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The next obvious question to ask once we know that lim
N→+∞

π(N) = +∞ is how fast does the

function π(N) increase. The fact that was already known to Euler is lim
N→+∞

π(N)
N = 0; the proof

of Erdös implies that π(N) ≥ log2
√
N . These two statements do not yet tell much. Legendre, in

early 1800s, conjectured the asymptotic formula

π(N) ≈
N

lnN − C

with C a certain constant, which he believed, based on available numeric data, to be approximately
equal to 1.08366. (Interestingly enough, later research established that this constant is equal to 1).
Gauss, around the same time, proposed an asymptotic formula

π(N) ≈
∫ N

2

dt

ln t
.

However, the first substantial progress in the proof was obtained by Chebyshev in 1850; he proved
that for some positive constants a, b we have

a
N

lnN
≤ π(N) ≤ b

N

lnN
.

Let us outline a proof of these results (it is different from the proof Chebyshev had, which was a
bit more analytic; some ideas of that proof will be discussed later).

Lemma. For each n, we have

lcm(1, 2, . . . , 2n + 1) > 4n.

Proof. Consider the polynomial fn(x) = xn(1− x)n. Since for all x ∈ [0, 1] except for x = 0, 1/2, 1
we have 0 < x(1− x) < 1/4, for those x we have 0 < fn(x) ≤ 1

4n , so

0 <

∫ 1

0
fn(x) dx <

1

4n
.

Expanding fn(x) = anx
n + an+1x

n+1 + · · ·+ a2nx
2n, with ai ∈ Z, we see that

∫ 1

0
fn(x) dx =

an
n+ 1

+
an+1

n+ 2
+ · · · +

a2n
2n + 1

,

so

lcm(1, 2, . . . , 2n+ 1)

∫ 1

0
fn(x) dx ∈ Z.

This implies that

lcm(1, 2, . . . , 2n + 1)

4n
> lcm(1, 2, . . . , 2n+ 1)

∫ 1

0
fn(x) dx ≥ 1,

and the lemma is proved. �

Theorem 1. For all N ≥ 6 we have a N
lnN ≤ π(N) for some positive a.
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Proof. Let 2n+ 1 be the largest odd number not exceeding N . Consider the prime decomposition
of lcm(1, 2, . . . , 2n+ 1), let it be pa11 pa22 · · · pakk . Note that k = π(2n+ 1), and that paii ≤ 2n+ 1 for
all i. Therefore,

4n < lcm(1, 2, . . . , 2n+ 1) ≤ (2n + 1)π(2n+1),

so

π(2n + 1) ln(2n+ 1) > n ln 4,

which implies

π(N) ≥ π(2n+ 1) >
n ln 4

ln(2n + 1)
>

1
2 (N − 3) ln 4

lnN
≥

1
4N ln 4

lnN
,

since 2n + 3 > N ≥ 2n + 1 by construction, and N − 3 ≥ 1
2N for N > 6. Thus, we can take

a = 1
4 ln 4 ≈ 0.3465. �

Lemma. For each n, we have
∏

prime p≤n

p < 4n.

Proof. Induction on n. The statement is true for n = 2, 3. The step of induction is trivial when we
move from an odd number to an even number:

∏

prime p≤2m

p =
∏

prime p≤2m−1

p < 42m−2 < 42m−1.

Let us prove the other case. We have
∏

prime p≤2m+1

p =
∏

prime p≤m+1

p ·
∏

prime m+1<p≤2m+1

p.

Note that the product
∏

prime m+1<p≤2m+1
p divides the binomial coefficient

(2m+1
m+1

)

. Since
(2m+1

m

)

=

(2m+1
m+1

)

and
∑

k

(2m+1
k

)

= 22m+1, we have 2
(2m+1
m+1

)

< 22m+1 and
(2m+1
m+1

)

< 4m. Hence

∏

prime p≤2m+1

p =
∏

prime p≤m+1

p ·
∏

prime m+1<p≤2m+1

p < 4m+1 · 4m = 42m+1,

which completes the proof. �

Theorem 2. We have π(N) ≤ b N
lnN for some positive b.

Proof. Let us denote k = π(N), so that all the primes not exceeding N are p1, . . . , pk. Clearly, we
have pi > i, so

k! < p1p2 . . . pk < 4N

by Lemma we just proved. Since

(k!)2 = (1 · k)(2 · (k − 1)) · · · (k · 1) ≥ kk,

we have

kk/2 ≤ k! < 4N .

Let us show that this implies

k ≤ 5 ln 2
N

lnN
.

Note that

5 ln 2
N

lnN
≥ N4/5
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since

5 ln 2
N1/5

lnN
≥ 1,

which in turn follows from
N1/5 ≥ log2(N

1/5),

where we recognise a classical inequality x ≥ log2 x. Therefore, if

k > 5 ln 2
N

lnN
,

we have
k > N4/5,

so
kk/2 > (N4/5)

5

2
ln 2 N

lnN = 4N ,

a contradiction. We conclude that

π(N) = k ≤ 5 ln 2
N

lnN
,

so we can take b = 5 ln 2 ≈ 3.4657. �

Let us conclude with mentioning the following result, which was conjectured by Bertrand in
1845, and since then has the name of Bertrand’s postulate.

Corollary. For each n, there exists a prime number p between n and 2n.

Chebyshev was able to prove this statement using more precise values a ≈ 0.92129, b ≈ 1.10555,
but our constants are not quite sufficient to take that path. We shall prove this statement in a
different way in our tutorial class next week.
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