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Another important calculation which we shall be doing quite a bit in the following classes is computing a
basis of a vector space relative to its subspace. (Once again, we assume the spaces presented as linear spans
of several vectors.)

The general set-up here is as follows. We have the ambient vector space V, inside it a subspace
W = span(e1, . . . , ek), and then a subspace W ′ = span(f1, . . . , fl) of W. In this case, it is reasonable
to bring the matrix of vectors spanning W ′ to its reduced column echelon form, and then reduce the matrix
of vectors spanning W with respect to the thus obtained reduced column echelon matrix using the pivots of
the latter. The resulting matrix then should be brought to its reduced column echelon form, giving a relative
basis.

Example 1. Consider the subspace W of R5 equal to the space U2 from the previous class, that is the

span of the vectors
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. Let us also define the subspace W ′ as the span of the

vectors
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Let us first find a “convenient” basis of W ′. Using transpose matrices again, we perform the row
operations(

1 −1 3 2 −7
3 1 1 2 −1

)
(2)−3(1),1/4(2)7→ (

1 −1 3 2 −7
0 1 −2 −1 5

)
(1)+(2)7→ (

1 0 1 1 −2
0 1 −2 −1 5

)
.

Recall that the basis of W is given by the transpose of the matrix1 0 0 0 −2/3
0 1 0 1 7/3
0 0 1 1 −4/3

 .
From this, it is already clear that the rows of the former matrix are r1 + r3 and r2 − 2r3, where ri are the
rows of the latter matrix, so W ′ is indeed a subspace of W. Let us now reduce rows of W with respect to
rows of W ′: 1 0 0 0 −2/3

0 1 0 1 7/3
0 0 1 1 −4/3

 (1)−(1 ′),(2)−(2 ′)7→
0 0 −1 −1 4/3
0 0 2 2 −8/3
0 0 1 1 −4/3

 .
Clearly, the reduced row echelon form of this matrix is0 0 1 1 −4/3

0 0 0 0 0
0 0 0 0 0

 ,
1



so the vector

v =


0
0
1
1

−4/3


can be chosen to form the relative basis, that is a set of linearly independent vectors that, together with a
basis of W ′, give us a basis of W.

Invariant subspaces

Our next step is to introduce a yet another definition that will be needed to study arbitrary linear transfor-
mations, that of an invariant subspace.

Definition 1. Let V be a vector space, and ϕ : V → V be a linear transformation. A subspace U of V is
said to be invariant under ϕ if ϕ(U) ⊂ (U), that is ϕ(u) ∈ U for all u ∈ U.

Example 2. All multiples of an eigenvector of ϕ form a subspace of V that is invariant under ϕ. Indeed,
all multiples of any vector form a subspace, and if it is an eigenvector, then ϕ maps any vector from this
subspace to its multiple.

Let us use this opportunity to fix some notation related to eigenvectors. Recall that eigenvalues of a
linear transformation ϕ of an n-dimensional space V are roots of det(Aϕ,e − tIn), where e1, . . . , en is any
basis of V.

Definition 2. The expression det(Aϕ,e − tIn) is called the characteristic polynomial of the linear transfor-
mation ϕ. It is often denoted χϕ(t).

By inspection, χϕ(t) is a polynomial in t of degree n with leading coefficient (−1)n. Note that over
complex numbers every polynomial has a root, and so every linear transformation has an eigenvector.

The example of eigenvectors is, in a sense, a very useful motivation for introducing invariant subspaces.
Namely, suppose that U ⊂ V is an invariant subspace of a linear transformation ϕ. Let e1, . . . , ek be a basis
of ϕ, and f1, . . . , fl a basis of V relative to U, so that e1, . . . , ek, f1, . . . , fl is a basis of V. Then, by direct
inspection, the matrix of the linear transformation ϕ with respect to this basis has the block-triangular

form

(
A B
0 C

)
, where A is the matrix describing how ϕ transforms the invariant subspace U. Our hunt for

invariant subspaces is ultimately motivated by a wish to reduce a “big” problem of working with an arbitrary
linear transformations to similar but “smaller” ones.

From now on, we shall work with complex numbers as scalars for a while, thus ensuring that linear trans-
formations have many invariant subspaces. This is not true over real numbers: some linear transformations
(e.g. rotations in 2D) have no nontrivial invariant subspaces at all.
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