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Dr. Vladimir Dotsenko (Vlad)

Lecture 7

Case ¢* =0

Suppose that ¢ is a linear transformation of a vector space V for which @* = 0. We shall adapt the
argument that we had for k = 2 to this general case. We assume that k is actually the smallest power of @
that vanishes, so that @*~T 0.

Let us put, for each p, N, = ker(¢P). Of course, we have Ny =Ny 1 =Ny =...=V.
We shall now construct a basis of V of a very particular form. It will be constructed in k steps. First,
we find a basis of V = Ny relative to Nx_1. Let ey, ..., es be vectors of this basis.

The following result is proved in the same way as the one from the previous class:
Lemma 1. The vectors ey, ..., es, ©(e1), ..., @(es) are linearly independent relative to Ny_>.

Proof. Indeed, assume that aje; +...+ ases +bip(e;) +... +bsp(es) € Ny 5.
Since e; € Ny, we have @(e;) € Ny_1, so

ajer +...+ases € —byp(e;) —... —bsp(es) + N2 C Ny_1,
which means that a; = ... = as = 0. Thus,
@(brer +...+bses) =brp(er) +... +bsp(es) € Ny_2,
sobjer +...+bses € Nx_1, and we deduce that by =...=bs =0, thus the lemma follows. O

Now we find vectors fy, ..., fy which form a basis of Ny_; relative to span(@(e1),...,@(es)) + Ni_2.
Absolutely analogously one can prove

Lemma 2. The vectors €1, ..., €s, (9(61)7 ) (P(eS); (Pz(e])} ) (\Oz(es); f1, ..., Ty, (P(f]), ) (P(ft)
are linearly independent relative to Ny_3.

Proof. Let us assume that

1 2 3
ag )61 +...+a£”es+ag )(p(e1)+...+a£2)(p(es)+ag )<p2(e1)+...+ag3)cp es)+

b+ b b P o) 4.+ b o(f) € Ny s,

%(

We note that

a$2]<p(e1) +...+ agz)(p(es) € Nyx_1,
a%3)(p2(e1 Y4+ .+ a£3)(p2(es) € Nx_2
b{"f .+ bl e Ny,

b7 (1) 4.+ b7 () € Nic_a,



so we have a§1)e1 +...+ ag

relative basis. Thus, we have

2 3
ag )cp(e1) +...+a£2](p(es) +ag )(pz(

) (M (M

es € Ny_1, and hence a; ' = a5 ' = 0 since the vectors eq, ..., e; form a

e1)+...+a£3)(p2(es)+

b+ b b o) ..+ b P o (f) € Ny s,

Now,

(2)

a;e(er) +...+a@les) € span(p(er),..., eles)),

a, (pz(e1)+...+ag3)(p2(es)eNk,z
2 2
b @(f1) +...+ b p(f) € Ny,

SO bg”ﬁ + ...—i—b,([”ft € span(@(e1),...,@(es)) + Nx_2, and hence bg” = bi” = 0 since the vectors f1,
..., fy form a relative basis. Our original assumption simplifies to

2 3 2 2
ag )(p(e1)+...+a£2)(p(es)+a% )(pz(e1)+...+ag3)(p2(es)+bg )(p(f1)+...+b£ )(p(ft) € Ny_3,

which can be rewritten as

(p(agz)a .o+ aPes + a§3)

eler)+...+ af)(p(es) —|—b22)f1 +... +b,(cz)ft) € Ni_3,

implying

a%z)e1 +...+ agz)es + agsj(p(m )+ ...+ af)(p(es) +b§2)f1 +...+ bﬁz)ft € Ny_2,
which by the previous lemma and the relative basis property of f1, ..., f; shows that all the coefficients are
equal to zero. O

Next we find a basis of Ny_, relative to span(@?(e1),..., @%(es), @(f1),..., @(fy)) + Ny_3, etc. We
continue that extension process until we end up with a basis of V of the following form:

e1,...,es,(p(e1),...,(p(es),(pz(eﬂ,...,(pk*](61),...,(pk*1(es),

fl)- . -)fh (P(ﬁ )a .. °)(pk72(f1 )) LR} (Pkiz(ft))

iy hp,

where the first line contains several “threads” ei, @(ei),..., @< '(ei) of length k, the second line — several
threads of length k — 1, ..., the last line — several threads of length 1, that is several vectors from Nj.
Let us rearrange the basis vectors so that vectors forming a thread are all next to each other:
€1, (9(61 )) ceey @ki] (61 )) <.y €5y (p(es)) ceey @ki] (65),

fla (P(f] )»- . ~)(pk72(f1 )) .. -)ft) (p(ft)w . -a(pkiz(ft)»

. ey

Jdi1y.-+yJu-
Relative to that basis, the linear transformation ¢ has the matrix made of Jordan blocks
0o 00 0 ... 00
100 0 ... 00
o10 0 ... 00
n=lio o
S 0 0
0 00 O 0 0
0 00 O 10

one block J; for each thread of length 1.



