MA 1112: Linear Algebra II

Tutorial problems, February 12, 2019

1. The characteristic polynomial of A is $t^{2}-2 t+1=(t-1)^{2}$, so the only eigenvalue is 1 . We have $A-I=\left(\begin{array}{rr}2 & -1 \\ 4 & -2\end{array}\right)$, and this matrix evidently is of rank 1. Also, $(A-I)^{2}=0$, so there is a stabilising sequence of subspaces $\operatorname{Ker}(A-I) \subset \operatorname{Ker}(A-I)^{2}=V$. The dimension gap between these is equal to 1 , and we have to find a relative basis. The kernel of $A-I$ is spanned by the vector $\binom{1}{2}$, and for the relative basis we can take the vector $\mathrm{f}=\binom{0}{1}$ which makes up for missing pivot. This vector gives rise to a thread $f,(A-I) f=\binom{-1}{-2}$, and reversing the order of vectors in the thread we get a Jordan basis $f,(\mathcal{A}-I) f$, and the Jordan normal form $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
2. The characteristic polynomial of A is $\operatorname{det}(A-t I)=-t^{3}+6 t^{2}-12 t+8=(2-t)^{3}$, so the only eigenvalue is equal to 2 . Furthermore, $A-2 I=\left(\begin{array}{ccc}4 & 5 & -2 \\ -8 & -10 & 4 \\ -12 & -15 & 6\end{array}\right)$, $(A-2 I)^{2}=0, \operatorname{rk}(A-2 I)=1, \operatorname{rk}\left((A-2 I)^{2}\right)=0$. Thus, we have a sequence of subspaces $\operatorname{Ker}(A-2 \mathrm{I}) \subset \operatorname{Ker}(A-2 \mathrm{I})^{2}=\operatorname{Ker}(A-2 \mathrm{I})^{3}=\ldots=\mathrm{V}$. The kernel of $A-2 I$ is two-dimensional, and consists of all vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ satisfying $4 x+5 y-2 z=0$, therefore y and z are free variables, and we have a basis of the kernel that consists of the vectors $\left(\begin{array}{c}-5 / 4 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}1 / 2 \\ 0 \\ 1\end{array}\right)$. Bringing the matrix whose columns are these vectors to its reduced column echelon form, we observe that the missing pivot is the one in the third row, so the vector $e=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ forms a basis of V relative to the kernel. We have $(A-2 I) e=\left(\begin{array}{c}-2 \\ 4 \\ 6\end{array}\right)$. This vector belongs to the kernel, and we should find a basis of the kernel relative to the span of this vector. We reduce the basis vectors of the kernel using this vector:

$$
\left(\begin{array}{ccc}
-2 & -5 / 4 & 1 / 2 \\
4 & 1 & 0 \\
6 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-2 & 0 & 0 \\
4 & -3 / 2 & 1 \\
6 & -15 / 4 & 5 / 2
\end{array}\right)
$$

and see that the both the second and the third column are proportional to the vector $f=\left(\begin{array}{l}0 \\ 2 \\ 5\end{array}\right)$, which gives rise to a thread of length 1 and completes the basis. Overall, a Jordan basis is given by $e,(\mathcal{A}-2 \mathrm{I}) e$, f, and the Jordan normal form of our matrix is $\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.
3. The characteristic polynomial of A is $\operatorname{det}(A-t I)=-t^{3}-t^{2}+t+1=(1-t)(1+t)^{2}$, so the eigenvalues are 1 and -1 . Furthermore, $\operatorname{rk}(A-I)=2, \operatorname{rk}(A-I)^{2}=2$, $\operatorname{rk}(A+I)=2, \operatorname{rk}(A+I)^{2}=1$. Thus, the kernels of powers of $A-I$ stabilise instantly, so we should expect a thread of length 1 for the eigenvalue 1 , whereas the kernels of powers of $A+I$ do not stabilise for at least two steps, so that would give a thread of length at least 2, hence a thread of length 2 because our space is 3 -dimensional. To determine the basis of $\operatorname{Ker}(A-I)$, we solve the system $(\mathcal{A}-I) v=0$ and obtain a vector $\mathrm{f}=\left(\begin{array}{c}-6 \\ 4 \\ 1\end{array}\right)$. To deal with the eigenvalue -1 , we see that the kernel of $A+I$ is spanned by the vector $\left(\begin{array}{c}-4 \\ 5 / 2 \\ 1\end{array}\right)$, the kernel of $(A+I)^{2}=\left(\begin{array}{ccc}-24 & -48 & 24 \\ 16 & 32 & -16 \\ 4 & 8 & -4\end{array}\right)$ is spanned by the vectors $\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. Reducing the latter vectors using the former one, we end up with the vector $e=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$, which gives rise to a thread $e,(A+I) e=\left(\begin{array}{c}64 \\ 40 \\ -16\end{array}\right)$. Overall, a Jordan basis is given by $f, e,(A+I) e$, and the Jordan normal form of our matrix is $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

