MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 7

Case $\phi^k = 0$

Suppose that ϕ is a linear transformation of a vector space V for which $\phi^k = 0$. We shall adapt the argument that we had for k = 2 to this general case. We assume that k is actually the smallest power of ϕ that vanishes, so that $\phi^{k-1} \neq 0$.

Let us put, for each p, $N_p = \ker(\phi^p)$. Of course, we have $N_k = N_{k+1} = N_{k+2} = \ldots = V$.

We shall now construct a basis of V of a very particular form. It will be constructed in k steps. First, we find a basis of $V = N_k$ relative to N_{k-1} . Let e_1, \ldots, e_s be vectors of this basis.

The following result is proved in the same way as the one from the previous class:

Lemma 1. The vectors $e_1, \ldots, e_s, \varphi(e_1), \ldots, \varphi(e_s)$ are linearly independent relative to N_{k-2} .

Proof. Indeed, assume that $a_1e_1 + \ldots + a_se_s + b_1\phi(e_1) + \ldots + b_s\phi(e_s) \in N_{k-2}$. Since $e_i \in N_k$, we have $\phi(e_i) \in N_{k-1}$, so

$$a_1e_1 + \ldots + a_se_s \in -b_1\varphi(e_1) - \ldots - b_s\varphi(e_s) + N_{k-2} \subset N_{k-1}$$

which means that $a_1 = \ldots = a_s = 0$. Thus,

$$\varphi(b_1e_1 + \ldots + b_se_s) = b_1\varphi(e_1) + \ldots + b_s\varphi(e_s) \in N_{k-2}$$

so $b_1e_1 + \ldots + b_se_s \in N_{k-1}$, and we deduce that $b_1 = \ldots = b_s = 0$, thus the lemma follows.

Now we find vectors f_1, \ldots, f_t which form a basis of N_{k-1} relative to $\mathrm{span}(\phi(e_1), \ldots, \phi(e_s)) + N_{k-2}$. Absolutely analogously one can prove

Lemma 2. The vectors $e_1, \ldots, e_s, \phi(e_1), \ldots, \phi(e_s), \phi^2(e_1), \ldots, \phi^2(e_s), f_1, \ldots, f_t, \phi(f_1), \ldots, \phi(f_t)$ are linearly independent relative to N_{k-3} .

Proof. Let us assume that

$$\begin{aligned} \alpha_1^{(1)}e_1 + \ldots + \alpha_s^{(1)}e_s + \alpha_1^{(2)}\phi(e_1) + \ldots + \alpha_s^{(2)}\phi(e_s) + \alpha_1^{(3)}\phi^2(e_1) + \ldots + \alpha_s^{(3)}\phi^2(e_s) + \\ b_1^{(1)}f_1 + \ldots + b_t^{(1)}f_t + b_1^{(2)}\phi(f_1) + \ldots + b_t^{(2)}\phi(f_t) \in N_{k-3}. \end{aligned}$$

We note that

$$\begin{split} \alpha_1^{(2)} \phi(e_1) + \ldots + \alpha_s^{(2)} \phi(e_s) &\in N_{k-1}, \\ \alpha_1^{(3)} \phi^2(e_1) + \ldots + \alpha_s^{(3)} \phi^2(e_s) &\in N_{k-2} \\ b_1^{(1)} f_1 + \ldots + b_t^{(1)} f_t &\in N_{k-1}, \\ b_1^{(2)} \phi(f_1) + \ldots + b_t^{(2)} \phi(f_t) &\in N_{k-2}, \end{split}$$

so we have $a_1^{(1)}e_1+\ldots+a_s^{(1)}e_s\in N_{k-1},$ and hence $a_1^{(1)}=a_s^{(1)}=0$ since the vectors e_1,\ldots,e_s form a relative basis. Thus, we have

$$\begin{split} \alpha_1^{(2)}\phi(e_1) + \ldots + \alpha_s^{(2)}\phi(e_s) + \alpha_1^{(3)}\phi^2(e_1) + \ldots + \alpha_s^{(3)}\phi^2(e_s) + \\ b_1^{(1)}f_1 + \ldots + b_t^{(1)}f_t + b_1^{(2)}\phi(f_1) + \ldots + b_t^{(2)}\phi(f_t) \in N_{k-3}. \end{split}$$

Now,

$$\begin{split} a_1^{(2)}\phi(e_1) + \ldots + a_s^{(2)}\phi(e_s) &\in \mathrm{span}(\phi(e_1),\ldots,\phi(e_s)), \\ a_1^{(3)}\phi^2(e_1) + \ldots + a_s^{(3)}\phi^2(e_s) &\in N_{k-2} \\ b_1^{(2)}\phi(f_1) + \ldots + b_t^{(2)}\phi(f_t) &\in N_{k-2}, \end{split}$$

so $b_1^{(1)}f_1+\ldots+b_t^{(1)}f_t\in \mathrm{span}(\phi(e_1),\ldots,\phi(e_s))+N_{k-2},$ and hence $b_1^{(1)}=b_t^{(1)}=0$ since the vectors f_1,\ldots,f_t form a relative basis. Our original assumption simplifies to

$$\alpha_1^{(2)}\phi(e_1)+\ldots+\alpha_s^{(2)}\phi(e_s)+\alpha_1^{(3)}\phi^2(e_1)+\ldots+\alpha_s^{(3)}\phi^2(e_s)+b_1^{(2)}\phi(f_1)+\ldots+b_t^{(2)}\phi(f_t)\in N_{k-3},$$

which can be rewritten as

$$\phi(a_1^{(2)}e_1+\ldots+a_s^{(2)}e_s+a_1^{(3)}\phi(e_1)+\ldots+a_s^{(3)}\phi(e_s)+b_1^{(2)}f_1+\ldots+b_t^{(2)}f_t)\in N_{k-3},$$

implying

$$a_1^{(2)}e_1+\ldots+a_s^{(2)}e_s+a_1^{(3)}\phi(e_1)+\ldots+a_s^{(3)}\phi(e_s)+b_1^{(2)}f_1+\ldots+b_t^{(2)}f_t\in N_{k-2},$$

which by the previous lemma and the relative basis property of f_1, \ldots, f_t shows that all the coefficients are equal to zero.

Next we find a basis of N_{k-2} relative to $\mathrm{span}(\phi^2(e_1),\ldots,\phi^2(e_s),\phi(f_1),\ldots,\phi(f_t))+N_{k-3}$, etc. We continue that extension process until we end up with a basis of V of the following form:

$$\begin{aligned} e_1, \dots, e_s, \phi(e_1), \dots, \phi(e_s), \phi^2(e_1), \dots, \phi^{k-1}(e_1), \dots, \phi^{k-1}(e_s), \\ f_1, \dots, f_t, \phi(f_1), \dots, \phi^{k-2}(f_1), \dots, \phi^{k-2}(f_t), \dots, \\ & \dots, \\ h_1, \dots, h_p, \end{aligned}$$

where the first line contains several "threads" $e_i, \phi(e_i), \ldots, \phi^{k-1}(e_i)$ of length k, the second line — several threads of length $k-1, \ldots$, the last line — several threads of length 1, that is several vectors from N_1 .

Let us rearrange the basis vectors so that vectors forming a thread are all next to each other:

$$e_1, \varphi(e_1), \dots, \varphi^{k-1}(e_1), \dots, e_s, \varphi(e_s), \dots, \varphi^{k-1}(e_s),$$
 $f_1, \varphi(f_1), \dots, \varphi^{k-2}(f_1), \dots, f_t, \varphi(f_t), \dots, \varphi^{k-2}(f_t),$
 $\dots,$
 $g_1, \dots, g_u.$

Relative to that basis, the linear transformation φ has the matrix made of Jordan blocks

$$J_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix},$$

one block J_1 for each thread of length l.