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Theorem 1. We have
M;(n) =Inn+ O(1).

Proof. Note that
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Here, we use two estimates for the sum of inverse integers:
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which together imply that
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Dividing nM;(n) = nlnn + O(n) by n, we get the required statement. O
Theorem 2. We have
3n

My(n) = ) + O(Inn).

Proof. Let us examine the function ®(n) = nMy(n) = > ¢(k). Extend it to all nonnegative real
k<n
numbers, putting ®(z) = ®(|z]) when z is not an integer. Let us first show that
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Indeed, the right hand side is equal to the number of pairs (m,n) with 0 < m < n < x. The
number of such pairs with ged(m,n) = d is equal to ®(x/d), since factoring out d reduces counting
these pairs to counting pairs 0 < m’ < n’ < x/d, and for each n’ < z/d the number of allowed m’
is ¢(n').

To make use of the formula we just proved, we shall invoke the following generalisation of Mébius

inversion which you will prove in the next tutorial:
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Suppose f, g are two functions with complex values defined on [0, 4+00), and assume
in addition that 3, ;51 [f(z/(kd))| < +oo (for instance, that happens when f(z) =

0 for z < 1). Show that if
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then we have
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Thanks to this statement, we have
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Let us play around with this formula a little bit. Clearly,
[n/k][1+n/k) = (n/k+O))(n/k+ O(1)) = (n?/k* + O(n/k)),

SO
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Here we use obvious estimates
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which we proved above already, as well as the formula
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Dividing by n, we get
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M = — 4+ O(lnn),
p(n) = — +O0(nn)
as required. 0
This theorem easily implies that the “probability” for two randomly chosen numbers to be

coprime is %. (If we agree that the probability in question is the (limit as N — oo of the)
proportion of pairs (m,n) with coprime m,n among all pairs m,n with 0 < m,n < N)



