MA1112: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 8

Some examples for the case $\varphi^{k}=0$

Yesterday, we proved that for every linear transformation $\varphi: \mathrm{V} \rightarrow \mathrm{V}$ with $\varphi^{k}=0$ for some k, it is possible to choose a basis

$$
\begin{gathered}
e_{1}^{(1)}, e_{2}^{(1)}, e_{3}^{(1)}, \ldots, e_{n_{1}}^{(1)} \\
e_{1}^{(2)}, e_{2}^{(2)}, \ldots, e_{n_{2}}^{(2)} \\
\ldots \\
e_{1}^{(l)}, \ldots, e_{n_{l}}^{(l)}
\end{gathered}
$$

of V such that for each "thread"

$$
e_{1}^{(p)}, e_{2}^{(p)}, \ldots, e_{n_{p}}^{(p)}
$$

we have

$$
\varphi\left(e_{1}^{(\mathfrak{p})}\right)=e_{2}^{(\mathfrak{p})}, \varphi\left(e_{2}^{(p)}\right)=e_{3}^{(p)}, \ldots, \varphi\left(e_{n_{p}}^{(p)}\right)=0
$$

Today we shall discuss several examples of computing such bases of threads for a linear transformation.
Example 1. Let us consider the case of $V=\mathbb{R}^{3}$, where φ is multiplication by the matrix $A=\left(\begin{array}{ccc}-3 & 1 & -1 \\ -12 & 4 & -4 \\ -3 & 1 & -1\end{array}\right)$.
We have $A^{2}=0$, so $\varphi^{2}=0$, falling into the class we considered. Note that $\operatorname{rk}(\varphi)=\operatorname{rk}(A)=1$, so null $\varphi=2$.

We consider the sequence of subspaces $V=\operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional (since null $\varphi^{2}-\operatorname{null} \varphi=3-2=1$).

Note that the kernel of φ has a basis consisting of the vectors $\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the values $s=1, t=0$ and $s=0, t=1$ of the free variables respectively). The reduced column echelon form of the corresponding matrix $A=\left(\begin{array}{cc}1 / 3 & -1 / 3 \\ 1 & 0 \\ 0 & 1\end{array}\right)$ is the matrix $R=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -3 & 1\end{array}\right)$.

Since the basis vectors of $\operatorname{Ker} \varphi$ have pivots in the first and the second row, it is easy to see that the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ can be taken as a basis of V relative to $\operatorname{Ker} \varphi$.

This vector gives rise to vector $\varphi(f)=\left(\begin{array}{l}-1 \\ -4 \\ -1\end{array}\right)$. It remains to find a basis of $\operatorname{Ker} \varphi$ relative to the span
of $\varphi(f)$. Column reduction of the basis vectors of $\operatorname{Ker}(\varphi)$ by $\varphi(f)$ leaves us with the vector $g=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Overall, $f, \varphi(f), g$ form a basis of V. The matrix of φ relative to this basis is $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

Example 2. Now let $V=\mathbb{R}^{3}$, where φ is multiplication by the matrix $A=\left(\begin{array}{ccc}21 & -7 & 8 \\ 60 & -20 & 23 \\ -3 & 1 & -1\end{array}\right)$.
In this case, φ^{2} is multiplication by the matrix $\left(\begin{array}{ccc}-3 & 1 & -1 \\ -9 & 3 & -3 \\ 0 & 0 & 0\end{array}\right), \varphi^{3}=0, \operatorname{rk} \varphi=2, \operatorname{rk} \varphi^{2}=1, \operatorname{rk} \varphi^{k}=0$ for $k \geqslant 3$, $\operatorname{null}(\varphi)=1, \operatorname{null}\left(\varphi^{2}\right)=2, \operatorname{null}\left(\varphi^{k}\right)=3$ for $k \geqslant 3$.

We consider the sequence of subspaces $V=\operatorname{Ker} \varphi^{3} \supset \operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional (null $\varphi^{3}-\operatorname{null} \varphi^{2}=1$).

The vector space $\operatorname{Ker}\left(\varphi^{2}\right)$ has a basis consisting of the vectors $\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the values $s=1, t=0$ and $s=0, t=1$ of the free variables respectively). The reduced column echelon form of the corresponding matrix $A=\left(\begin{array}{cc}1 / 3 & -1 / 3 \\ 1 & 0 \\ 0 & 1\end{array}\right)$ is the matrix $R=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -3 & 1\end{array}\right)$.

Since the basis vectors of $\operatorname{Ker} \varphi^{2}$ have pivots in the first and the second row, the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ can be taken as a basis of V relative to $\operatorname{Ker} \varphi^{2}$. This vector gives rise to the thread $f, \varphi(f)=\left(\begin{array}{c}8 \\ 23 \\ -1\end{array}\right)$, $\varphi^{2}(f)=\left(\begin{array}{c}-1 \\ -3 \\ 0\end{array}\right)$. Since our space is 3-dimensional, this thread forms a basis. The matrix of φ relative to this basis is $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.
Example 3. Let $\mathrm{V}=\mathbb{R}^{4}$, where φ is multiplication by the matrix $A=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1\end{array}\right)$.
In this case, $\varphi^{2}=0, \operatorname{rk}(\varphi)=2, \operatorname{rk}\left(\varphi^{k}\right)=0$ for $k \geqslant 2, \operatorname{null}(\varphi)=2, \operatorname{null}\left(\varphi^{k}\right)=4$ for $k \geqslant 2$.
We consider the sequence of subspaces $V=\operatorname{Ker}\left(\varphi^{2}\right) \supset \operatorname{Ker}(\varphi) \supset\{0\}$. The first one relative to the second one is two-dimensional (null $\varphi^{2}-\operatorname{null} \varphi=2$).

The vector space $\operatorname{Ker}(\varphi)$ has a basis consisting of the vectors $\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ (corresponding to the values $s=1, t=0$ and $s=0, t=1$ of the free variables respectively). The reduced column echelon form has pivots in row one and row two, so the vectors $f_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $f_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$ can be taken as a basis of V relative
to $\operatorname{Ker}(\varphi)$.These vectors give rise to threads $f_{1}, \varphi\left(f_{1}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $f_{2}, \varphi\left(f_{2}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right)$. These two threads together contain four vectors, so since our space is 4-dimensional, we have a basis. The matrix of φ relative to this basis is $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$.

