MA2317: Introduction to Number Theory Homework problems due October 15, 2010

1. (a) Compute gcd(23171, 120959).

(b) Find some integers \mathbf{x} and \mathbf{y} such that

23171x + 120959y = gcd(23171, 120959).

(c) Describe all pairs (x, y) satisfying the condition of the previous question.

2. (a) Prove that for the sequence of Fibonacci numbers $f_0 = 0$, $f_1 = 1$, $f_{n+2} = f_{n+1} + f_n$, we have $f_{n+k} = f_{n+1}f_k + f_nf_{k-1}$.

(b) Show that f_{mn} is divisible by f_n .

(c) Show that $gcd(f_a, f_b) = f_{gcd(a,b)}$.

3. The *least common multiple* of two integers a, b (notation: lcm(a, b)) is the smallest integer divisible by both a and b.

(a) Show that every common multiple of a and b is divisible by lcm(a, b).

(b) Show that $gcd(a, b) \cdot lcm(a, b) = ab$.

4. Define gcd for Gaussian integers (complex numbers with integer components) and compute gcd(15 + 25i, 36 - 2i).

5. (a) Modify the " $p_1p_2 \cdots p_n - 1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form 4k - 1. (b) Why does not your proof adapt easily for primes of the form 5k - 1?

6. Show that $gcd(2^{2^n} + 1, 2^{2^m} + 1) = 1$ for $m \neq n$ (*Hint*: show that for $m > n, 2^{2^m} - 1$ is divisible by $2^{2^n} + 1$), and use that fact to derive a yet another proof of the infinitude of primes.

7. Show that for the given p_1, \ldots, p_m the number of integers of the form $p_1^{a_1}p_2^{a_2}\cdots p_m^{a_m}$ (for various choices of a_i) that do not exceed the given number n is at most

$$\left(1+\frac{\ln n}{\ln p_1}\right)\left(1+\frac{\ln n}{\ln p_2}\right)\ldots\left(1+\frac{\ln n}{\ln p_m}\right),$$

and use that fact to derive a yet another proof of the infinitude of primes (*Hint*: $\lim_{n\to\infty} \frac{(\ln n)^r}{n} = 0$ for every r).