MA 1112: Linear Algebra II
Tutorial problems, March 12, 2019

1. First we make this set into a set of orthogonal vectors. We put
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To conclude, we normalise the vectors, obtaining the answer
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2. This formula is bilinear and symmetric by inspection. Also, if we put x; = x, and y; = y», and
complete the square, we obtain x + x1 y1 + y? = (x1 + 3y1)? + 3y, and we see that this can only be equal
to zero for x; = y; = 0, so the positivity holds as well. Let us apply the Gram-Schmidt process to the
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standard unit vectors. This means that we would like to replace e, by e, — (er,e2) e; = ( ] ) It remains to
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3. We first orthogonalise these vectors, noting that f_ll f(®) dtis equal to 0 if f(¢) is an odd function

(this shows that our computations are actually quite easy, because even powers of ¢ are automatically
orthogonal to odd powers):

normalise these vectors, obtaining
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To conclude, we normalise these vectors, obtaining
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