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1. INTRODUCTION

The first known proof of a number being irrational is older than Euclid himself; a
Pythagorean, assuming the square root of two was rational, reached a contradiction,
showing it to be in fact rational. Stunning as it was at the time (and allegedly fatal
for the discoverer), it was to be another fifteen centuries or so until a proof was found
showing any other numbers, excepting the square root of a square-free integer, of
being irrational. In this paper, we give three such proofs:

— e is irrational

— €® is irrational for s € Q \ {0}

— 72 is irrational.

In proving the last theorem we then obtain as an easy corollary that = is irrational.
2. e IS IRRATIONAL
The following theorem is due to Fourier.
Theorem. e is irrational

Proof. Assume e = Y 72 1/k! = a/b, the ratio of positive integers. We then have
nlbe = nla for any integer n. The right hand side is an integer, while expanding
nlbe gives
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The first term in this sum is an integer, as all factorials less than n divide n!; for

the second term we have
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n+1 (n+1)!  (n+2)! (n+1) (n+1)2 n
implying for large enough n (take n = 2b for example) we have 0 < n!b(m +
ﬁ +...) < 1, showing n!be to not be an integer, a contradiction. O

3. €® IS IRRATIONAL FOR 1 € Q \ {0}

We first prove the following lemma.

Lemma. Define the function f(x) = %7
(1) f is a polynomial of the form = i’;n
(2) for0<ax<1,0< f(x) <1/n!

(3) for k € N we have f*)(0), f*)(1) € Z.

then

ke €2
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Proof. (1) & (2) are obvious. For (3) we have f*)(0) = 0 when 0 < k < n;

while f(#)(0) = %k! € Z for n < k < 2n. Noting that f(z) = f(1 — z) we get

f® () = (=1)*f*)(1 — ) by the chain rule, implying f(1) = (—=1)*f*(0) € Z,

giving the result. O
Now for the proof; we consider it in two cases.

Theorem. e® is irrational for s € Q\ {0}

Proof. Assume e® = a/b, the ratio of positive integers; for the first case we assume s
is a positive integer. Choose n such that n! > as?"*1, for reasons that will become
clear shortly. Put

F(z) = s*nf(x) = " ' (2) + 82 f (@) =+ fO(2) = FED (@) 4
The higher derivatives greater than 2n vanish, but writing in this way gives the
identity F'(z) = —sF(z) + s?"*! f(x), which implies d%(e”F(x)) = e5Ts2n L f ().
Now, for a contradiction, put

N = b/o 2T Les f(x)dx = b[e** F(x)]§ = be* F(1) — bF(0) = aF(1) — bF(0),

which is an integer by the previous lemma, but then

b82n+1es a$2n+1

1
N = b/ 2T es f(z)dr < = <1,
0 n! n!

also by the previous lemma, a contradiction.
For the second case, we assume s € Q\{0}. If e* = e? is rational then (e?)® = e®
would be rational, in contradiction to the first case. ([l

4. ™ AND 72 ARE IRRATIONAL
We re-use the polynomial f defined above for the following. We explicitly assume
7 is positive, which is clear from the identity = = fil ﬁdm.

2

Theorem. 7° is irrational

Proof. Assume 7 = a/b, the ratio of positive integers. Putting
F(z) = 0" (n" f(x) = w2 (@) + 74" (@) — ),
we then have
F'(z) = —n?F(a) + b7+ f(a),
implying
— (F'(z)sintz — wF(z) cos mx) = w2a" f () sin 7.

dx
Define

N = 71'/1 a" f(z) sinedr = [lf’(x) sinrx — F(x) cosx]y = F(0) 4+ F(1),
0 T

which is again an integer from the previous lemma.
Choose n such that ma™ < n! then

n

1
0< N:7r/ a" f(z) sinTadr < g <1,
0 n:

a contradiction. O
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Corollary. 7 is irrational

Proof. If m = ¢ was the ratio of positive integers, then w2 = Z—j would be rational,
in contradiction to the previous theorem. ([l
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