MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 8

Some examples for the case $\varphi^k = 0$

Yesterday, we proved that for every linear transformation $\phi \colon V \to V$ with $\phi^k = 0$ for some k, it is possible to choose a basis

$$e_{1}^{(1)}, e_{2}^{(1)}, e_{3}^{(1)}, \dots, e_{n_{1}}^{(1)}, \\e_{1}^{(2)}, e_{2}^{(2)}, \dots, e_{n_{2}}^{(2)}, \\\dots \\e_{1}^{(1)}, \dots, e_{n_{1}}^{(1)}$$

of V such that for each "thread"

$$e_1^{(p)}, e_2^{(p)}, \dots, e_{n_p}^{(p)}$$

we have

$$\varphi(e_1^{(p)}) = e_2^{(p)}, \varphi(e_2^{(p)}) = e_3^{(p)}, \dots, \varphi(e_{n_p}^{(p)}) = 0$$

Today we shall discuss several examples of computing such bases of threads for a linear transformation.

Example 1. Let us consider the case of $V = \mathbb{R}^3$, where φ is multiplication by the matrix $A = \begin{pmatrix} -3 & 1 & -1 \\ -12 & 4 & -4 \\ -3 & 1 & -1 \end{pmatrix}$. We have $A^2 = 0$, so $\varphi^2 = 0$, falling into the class we considered. Note that $\operatorname{rk}(\varphi) = \operatorname{rk}(A) = 1$, so null $\varphi = 2$.

We consider the sequence of subspaces $V = \text{Ker } \varphi^2 \supset \text{Ker } \varphi \supset \{0\}$. The first one relative to the second one is one-dimensional (since null $\varphi^2 - \text{null } \varphi = 3 - 2 = 1$).

Note that the kernel of φ has a basis consisting of the vectors $\begin{pmatrix} 1/3\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} -1/3\\0\\1 \end{pmatrix}$ (corresponding to the values s = 1, t = 0 and s = 0, t = 1 of the free variables respectively). The reduced column echelon form of the corresponding matrix $A = \begin{pmatrix} 1/3 & -1/3\\1 & 0\\0 & 1 \end{pmatrix}$ is the matrix $R = \begin{pmatrix} 1 & 0\\0 & 1\\-3 & 1 \end{pmatrix}$.

Since the basis vectors of Ker $\dot{\phi}$ have pivots in the first and the second row, it is easy to see that the vector $f = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ can be taken as a basis of V relative to Ker ϕ .

This vector gives rise to vector $\varphi(f) = \begin{pmatrix} -1 \\ -4 \\ -1 \end{pmatrix}$. It remains to find a basis of Ker φ relative to the span

of $\varphi(f)$. Column reduction of the basis vectors of $\operatorname{Ker}(\varphi)$ by $\varphi(f)$ leaves us with the vector $g = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Overall, f, $\varphi(f)$, g form a basis of V. The matrix of φ relative to this basis is $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Example 2. Now let $V = \mathbb{R}^3$, where φ is multiplication by the matrix $A = \begin{pmatrix} 21 & -7 & 8 \\ 60 & -20 & 23 \\ -3 & 1 & -1 \end{pmatrix}$.

In this case, φ^2 is multiplication by the matrix $\begin{pmatrix} -3 & 1 & -1 \\ -9 & 3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$, $\varphi^3 = 0$, $\operatorname{rk} \varphi = 2$, $\operatorname{rk} \varphi^2 = 1$, $\operatorname{rk} \varphi^k = 0$

 $\mathrm{for}\ k \geqslant 3, \, \mathrm{null}(\phi) = 1, \, \mathrm{null}(\phi^2) = 2, \, \mathrm{null}(\phi^k) = 3 \, \mathrm{for} \, k \geqslant 3.$

We consider the sequence of subspaces $V = \operatorname{Ker} \phi^3 \supset \operatorname{Ker} \phi^2 \supset \operatorname{Ker} \phi \supset \{0\}$. The first one relative to the second one is one-dimensional (null $\phi^3 - \operatorname{null} \phi^2 = 1$).

The vector space $\operatorname{Ker}(\varphi^2)$ has a basis consisting of the vectors $\begin{pmatrix} 1/3\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} -1/3\\0\\1 \end{pmatrix}$ (corresponding to the values s = 1, t = 0 and s = 0, t = 1 of the free variables respectively). The reduced column echelon form of the corresponding matrix $A = \begin{pmatrix} 1/3 & -1/3\\1 & 0\\0 & 1 \end{pmatrix}$ is the matrix $R = \begin{pmatrix} 1 & 0\\0 & 1\\-3 & 1 \end{pmatrix}$.

Since the basis vectors of Ker φ^2 have pivots in the first and the second row, the vector $f = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ an be taken as a basis of V relative to Ker φ^2 . This vector gives rise to the thread f. $\varphi(f) = \begin{pmatrix} 8 \\ 23 \\ 2 \end{pmatrix}$.

can be taken as a basis of V relative to Ker φ^2 . This vector gives rise to the thread f, $\varphi(f) = \begin{pmatrix} 23 \\ -1 \end{pmatrix}$,

 $\varphi^2(f) = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$. Since our space is 3-dimensional, this thread forms a basis. The matrix of φ relative to this basis is $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Example 3. Let $V = \mathbb{R}^4$, where φ is multiplication by the matrix $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1 \end{pmatrix}$.

In this case, $\varphi^2 = 0$, $\operatorname{rk}(\varphi) = 2$, $\operatorname{rk}(\varphi^k) = 0$ for $k \ge 2$, $\operatorname{null}(\varphi) = 2$, $\operatorname{null}(\varphi^k) = 4$ for $k \ge 2$.

We consider the sequence of subspaces $V = \operatorname{Ker}(\phi^2) \supset \operatorname{Ker}(\phi) \supset \{0\}$. The first one relative to the second one is two-dimensional (null ϕ^2 – null $\phi = 2$).

The vector space $\operatorname{Ker}(\varphi)$ has a basis consisting of the vectors $\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$ (corresponding to the

values s = 1, t = 0 and s = 0, t = 1 of the free variables respectively). The reduced column echelon form has pivots in row one and row two, so the vectors $f_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $f_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ can be taken as a basis of V relative

to Ker(ϕ). These vectors give rise to threads f_1 , $\phi(f_1) = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ and f_2 , $\phi(f_2) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. These two threads together contain four vectors, so since our space is 4-dimensional, we have a basis. The matrix of ϕ relative

to this basis is $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.