MA 1111/1212: Linear Algebra
Tutorial problems, December 9, 2015

1. Let us compute the images of the basis vectors: 1 3—71)-1 =3—-71),
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2. Let us compute the images of the basis vectors:
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This immediately leads to the matrix
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3. (a) Let us compute the transition matrix Me¢. Solving the systems of equations
f] =cCrn1e1 + e and fz = Cy12€71 + €€z, We get Ci1 = 7, Cy = —3, Cip = 30, Cypn = —13,

therefore Me ¢ = (_73 _310 3). Therefore, we have
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(b) We clearly have My ¢ = ( 11

;) , therefore Mg, = My |, = < ) Therefore,
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A(P)V = Me,LAcp,eMe,v = <8 _5> .

4. We have det(A —al) =(a—3)(a—2)—2=a>—-5a+4 = (a—1)(a—4). This
means that we should expect the linear map given by this matrix to have, relative to

. e . . i
some basis, the matrix ( 0 2 . To find the corresponding basis, we solve the equations

Ax = x and Ax = 4x. Solving these, we find solutions (_11) and (?) respectively.

Thus, 1fweputC—<1 1),WehaweC AC—(O 4>,andC AC—(O 4n).
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Therefore,




