, we shall obtain a solution with rational coordinates where not all coordinates are
equal. But we already proved that the latter was impossible.
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Linear independence, span, basis

By definition of a vector space, we can form arbitary linear combinations: if v1, . . . , vk are vectors and
c1, . . . , ck are scalars, then c1v1 + · · ·+ ckvk is a vector which is called the linear combination of v1, . . . , vk
with coefficients c1, . . . , ck.

All the definitions that we gave in the case of Rn proceed in the same way. Below we assume that V is
a vector space over real numbers (but one can use any other field if necessary).

Definition 1. A system of vectors v1, . . . , vk ∈ V is said to be linearly independent if the only linear
combination of these vectors that is equal to zero is the combination where all the coefficients are equal to
zero.

Note that the property stating that if c · v = 0 then c = 0 or v = 0 can be rephrased as follows: one
non-zero vector is always linearly independent.

Definition 2. A system of vectors v1, . . . , vk ∈ V is said to be a spanning set if every vector in V can be
represented as their linear combination.

In case the given vectors do not form a spanning set, they span a subspace of V. Let us make this precise.

Definition 3. The linear span of vectors v1, . . . , vk ∈ V is the set of all linear combinations of these vectors,

span(v1, . . . , vk) = {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ R} .

The following statement is easy to check, and is left as an exercise.

Lemma 2. For any vectors v1, . . . , vk, the set span(v1, . . . , vk) is a subspace of V.

Definition 4. A system of vectors v1, . . . , vk ∈ V is said to form a basis of V, if it is linearly independent
and spans V.
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