MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 8

Some examples for the case ¢* =0

Yesterday, we proved that for every linear transformation @: V — V with @* = 0 for some k, it is possible
to choose a basis
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ele”) = p(el) =, ..., 0(el)) =0.
Today we shall discuss several examples of computing such bases of threads for a linear transformation.
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Example 1. Let us consider the case of V = R3, where @ is multiplication by the matrix A = | =12 4 —4

-3 1 -1
We have A2 = 0, so @2 = 0, falling into the class we considered. Note that rk(¢@) = rk(A) = 1, so
null ¢ = 2.
We consider the sequence of subspaces V = Ker 2 D Ker @ D {0}. The first one relative to the second
one is one-dimensional (since null @? —null =3 -2 =1).
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Note that the kernel of ¢ has a basis consisting of the vectors 1 and 0 (corresponding to
0 1
the values s = 1,t =0 and s = 0,t = 1 of the free variables respectively). The reduced column echelon form
13 =1/3 1T 0
of the corresponding matrix A = | 1 0 is the matrix R=| 0 1
0 1 -3 1
Since the basis vectors of Ker ¢ have pivots in the first and the second row, it is easy to see that the
0
vector f = | O | can be taken as a basis of V relative to Ker ¢.
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This vector gives rise to vector @(f) = | —4 |. It remains to find a basis of Ker ¢ relative to the span
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of @(f). Column reduction of the basis vectors of Ker(@) by ¢(f) leaves us with the vector g = | 1
1
000
Overall, f, @(f), g form a basis of V. The matrix of ¢ relative to this basisis {1 0 0
0 00
21 -7 8
Example 2. Now let V = R3, where ¢ is multiplication by the matrix A = [ 60 —20 23
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In this case, @2 is multiplication by the matrix | =9 3 3], @3 =0,tkp =2, tk? =1, tk* =0
0 0 0

for k > 3, null(@) = 1, null(¢?) = 2, null(e*) =3 for k > 3.
We consider the sequence of subspaces V = Ker @3 D Ker @2 D Ker @ D {0}. The first one relative to the
second one is one-dimensional (null @3 — null @2 = 1).

1/3 -1/3
The vector space Ker(@?) has a basis consisting of the vectors 1 and 0 (corresponding to
0 1
the values s = 1,t =0 and s = 0,t = 1 of the free variables respectively). The reduced column echelon form
1/3 —1/3 1 0
of the corresponding matrix A = | 1 0 is the matrix R=| 0 1
0 1 -3 1
0
Since the basis vectors of Ker @2 have pivots in the first and the second row, the vector f = |0
1
8
can be taken as a basis of V relative to Ker @?. This vector gives rise to the thread f, @(f) = | 23 |,
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@%(f) = [ =3 |. Since our space is 3-dimensional, this thread forms a basis. The matrix of ¢ relative to
0
0 0 0
this basisis | T 0 0
010
1 0o 0 1
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Example 3. Let V =R", where @ is multiplication by the matrix A = 0 —-11 o0
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In this case, @2 =0, k(@) = 2, rk(@¥) =0 for k > 2, null(¢) = 2, null(¢¥) =4 for k > 2.
We consider the sequence of subspaces V = Ker(¢@?) D Ker(@) D {0}. The first one relative to the second
one is two-dimensional (null @2 — null @ = 2).
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The vector space Ker(@) has a basis consisting of the vectors 0 and

0
} (corresponding to the

0
1 0
values s = 1,t =0 and s = 0,t = 1 of the free variables respectively). The reduced column echelon form has
0 0
pivots in row one and row two, so the vectors f; = (1) and f; = 8 can be taken as a basis of V relative
0 1



0 1
to Ker(@).These vectors give rise to threads f1, @(f) = } and Tz, @(f2) = 8 . These two threads
0 -1
together contain four vectors, so since our space is 4-dimensional, we have a basis. The matrix of ¢ relative
0 0 0 0
. ... |1 0 0 O
to this basis is 000 0
0 010



