1. (a) Compute $\operatorname{gcd}(23171,120959)$.
(b) Find some integers x and y such that

$$
23171 x+120959 y=\operatorname{gcd}(23171,120959)
$$

(c) Describe all pairs (x, y) satisfying the condition of the previous question.
2. (a) Prove that for the sequence of Fibonacci numbers $f_{0}=0, f_{1}=1$, $f_{n+2}=f_{n+1}+f_{n}$, we have $f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}$.
(b) Show that $f_{m n}$ is divisible by f_{n}.
(c) Show that $\operatorname{gcd}\left(f_{a}, f_{b}\right)=f_{\operatorname{gcd}(a, b)}$.
3. The least common multiple of two integers a, b (notation: $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$) is the smallest integer divisible by both a and b.
(a) Show that every common multiple of a and b is divisible by $\operatorname{lcm}(a, b)$.
(b) Show that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.
4. Define gcd for Gaussian integers (complex numbers with integer components) and compute $\operatorname{gcd}(15+25 i, 36-2 i)$.
5. (a) Modify the " $p_{1} p_{2} \cdots p_{n}-1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form $4 k-1$. (b) Why does not your proof adapt easily for primes of the form $5 \mathrm{k}-1$?
6. Show that $\operatorname{gcd}\left(2^{2^{n}}+1,2^{2^{m}}+1\right)=1$ for $m \neq n$ (Hint: show that for $m>n, 2^{2^{m}}-1$ is divisible by $2^{2^{n}}+1$), and use that fact to derive a yet another proof of the infinitude of primes.
7. Show that for the given p_{1}, \ldots, p_{m} the number of integers of the form $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$ (for various choices of a_{i}) that do not exceed the given number n is at most

$$
\left(1+\frac{\ln n}{\ln p_{1}}\right)\left(1+\frac{\ln n}{\ln p_{2}}\right) \ldots\left(1+\frac{\ln n}{\ln p_{m}}\right)
$$

and use that fact to derive a yet another proof of the infinitude of primes (Hint: $\lim _{n \rightarrow \infty} \frac{(\operatorname{lnn})^{r}}{n}=0$ for every r).

