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1. INTRODUCTION

There are several results on combinatorics of subsets of a finite set N = {1,2,...,n} that have been very historically
significant and inspired the development of new areas of mathematics. We present three of these theorems following
[1] and the talk by Aiden Mathieu: the theorems of Sperner and Erdés-Ko-Rado and Hall’s ”Marriage theorem”

2. SPERNER’S THEOREM

This question was proposed and solved by Emanuel Sperner in 1928, but the argument we present is by David
Lubell. Let N ={1,2,...,n}

Definition 1. An antichain in N is a family of subsets F of N such that no subset in F is contained in another.

We may ask what is the size of the largest antichain?
The family Fj, consisting of subsets of order k is an antichain of size (Z) = ﬁlk)" and the largest of these is

(Ln72J)' Sperner’s theorem tells us that there is none larger.
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Proof. Consider chains of subsets @ = Cy C C; C --- C C),, = N. Each C;;; must contain one more element than
C;, i.e. such a chain consists of adding each element of N one by one, so the number of such chains is n!, the number
of permutations of N. Let A C N of size k. The number of chains containing A is the number of ways to form a
chain @ = Cy C C; C -+ C Cx = A multiplied by the number of ways to form A = C, C Cxyy1 C --- C C,, = N,
which is kl(n — k)!. Let F be an antichain; then no two elements of F can appear in the same chain. Thus if
my = |{A € F | |A| = k}|, the total number of chains containing sets in F is

Theorem 1 (Sperner). For any antichain F,

kak!(n — k)l <nl
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3. ERDGs-K0-RADO THEOREM
This result was found in 1938 by Paul Erdds, Chao Ko and Richard Rado, but this proof is due to Gyula Katona.

Definition 2. A family F of subsets of N is called an intersecting family if AN B # @ VA, B € F. An intersecting
family consisting of sets of size k is called an intersecting k-family.
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The largest intersecting family is of size 277!, e.g. the family of all subsets that contain 1. This is maximal as
for any A C N, AN (N \ A) = & so no intersecting family can contain more than half of the 2" subsets of N. If
k > 4 then any two subsets of size k intersect. Otherwise by taking all sets of size k that contain 1, we obtain an

intersecting k-family of size (Zj)

Theorem 2 (Erdés-Ko-Rado). For any intersecting k-family F, |F| < (Zj) ifn > 2k.

Proof. Consider a circle divided into n edges by n points. An arc of length k consists of k consecutive edges joining
k + 1 points.

Lemma 1. Suppose we have t different arcs Ay, ..., Ay of length k, where n > 2k, such that any two arcs have an
edge in common. Then t < k.

Proof. No two arcs may share an endpoint: if they did they would have to start in different directions as they are
distinct, but then they could not share an edge as n > 2k. Each As,..., A; overlaps with A; and must therefore
have a distinct endpoint at one of the k — 1 points inside A;, meaning there are at most k — 1 of them.

St<k
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Up to rotation there are (n — 1)! ways of writing the numbers 1 to n on the edges of an n-edged circle. For a
chosen such circle, there are by the lemma at most k sets A € F that appear as arcs on the circle; thus there are at

most k(n—1)! ways of representing elements of 7 on any such circle. Given A € F, there are k!(n — k)! possible ways
to represent A on such a circle: k! ways to order the elements of A consecutively and (n — k)! for the rest. Therefore

k(n — 1)! (n—1)! <n1>

s ) T GG k-1

4. MARRIAGE THEOREM
Proven by Philip Hall in 1935, this very important theorem led to the field of matching theory.

Definition 3. Let Ay, ..., A, be subsets of a finite set X. A system of distinct representatives (SDR) of {A1,..., Ay}
is a sequence of dictinct x1,...,x, such that x; € A;Vi.

This was referred to as the marriage theorem as, if we have n girls and a set X of boys, and the i'th girl is
romantically interested in a set A;, a system of distinct representatives provide each girl a distinct boy x; to marry.

Clearly if an SDR exists then the union of any m distinct A; must contain at least the m distinct elements x;. It
turns out that this condition is sufficient.

Theorem 3. If the union of any m distinct A; contains at least m elements (1 < m <n), then an SDR exists

Proof. Induction on n: n = 1 trivial. Let n > 1. We call a collection of [ sets 4; (1 < I < n) whose union
contains exactly [ elements a critical family. Suppose no critical family exists. Let x,, be some element of A,, and
A; = A;\ {x,} for 1 <i <n—1. For any m sets A;,,...A;, with i, <n we know A;, U...A; contains at least
m + 1 elements, so flil U... /L contains at least m elements, so by induction 1211, ...A,_1 has an SDR T1,...,Tpn_1
and thus xq,...,2,_1,27, is an SDR for A4,..., A,.

Suppose alternatively that a critical family exists, assume wlog it is Ay,...A;. Then {A4;,... A;} as subsets of
X = Ué:l A; satisfy the condition of the theorem so has an SDR zi,...,z;. For any m of A;yq1,..., A, their

combined union with X’ must contain at least [ + m elements. Therefore if /le =A;\ X' for I +1 < i <n we have

that the union of any m A; contains at least m elements, so these have an SDR Zi41,- - -, Ty disjoint from X’ (which
is also an SDR for {4;;1,...,4,}. Thus x1,...,x, is an SDR for {A;,...,A,} O
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