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1 Question 1

Assume log2 9 ∈ Q
log2 9 = 2 log2 3
As log2 9 ∈ Q
log2 3 = p

q
q log2 3 = p
log2 3q = p
3q = 2p

Contradiction
log2 9 is irrational

Take
(
√

2)log2 9 = 3

2 Question 2:

Show that
√

2 +
√

3 is an algebraic number and find it’s minimal polynomial.
x algebraic ⇔ x is a root of a polynomial with rational coefficients
x =
√

2 +
√

3⇔ x2 = (
√

2 +
√

3)2 = 5 + 2
√

6
⇔ x2 − 5 = 2

√
6⇔ (x2 − 5)2 = (2

√
6)2 ⇔ x4 − 10x2 + 25 = 24

so we have found a polynomial x4 − 10x2 + 1 = 0 which has x =
√

2 +
√

3 as a root ⇒ x is
algebraic

x4 − 10x2 + 1 = 0 is also the minimal polynomial for x =
√

2 +
√

3 since x4 − 10x2 + 1 =
(x +

√
2 +
√

3)(x −
√

2 +
√

3)(x +
√

2 −
√

3)(x −
√

2 −
√

3) which is a product of irreducible
elements in Q[x]

3 Question 3:

We must show that e =
∑
n≥0

1
n! is not algebraic of degree 2, i.e it is not the solution to any

polynomial over the rationals of degree 2. Assume the contrary, if ae2 + be + c = 0 then
ae+ b+ ce−1 = 0⇒ ae+ ce−1 = −b ∈ Q

Expanding the series:

ae+ ce−1 = a
∑
n≥0

1

n!
+ c

∑
n≥0

(−1)n

n!
=
∑
n≥0

a+ (−1)nc

n!

1



Consider pm
qm

=
m∑
n=0

a+(−1)nc
n! so qm = m!

1

qqm
≤
∣∣∣∣pmqm − p

q

∣∣∣∣ =

∣∣∣∣pmqm − (ae+ ce−1)

∣∣∣∣ =

∣∣∣∣∑
n>m

a+ c(−1)n

n!

∣∣∣∣ ≤ ∑
n>m

|a|+ |c|
n!

<
|a|+ |c|
(m+ 1)!

(
1

m
+

1

(m+ 1)(m+ 2)
+ · · ·

)
⇒ 1

m!q
<

2(|a|+ |c|)
(m+ 1)!

⇒ (m+ 1) < 2q(|a|+ |c|)

And this is not true for all m (i.e not true for m large enough), a contradiction. Hence e is not
an algebraic number of degree 2. �

4 Question 4:

Let a =
∑
k≥0

22
k

3kk
, pn
qn

=
∑

0≤k≤n

22
k

3kk
, so that qn = 3n

n
. We have

|a− pn
qn
| =

∑
k>n

22
k

3kk
≤ 22

n+1

3(n+1)n+1

(
1 +

1

3
+

1

9
+ . . .

)
=

3 · 22n+1

2 · 3(n+1)n+1 ,

because for n, l > 1 we have

22
n+l−2n+1

3(n+l)n+l−(n+1)n+1 <
32

n+l−2n+1

3(n+l)n+l−(n+1)n+1 <

<
1

3(n+l)n+l−(n+1)n+1−2n+l <
1

3(n+l−2)(n+l)n+l−1−(n+1)n+1 <

<
1

32(n+2)n+l−1−(n+1)n+1 <
1

3(n+2)n+l−1 <
1

3l−1
.

If a were algebraic of degree k > 1, then we would have |a− pn
qn
| > C

qkn
for some C > 0, and this

would imply

C

3k·nn <
3 · 22n+1

2 · 3(n+1)n+1 <
3 · 32n+1

2 · 3(n+1)n+1 ,

or

3(n−1−k)n
n

= 3(n+1)nn−2nn−k·nn
< 3(n+1)n+1−2n+1−k·nn

<
3

2C
,

which is clearly impossible for large n. Also, a is irrational because if a = p
q , we have |pq −

pn
qn
| =

|pnq−pqn|
qqn

> 1
qqn

, and we get a contradiction in the same way as above.

5 Question 5:

Suppose D is a positive integer that is not a perfect square. Let A > 2
√
D. We must show that

only finitely many rational numbers m
n satisfy

∣∣m
n −
√
D
∣∣ < 1

An2

∣∣m
n
−
√
D
∣∣ =

∣∣∣∣ m2

n2 −D
m
n +
√
D

∣∣∣∣
Multiplying by n2 gives:

∣∣∣∣m2−n2D
m
n
+
√
D

∣∣∣∣ < 1
A

⇒ 1∣∣m
n +
√
D
∣∣ ≤

∣∣∣∣m2 − n2D
m
n +
√
D

∣∣∣∣ < 1

A
⇒
∣∣m
n

+
√
D
∣∣ > A

2



So now we have (using the triangle inequality):

A <
∣∣m
n

+
√
D
∣∣ ≤ ∣∣m

n
−
√
D
∣∣+ 2

√
D ≤ 1

An2
+ 2
√
D

And so: ⇒ A− 2
√
D ≤ 1

An2

If n is large enough ⇒ A ≤ 2
√
D ⇒ finitely many choices for n.

And also notice that for each n (which we now know is a finite amount) finitely many m satisfy∣∣m
n −
√
D
∣∣ < 1

An2

So only finitely many rational numbers satisfy the inequality for A > 2
√
D. �

6 Question 6:

Show that 1
π sin−1(35) is irrational.

Assume the contrary.
1

π
sin−1(

3

5
) =

p

q

We have

sin(
p

q
π) =

3

5
⇒ cos(

p

q
π) =

4

5

Consider the complex number

z = cos(
p

q
π) + i sin(

p

q
π)

=
4

5
+ i

3

5

=
4 + 3i

5

=
i(2 + i)2

(2 + i)(2− i)

=
i(2 + i)

(2− i)
⇒ z2q = cos(2pπ) + i sin(2pπ)

= 1

∴
i2q(2 + i)2q

(2− i)2q
= 1

⇒ i2q(2 + i)2q = (2− i)2q

Since Z[i] is a unique factorisation domain, this is only true for q = 0, a contradiction. Our
assumption is false and 1

π sin−1(35) is irrational.

3


