Solutions to this problem sheet are to be handed in after our class at 1lam on Monday April 1. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. Let

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\sin \left(x_{1}-x_{2}\right) \sin \left(x_{1}-x_{3}\right)+\sin ^{2} x_{2}+c \sin x_{3} \sin \left(2 x_{3}\right)+\sin ^{3}\left(x_{1}+x_{2}+x_{3}\right) .
$$

Furthermore, let A be the symmetric 3×3-matrix with entries $a_{i j}=\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}(0,0,0)$.
(a) Write down the matrix A.
(b) Determine all values of the parameter c for which the corresponding quadratic form is positive definite.
(c) Does φ have a local minimum at the origin $(0,0,0)$ for $c=1 / 5$?
2. (a) Assume that for a bilinear form b on \mathbb{R}^{n} satisfies

$$
b\left(e_{i}, e_{j}\right)=1, \text { for all } i, j,
$$

where e_{i} are standard unit vectors. Compute the signature of this form.
(b) Same problem for the bilinear form such that

$$
b\left(e_{i}, e_{i}\right)=0, b\left(e_{i}, e_{j}\right)=1 \text { for } i \neq j
$$

where e_{i} are standard unit vectors.
3. Find an orthonormal basis of eigenvectors for the matrix

$$
B=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

For the quadratic form $q(x)=(B x, x)$, compute the maximal and the minimal value of $q(x)$ on the unit sphere $S=\{x \mid(x, x)=1\}$.
4. Find a triangular change of basis (as in the proof of Jacobi theorem) where the matrix of the bilinear form associated to the matrix $\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$ is diagonal.

