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Lecture 10

Jordan decomposition theorem

Combining the results we proved, we establish the following key result.
Jordan decomposition theorem. Let V be a finite-dimesional vector space over C. For a linear
transformation @: V — V, there exists a basis of V of the form
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and scalars A1, ..., Ag such that

With respect to this basis, the matrix of ¢ has a block-diagonal matrix made of blocks
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a block Jm,(A;) for a thread of length m;. Indeed, on each individual subspace U, we consider the linear
transformation @) = @ — A;I which is nilpotent on that subspace. Therefore, our previous results allow us
to find a basis of threads for this linear transformation, and its matrix is block-diagonal made of blocks
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one block Jy for each thread of length 1. Recalling that ¢ = Ba, +AiI, we obtain the blocks mentioned above.



Examples

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear trans-
formation @ on a vector space V, one can use the following plan:

e Find all eigenvalues of @ (that is, compute the characteristic polynomial det(A—cI) of the corresponding
matrix A, and determine its roots Ay, ..., Ag).
e For each eigenvalue A, form the linear transformation @, = @ —AI and consider the increasing sequence
of subspaces
Ker @) C Ker(p% cC...

and determine where it stabilizes, that is find the smallest number k for which Ker % = Ker (p;f“.
Let U = Ker (p‘)f. The subspace U is an invariant subspace of @, (and @), and @, is nilpotent on U,
so it is possible to find a basis consisting of several “threads” of the form f, @xf, (p%f, ..., where @
shifts vectors along each thread (as in the previous homework).

e Joining all the threads (for different A) together, we get a Jordan basis for A. A thread of length p for
an eigenvalue A contributes a Jordan block J,(A) to the Jordan normal form.
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Example 1. Let V=R3 and A= | -7 4 2
5 00
The characteristic polynomial of A is —t + 2t —t3 = —t(1 — t)2, so the eigenvalues of A are 0 and 1.
-3 2 1 0 0 0
Furthermore, A—I= (-7 3 2 |, (A=D?=[ 10 -5 —3|,sork(A—-1)=2rk(A-1)2=1.
5 0 -1 —20 10 6

Note that rk(A) = 2. This shows that there is at least one thread of length at least 2 for the eigenvalue 1,
and at least one thread of length at least 1 for the eigenvalue 0. Since our vector space is three-dimensional,
there is nothing else, and kernels of powers stabilize from (A — I)? for the eigenvalue 1 and from A for the

eigenvalue 0.
0

To determine the basis of Ker(A), we solve the system Av = 0 and obtain a vector f = | —1
2
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To deal with the eigenvalue 1, we see that the kernel of A —1I is spanned by the vector [ —1 |, the kernel
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of (A—I)2=1] 10 -5 —3| is spanned by the vectors | 1 and 0 |. Reducing the latter vectors
—20 10 6 0 1
0
using the former one, we end up with the relative basis vector e = | 3 |, which gives rise to a thread
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1
e,(A—Te= [ —1]. Overall, a Jordan basis is given by f,e, (A — I)e, and the Jordan normal form has a
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block of size 1 with 0 on the diagonal, and a block of size 2 with 1 on the diagonal:
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Example 2. Let V=R* and A =



The characteristic polynomial of A is 1T — 2t +t* = (1 + t)?(1 — t)2, so the eigenvalues of A are
—1 and 1. To avoid unnecessary calculations (similar to avoiding computing (A — I)3 in the previ-

ous example), let us compute the ranks for both eigenvalues simultaneously. For A = —1 we have
1 1 0 0 12 8 —4 4
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-1 1 0 0 12 4 -4 —4
1 5 —4 —4 -32 —-16 12 12
For A=Twehave A—T= | = o o tk(A-1) =3, (A-1)? = 8 -2 12 12|
-3 =2 1 1 0 0 0 0
rk((A —1)2) = 2. This shows that there is at least one thread of length at least 2 for the eigenvalue 1, and
at least one thread of length at least 2 for the eigenvalue —1. Since our vector space is four-dimensional,
there is nothing else, and kernels of powers stabilize starting from the square for each eigenvalue.

Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our vector space is
4-dimensional, each of the threads should be of length 2, and in each case the stabilisation happens on the
second step.

In the case of the eigenvalue —1, we first determine the kernel of A + I, solving the system (A + I)v = 0;

—1

A+l = , k(A +1)2) = 2.

this gives us a vector _1] . The equations that determine the kernel of (A +1)? are t = 0,3x + 2y = z

0
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so y and z are free variables, and for the basis vectors of that kernel we can take (1) and (1)
0 0
Reducing the basis vectors of Ker(A + I)? using the basis vector of Ker(A + I), we end up with a relative
0 1
basis vector e = ; , and a thread e, (A + I)e = _11
0 0
In the case of the eigenvalue 1, we first determine the kernel of A —1I, solving the system (A —I)v = 0; this
0
gives us a vector (1) . The equations that determine the kernel of (A —1)? are 4x =z +t,4y =z+tso z
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and t are free variables, and for the basis vectors of that kernel we can take 1 and E Reducing
0 1
the basis vectors of Ker(A — I)? using the basis vector of Ker(A + 1), we end up with a relative basis vector
1/4 0
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f= 0 , and a thread e, (A —I)e = 1/4
1 —1/4
Finally, the vectors e, (A + I)e, f, (A — I)f form a Jordan basis for A; the Jordan normal form of A is
-1 0 0 0
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