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Abstract. In this paper we give a general presentation of the results to be used to get a ‘good’
lower bound for a linear form in three logarithms of algebraic numbers in the so-called rational
case. We recall the best existing general result — Matveev’s theorem — and we add a powerful
new lower bound for linear forms in three logarithms. We treat in detail the ‘degenerate’ case,
i.e. the case when the conditions of the zero-lemma are not satisfied.

1. Introduction

In this paper we give a general presentation of the results to be used to get a ‘good’ lower bound
for a linear form in three logarithms of algebraic numbers. We recall the best existing general
result — Matveev’s theorem — and we add a powerful new lower bound for linear forms in three
logarithms in the so-called rational case, i.e. when the coefficients of the linear form are rational
integers. We use this result as a first step in our computation of a lower bound. Even if this
is not necessary from the logical point of view, this helps a lot for the study of the ‘degenerate’
case, i.e. the case when the conditions of the zero-lemma are not satisfied. We treat in detail the
degenerate case, using linear forms in two logarithms. In the degenerate case, another approach
(see [12]) is to use determinants of interpolation especially built according to the conditions of the
zero-lemma; maybe this approach gives better results but this is not clear in our case. It seems
that the published results in this case give weaker results than ours.

Essentially, the present paper is extracted from [2] and [3], but we give much more details in
order that this presentation is almost self-contained. Our method is the method of interpolation
determinants introduced by Michel Laurent in [5], [6] and [7]. In the case of three logarithms,
this method was used by C.D. Bennett et al. [1]. But the present paper brings some progress
when compared to [1]: we treat the general case of algebraic numbers (not only multiplicatively
independent rational integers), many technical details have been improved and, more importantly,
a new zero-lemma of Michel Laurent leads to much better estimates.

Our aim, suggested by the title a kit. . . , is to explain how to deal with concrete cases to get
a lower bound of a linear form Λ in three logarithms of algebraic numbers. The process contains
three steps. First, using a general estimate of Matveev, we obtain some lower bound, say B1.
Then, this first result is used in our estimate for which there are two cases, the non-degenerate
case and the degenerate case. In the non-degenerate case we get a second lower bound B2, and if
B2 is smaller than B1 we study the degenerate case. In this case, we consider our linear form in
three logarithms as a linear form in two logarithms and we apply the results of Laurent-Mignotte-
Nesterenko [9] to this linear form and get a third lower bound B3. Of course, the conclusion is
|Λ| ≥ min{B2, B3}. In the degenerate case, there are other ways to proceed in the literature, see
the comments in Section 5.
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2. Matveev’s theorem for three logarithms

First, we need the special case of three logarithms of the Theorem of E. M. Matveev, thus we
quote his result. This theorem enables us to get a first bound in our studies and this bound can
be used as the departure for further improvements. The reason for this should appear later.

Theorem 1 (Matveev). Let λ1, λ2, λ3 be Q–linearly independent logarithms of non-zero algebraic
numbers and let b1, b2, b3 be rational integers with b1 6= 0. Define αj = exp(λj) for j = 1, 2, 3
and

Λ = b1λ1 + b2λ2 + b3λ3.

Let D be the degree of the number field Q(α1, α2, α3) over Q. Put

χ = [R(α1, α2, α3) : R].

Let A1, A2, A3 be positive real numbers, which satisfy

Aj ≥ max
{

Dh(αj), |λj |, 0.16
}

(1 ≤ j ≤ 3).

Assume that

B ≥ max
{

1,max
{

|bj |Aj/A1; 1 ≤ j ≤ 3
}

}

.

Define also

C1 =
5 × 165

6χ
e3 (7 + 2χ)

(

3e

2

)χ
(

20.2 + log
(

35.5D2 log(eD)
)

)

.

Then
log |Λ| > −C1D

2A1 A2A3 log
(

1.5 eDB log(eD)
)

.

Proof. See [10]. �

3. A new estimate on linear forms in three logarithms

We present the type of linear forms in three logarithms that we shall study. We consider
three non-zero algebraic numbers α1, α2 and α3 and positive rational integers b1, b2, b3 with
gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3 6= 0.

We restrict our study to the following cases:

• the real case: α1, α2 and α3 are real numbers > 1, and the logarithms of the αi

are all real (and > 0). Moreover, in concrete cases, α1, α2 and α3 are multiplicatively
independent. Of course, then the logαj ’s are Q–linearly independent.

• the complex case: α1, α2 and α3 are complex numbers 6= 1 of modulus one, and
the logarithms of the αi are arbitrary determinations of the logarithm (then any of these
determinations is purely imaginary). In practical examples, two of these α’s are multi-
plicatively independent and the third one is a root of unity. We shall see later that (see
Corollary 3.10), in this case, the logαj ’s are again Q–linearly independent.

In practice this restriction does not cause any inconvenience since

|Λ| ≥ max
{

|ℜ(Λ)|, |ℑ(Λ)|
}

,

and so we can always reduce to the above cases.

Without loss of generality, we may assume that

b2| logα2| = b1| logα1| + b3| logα3| ± |Λ|.
But notice than this introduces some important dissymmetry between the roles of the
coefficients b1, b2 and b3.
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Like the authors of [1], we use Laurent’s method, and consider a suitable interpolation determi-
nant ∆.

We shall choose rational positive integers K, L, R, S, T , with K, L ≥ 2, we put N = K2L and
we assume RST ≥ N . Let i be an index such that (ki,mi, ℓi) runs trough all triples of integers
with 0 ≤ ki ≤ K − 1, 0 ≤ mi ≤ K − 1 and 0 ≤ ℓi ≤ L − 1. So each number 0, . . . , K − 1 occurs
KL times as a ki, and similarly as an mi, and each number 0, . . . , L− 1 occurs K2 times as an ℓi.

Put

b1 = d1b
′
1, b3 = d3b

′′
3 , b2 = d1b

′
2 = d3b

′′
2 , β1 = b1/b2 = b′1/b

′
2, β3 = b3/b2 = b′′3/b

′′
2 ,

where

d1 = gcd(b1, b2) and d3 = gcd(b3, b2).

With the above definitions, let

∆ = det

{(

rjb
′
2 + sjb

′
1

ki

)(

tjb
′′
2 + sjb

′′
3

mi

)

α
ℓirj

1 α
ℓisj

2 α
ℓitj

3

}

,

where rj , sj , tj are non-negative integers less than R, S, T , respectively, such that (rj , sj , tj) runs
over N distinct triples.

Let

λi = ℓi −
L− 1

2
, η0 =

R− 1

2
+ β1

S − 1

2
, ζ0 =

T − 1

2
+ β3

S − 1

2
,

and

b = (b′2η0)(b
′′
2ζ0)

(

K−1
∏

k=1

k!

)− 4
K(K−1)

.

Following [9], Lemme 8, we can prove that

log b ≤ log
(R − 1)b2 + (S − 1)b1

2d1
+ log

(T − 1)b2 + (S − 1)b3
2d3

− 2 logK + 3 − 2 log(2πK/e3/2)

K − 1
+

2 + 6π−2 + logK

3K(K − 1)
.

Then, we have
∑N−1

i=0 λi = 0 and ([1], formula (2.1))

α
λirj

1 α
λisj

2 α
λitj

3 = α
λi(rj+sjβ1)
1 α

λi(tj+sjβ3)
3 eλisjΛ/b2 = α

λi(rj+sjβ1)
1 α

λi(tj+sjβ3)
3 (1 + θijΛ

′),

where

θij =
eλisjΛ/b2 − 1

Λ′

and

Λ′ = |Λ| · LSe
LS|Λ|/(2b2)

2|b2|
,

where all |θij | are ≤ 1. Proof: since sj, b2, L and |Λ| are all positive, |λj | ≤ L/2 and also sj ≤ S
we have

|θij | ≤
ex − 1

xex
≤ 1, where x =

LS|Λ|
2b2

> 0.
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3.1. Preliminaries. This subsection contains some technical results used in the estimates of the
interpolation determinant.

Lemma 3.1. Let K, L, R, S, T be positive integers, put N = K2L and assume N ≤ RST , put
also

ℓn =

⌊

n− 1

K2

⌋

, 1 ≤ n ≤ N,

and (r1, . . . , rN ) ∈ {0, 1, . . . , R−1}N . Suppose that for each r ∈ {0, 1, . . . , R−1} there are at most
ST indices such that rj = r. Then

∣

∣

∣

∣

∣

N
∑

n=1

ℓnrn −MR

∣

∣

∣

∣

∣

≤ GR,

where

MR =

(

L− 1

2

) N
∑

n=1

rn and GR =
NLR

2

(

1

4
− N

12RST

)

.

Proof. Apply [9], Lemme 4. �

As in [1] or [12] p. 192, for (k,m) ∈ N2, we put ‖(k,m)‖ = k +m. And we put

Θ(K0, I) = min
{

‖(k1,m1)‖ + · · · + ‖(kI ,mI)‖
}

,

where the minimum is taken over if the I couples (k1,m1), . . . , (kI ,mI) ∈ N2 which are pairwise
distinct and satisfy m1, . . . , mI ≤ K0. Then, we have:

Lemma 3.2. Let K0, L and I be positive integers with K0 ≥ 3, L ≥ 2 and I ≥ K0(K0 + 1)/2.
Then

Θ(K0, I) ≥
(

I2

2(K0 + 1)

)(

1 +
(K0 − 1)(K0 + 1)

I
− K0(K0 + 2)(K0 + 1)2

12I2

)

.

Proof. This is an improvement of the Lemma 1.4 of [1]. We follow more or less the proof of this
result.

The argument is elementary: the smallest value for the sum ‖(k1,m1)‖ + · · · + ‖(kI ,mI)‖ is
reached when we choose successively, for each integer n = 0, 1, . . . all the points in the domain

Dn = {(k,m) ∈ N2 ; m ≤ K0, k +m = n},
and stop when the total number of points is I. Moreover,

Card(Dn) =

{

n+ 1, if n ≤ K0,

K0 + 1, if n ≥ K0.

Hence the number of points obtained when n varies between 0 and, say, A− 1 (with A ≥ K0) is

K0−1
∑

n=0

(n+ 1) +

A−1
∑

n=K0

(K0 + 1) =

(

A−K0 +
K0

2

)

(K0 + 1) =

(

A− K0

2

)

(K0 + 1).

With this notation, the number I of points can be written as

I =

(

A− K0

2

)

(K0 + 1) + r, with 0 ≤ r ≤ K0,

provided that I ≥ K0(K0 + 1)/2, which is one hypothesis of the Lemma.
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Then, the computation of [1] shows that

Θ(K0, I) ≥ Θ̃(K0, I) :=

K0−1
∑

n=0

n(n+ 1) +

A−1
∑

n=K0

n(K0 + 1) + rA,

where
K0−1
∑

n=0

n(n+ 1) +

A−1
∑

n=K0

n(K0 + 1)

=
(K0 − 1)K0(2K0 − 1)

6
+

(K0 − 1)K0

2
+
K0 + 1

2

(

A(A− 1) −K0(K0 − 1)
)

=
(K0 − 1)K0(2K0 + 2)

6
+
K0 + 1

2
A(A− 1) − (K0 − 1)K0(K0 + 1)

2

=
K0 + 1

2

(

A(A− 1) − 1

3
K0(K0 − 1)

)

.

And we get

Θ(K0, I) ≥
K0 + 1

2

(

A(A− 1) − 1

3
K0(K0 − 1)

)

+ rA.

In terms of I,

A =
K0

2
+

I − r

K0 + 1
.

We have,

∂Θ̃

∂r
=
K0 + 1

2
(2A− 1)

∂A

∂r
+A+ r

∂A

∂r
= −2A− 1

2
+A− r

K0 + 1
=

1

2
− r

K0 + 1
,

which shows that the minimum of Θ̃ is reached either for r = 0 or r = K0. It is easy to verify
that Θ̃ takes the same value for r = 0 and r = K0 + 1 (which is indeed out of the range of r), this
implies that the minimum is reached for r = 0. It follows that

2Θ(K0, I)

K0 + 1
≥
(

K0

2
+

I

K0 + 1

)(

K0

2
+

I

K0 + 1
− 1

)

− K0(K0 − 1)

3

=
K2

0

4
+

I2

(K0 + 1)2
+

K0I

K0 + 1
− K0

2
− I

K0 + 1
− K2

0

3
+
K0

3

=
I2

(K0 + 1)2
+

(K0 − 1)I

K0 + 1
− K2

0

12
− K0

6

=

(

I

K0 + 1

)2(

1 +
(K0 − 1)(K0 + 1)

I
− K0(K0 + 2)(K0 + 1)2

12I2

)

,

which proves the lemma. �

The version of Liouville inequality that we use is the same as in [9] (p. 298–99) or in [12] Ex. 3.2,
p. 106:

Lemma 3.3. Let α1, α2 and α3 be non-zero algebraic numbers and a polynomial f ∈ Z[X1, X2, X3]
such that f(α1, α2, α3) 6= 0, then

|f(α1, α2, α3)| ≥ |f |−D+1(α∗
1)

d1(α∗
2)

d2(α∗
3)

d3 × exp
{

−D
(

d1h(α1) + d2h(α2) + d3h(α3)
)}

,

where D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R],

di = degXi
f, i = 1, 2, 3, |f | = max

{

|f(z1, z2, z3)| ; |zi| ≤ 1, i = 1, 2, 3
}

,
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and h(α) is the absolute logarithmic height of the algebraic number α, and α∗ = max{1, |α|}.

Remark. See also [12] Ex. 3.5, p. 108, for a stronger version using projective height.

Lemma 3.4. Let K > 1 be an integer, then

log

(

K−1
∏

k=1

k!

)

4
K(K−1)

≥ 2 logK − 3 +
2 log(2πK/e3/2)

K − 1
− 2 + 6π−2 + logK

3K(K − 1)
.

Proof. This is a consequence of a variant of the proof of Lemme 8 of [9]. �

3.2. An upper bound for |∆|. Let

zj = rj + sjβ1 − η0 and ζj = tj + sjβ3 − ζ0,

so |zj | ≤ η0 and |ζj | ≤ ζ0. Since,
(

rjb
′
2 + sjb

′
1

ki

)

=
b′2

ki

ki!
zj

ki + terms in zj of degree less than ki,

and similary for
(

tjb′′2 +sjb′′1
mi

)

, using the multilinearity of determinants we obtain the formula

∆ = det

(

b′2
kib′′2

mi

ki!mi!
zj

kiζj
miα1

ℓ1rjα2
ℓ1sjα3

ℓ1tj

)

.

Let

M1 =
L− 1

2

N
∑

j=1

rj , M2 =
L− 1

2

N
∑

j=1

sj , M3 =
L− 1

2

N
∑

j=1

tj .

From the two above relations, and the definition of λi, it follows that

∆ = α1
M1α2

M2α3
M3 det

(

b′2
kib′′2

mi

ki!mi!
zj

kiζj
miα1

λi(rj+sjβ1)α3
λi(tj+sjβ3) (1 + Λ′θij)

)

.

Since
∑

i λi = 0, we deduce that

∆ = α1
M1α2

M2α3
M3 det

(

b′2
kib′′2

mi

ki!mi!
zj

kiζj
miα1

λizjα3
λiζj (1 + Λ′θij)

)

.

Expanding this determinant, we obtain

∆ = α1
M1α2

M2α3
M3

∑

I⊆N

(Λ′)N−|I|∆I ,

where N = {0, 1, . . . , N − 1} and ∆I is the determinant of a certain matrix MI defined below.
Let

φj(z, ζ) =
b′2

kib′′2
mi

ki!mi!
zkiζmiαλiz

1 αλiζ
3 ,

[where αλiz
1 = exp(λiz logα1) and similarly for αλiζ

3 ] and

ΦI(x)ij =

{

φj(xzj , xζj), if i ∈ I,

θijφj(xzj , xζj), if i 6∈ I.

Then, MI =
(

ΦI(1)ij

)

and letting ΨI(x) = det
(

ΦI(x)
)

, gives

|∆I | =
∣

∣det
(

ΦI(1)
)∣

∣ = |ΨI(1)|.



A KIT ON LINEAR FORMS IN THREE LOGARITHMS 7

Now, let
JI = order(Ψ, 0),

the maximum modulus principle implies

|ΨI(1)| ≤ ρ−JI · max
|x|=ρ

|ΨI(x)|.

Since |zj | ≤ η0 and |ζj | ≤ ζ0,

max
|x|=ρ

∣

∣ΨI(x)
∣

∣ ≤ N !
b′2

P

kib′′2

P

mi

∏

ki!
∏

mi!
(ρη0)

P

ki(ρζ0)
P

mi

× max
σ∈S(N )

exp
{

ρ
(

(

∑

λizσ(i)

)

logα1 +
(

∑

λiζσ(i)

)

logα2

)}

.

Put

g =
1

4
− N

12RST
, G1 =

NLR

2
g, G2 =

NLS

2
g, G3 =

NLT

2
g.

Then, using Lemma 1 and the relation
∑N−1

i=0 λi = 0, we get

N−1
∑

i=0

λizσ(i) =

N−1
∑

i=0

λi(ri + siβ1 − η0) =

N−1
∑

i=0

λi(ri + siβ1)

=

N−1
∑

i=0

(

ℓi −
L− 1

2

)

rσ(i) + β1

N−1
∑

i=0

(

ℓi −
L− 1

2

)

sσ(i),

and thus
N−1
∑

i=0

λizσ(i) ≤ G1 + β1G2.

In a similar way,
N−1
∑

i=0

λiζσ(i) ≤ G3 + β3G2.

It follows that (recall that b2| logα2| = b1| logα1| + b3| logα3| ± |Λ|)

exp
{

ρ
(

(

∑

λizσ(i)

)

| logα1| +
(

∑

λiζσ(i)

)

| logα3|
)}

≤ exp
{

ρ
(

(G1 + β1G2)| logα1| + (G3 + β3G2)| logα3|
)}

≤ exp

{

ρ

(

G1| logα1| +G2

(

| logα2| +
|Λ|
b2

)

+G3| logα3|
)}

.

As in [1], we see that if

(∗) Λ′ < ρ−KL

then, for ρ ≥ 2,

ρG2
|Λ|
b2

≤ ρg
NLS

b2

|Λ|
2

≤ ρK2L
Λ′

4
≤ ρK2L

2ρKL
≤ K2L2

10 · 2KL
< 10−3,

for K ≥ 3 and L ≥ 5. Putting these estimates together, we get that condition (*) implies the
upper bound

|∆| ≤ 1.001α1
M1+ρG1 α2

M2+ρG2 α3
M3+ρG3 N ! × 2N ρ

P

(ki+mi)

× (b′2η0)
P

ki

∏

ki!

(b′′2ζ0)
P

mi

∏

mi!
max

σ∈S(N )

|Λ′|N−|I|

ρJI

,
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where

JI = order(ΨI , 0).

Under condition (*), we have

|Λ′|N−|I|

ρJI

≤ ρ−KL(N−|I|)−JI .

If |I| ≤ 0.5N then

KL(N − |I|) ≥ 0.5KLN ≥ NKL

4

(

1 +
4

L
+

1

2K − 1

)

as soon as K ≥ 3 and L ≥ 5, conditions that we assume from now on.

If |I| ≥ 0.5N , then using Lemma 1.3 of [1] or Lemma 6.4 of [12]1, we obtain

JI ≥ Θ(K0, |I|), for K0 = 2(K − 1) .

Now, |I| ≥ 0.5K2L implies |I| ≥ 2.5K2 and using Lemma 2 we get (with the notation I = |I|)

KL(N − I) + JI ≥ KL(N − I) +
I2

2(K0 + 1)

(

1 +
(K0 − 1)(K0 + 1)

I
− K0(K0 + 2)(K0 + 1)2

12I2

)

.

It is easy to verify that the right handside is a decreasing function of I in the range [N/2, N ], since
L ≥ 5, and we get (recall that N = K2L and K0 = 2K − 2)

KL(N − |I|) + JI ≥ N2

2(K0 + 1)

(

1 +
K2

0 − 1

N
− K0(K0 + 2)(K0 + 1)2

12N2

)

=
N2

4K

(

2K

K0 + 1
+

2K(K0 − 1)

N
− KK0(K0 + 1)(K0 + 2)

6N2

)

=
N2

4K

(

1 +
1

2K − 1
+

2(2K − 3)

KL
− 2(K − 1)(2K − 1)

3K2L2

)

=
N2

4K

(

1 +
4

L
+

1

2K − 1
− 4

3L2
− 6

KL
+

2

KL2
− 2

3K2L2

)

≥ N2

4K

(

1 +
4

L
+

1

2K − 1
− 4

3L2
− 6

KL

)

,

because L ≥ 5, and this implies, in all cases,

KL(N − |I|) + JI ≥ N2

4K

(

1 +
4

L
+

1

2K − 1
− 6

KL
− 4

3L2

)

.

Thus, gathering all the previous estimates and using the relations

N−1
∑

i=0

ki =

N−1
∑

i=0

mi =
(K − 1)K

2
KL =

N

2
(K − 1),

and the definition of b, we obtain the following result (see [2]).

1 That is: the function of a complex variable x given by

ψ(x) = det
`

fi(xzj , xζj)
´

1≤i, j≤I

has a zero at x = 0 of multiplicity at least Θ(K0, I), when fi(z, ζ) = zkiζmiφi(l1z + l2ζ), where φi is an analytic
function in C.
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Proposition 3.5. With the previous notation, if K ≥ 3, L ≥ 5 and Λ′ ≤ ρ−KL, for some real
number ρ ≥ 2, then

log |∆| ≤
3
∑

i=1

Mi log |αi| + ρ
3
∑

i=1

Gi| logαi| + log(N !) +N log 2 +
N

2
(K − 1) log b

−
(

NKL

4
+

NKL

4(2K − 1)
− NK

3L
− N

2

)

log ρ+ 0.001.

3.3. A lower bound for |∆|. Using a Liouville estimate as in Lemma 3.3 above, we get (as in [2]):

Proposition 3.6. If ∆ 6= 0 then

log |∆| ≥ − D − 1

2
N logN +

3
∑

i=1

(Mi +Gi) log |αi|

− 2D
3
∑

i=1

Gih(αi) −
D − 1

2
(K − 1)N log b.

Proof. We have ∆ = P (α1, α2, α3) where P ∈ Z[X1, X2, X3] is given by

P (X1, X2, X3) =
∑

σ∈SN

sg(σ) ·
N
∏

i=1

(

rσ(i)b
′
2 + sσ(i)b

′
1

ki

)(

tσ(i)b
′′
2 + sσ(i)b

′′
3

mi

)

X
nr,σ

1 X
ns,σ

2 X
nt,σ

1 ,

and where

nr,σ =

N
∑

i=1

ℓirσ(i), ns,σ =

N
∑

i=1

ℓisσ(i), nt,σ =

N
∑

i=1

ℓitσ(i).

By Lemma 1,
∣

∣degXi
P −Mi

∣

∣ ≤ Gi, i = 1, 2, 3.

Let
Vi = ⌊Mi +Gi⌋, Ui = ⌈Mi −Gi⌉, i = 1, 2, 3,

then
∆ = α1

V1α2
V2α3

V3 P̃ (α−1
1 , α−1

2 , α−1
3 ),

where
degXi

P̃ ≤ Vi − Ui, i = 1, 2, 3.

By our Liouville estimate

log
∣

∣P̃ (α−1
1 , α−1

2 , α−1
3 )
∣

∣ ≥ −(D − 1) log |P̃ | − D
3
∑

i=1

(Vi − Ui) h(αi).

Now we have to find an upper bound for |P̃ | (or for |P |, which is equal to |P̃ |). By the multilinearity
of the determinant, for all η, ζ ∈ C,

P (z1, z2, z3) = det

(

(rjb
′
2 + sjb

′
1 − η)ki

ki!

(tjb
′′
2 + sjb

′′
3 − ζ)mi

mi!
· z1ℓirj · z2ℓisj · z3ℓitj

)

.

Choose

η =
(R− 1)b′2 + (S − 1)b′1

2
, ζ =

(T − 1)b′′2 + (S − 1)b′′3
2

.

Notice that, for 1 ≤ j ≤ N ,

|rjb′2+sjb
′
1−η|ki ≤

(

(R − 1)b2 + (S − 1)b1
2d1

)ki

, |tjb′′2 +sjb
′′
3−ζ|ki ≤

(

(T − 1)b2 + (S − 1)b3
2d3

)mi
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and that
N−1
∑

i=0

ki =

N−1
∑

i=0

mi =
(K − 1)K

2
KL =

N

2
(K − 1),

then Hadamard’s inequality implies

|P | ≤ NN/2

(

(R − 1)b2 + (S − 1)b1
2d1

)(K−1)N/2(
(T − 1)b2 + (S − 1)b3

2d3

)(K−1)N/2

×
(

K−1
∏

i=0

ki!

)−1(K−1
∏

i=0

mi!

)−1

.

Recall that

b = (b′2η0)(b
′′
2ζ0)

(

K−1
∏

k=1

k!

)− 4
K(K−1)

, where η0 =
R− 1

2
+ β1

S − 1

2
, ζ0 =

T − 1

2
+ β3

S − 1

2
.

Thus we get,

|P | ≤ NN/2 b(K−1)N/2.

Collecting all the above estimates, we find

log |∆| ≥ −(D − 1)

(

log
(

NN/2
)

+
(K − 1)N

2
log b

)

−D
3
∑

i=1

(Vi − Ui) h(αi) +

3
∑

i=1

Vi log |αi|.

The inequalities Dh(αi) ≥ log |αi| ≥ 0 imply

Vi log |αi| − D(Vi − Ui) h(αi) ≥ (Mi +Gi) log |αi| − 2DGih(αi)

and the result follows. �

3.4. Synthesis. Under the hypotheses of the previous Propositions we get

−D − 1

2
N logN +

3
∑

i=1

(Mi +Gi) log |αi| − 2D
3
∑

i=1

Gih(αi) −
D − 1

2
(K − 1)N log b

≤
3
∑

i=1

Mi log |αi| + ρ

3
∑

i=1

Gi| logαi| + log(N !) +N log 2 +
N

2
(K − 1) log b

−
(

NKL

4
+

NKL

4(2K − 1)
− NK

3L
− N

2

)

log ρ+ 0.001.

Or, after some simplification,

−D − 1

2
N logN ≤

3
∑

i=1

Gi

(

ρ| logαi| − log |αi| + 2Dh(αi)
)

+ log(N !) +N log 2

+
K − 1

2
DN log b−

(

NKL

4
+

NKL

4(2K − 1)
− KN

3L
− N

2

)

log ρ+ 0.001.

This result implies (divide by N/2 and use N ! < 0.96N(N/e)N , true for N > 7) the following
proposition (already appearing in [2]):



A KIT ON LINEAR FORMS IN THREE LOGARITHMS 11

Proposition 3.7. With the previous notation, if K ≥ 3, L ≥ 5, ρ ≥ 2, and if ∆ 6= 0 then

Λ′ > ρ−KL

provided that
(

KL

2
+
L

4
− 1 − 2K

3L

)

log ρ ≥ (D + 1) logN + gL(a1R+ a2S + a3T )

+ D(K − 1) log b− 2 log(e/2),

where the ai are positive real numbers which satisfy

ai ≥ ρ| logαi| − log |αi| + 2D h(αi), i = 1, 2, 3.

3.5. A zero-lemma. To conclude we need to find conditions under which one of our determinants
∆ is non-zero, a so-called zero-lemma. We use a zero-lemma due to M. Laurent [8] which is already
used in [3] and improves [4] and provides an important improvement on the zero-lemma of [1]:

Proposition 3.8 (M. Laurent). Suppose that K, L are positive integers and that Σ1, Σ2 and Σ3

are finite subsets of C2 × C∗ containing the origin and such that

(i)

{

Card{λx1 + µx2 : (x1, x2, y) ∈ Σ1} > K, ∀(λ, µ) 6= (0, 0),

Card{y : (x1, x2, y) ∈ Σ1} > L,

and

(ii)

{

Card{(λx1 + µx2, y) : (x1, x2, y) ∈ Σ2} > 2KL, ∀(λ, µ) 6= (0, 0),

Card{(x1, x2) : (x1, x2, y) ∈ Σ2} > 2K2,

and also that

(iii) Card Σ3 > 6K2L.

Then, the only polynomial P ∈ C[X1, X2, Y ] with degXi
P ≤ K for i = 1, 2, and degY P ≤ L which

is zero on the set Σ1 + Σ2 + Σ3, is the zero polynomial.

We now study the above conditions in detail. For j = 1, 2, 3, we shall consider finite sets Σj

defined by

Σj =
{

(r + sβ1, t+ sβ3, α
r
1α

s
2α

t
3) : 0 ≤ r ≤ Rj , 0 ≤ s ≤ Sj , 0 ≤ t ≤ Tj

}

,

where Rj , Sj and Tj are positive integers and where

β1 =
b1
b2

=
b′1
b′2
, β3 =

b3
b2

=
b′′3
b′′2
.

Of course, this choice corresponds to the entries of the arithmetical matrices introduced previously.
We have to consider the multiplicative group G generated by the three algebraic numbers α1,

α2 and α3.

Concerning the above group, the following elementary lemma is important.

Lemma 3.9. Suppose that α1, α2 and α3 are non-zero complex numbers. Let b1, b2 and b3 be
non-zero rational integers. Let logαj be any determination of the logarithm of αj for j = 1, 2, 3
and put

Λ = b2 logα2 − b1 logα1 − b3 logα3.

Let

β1 = b1/b2, β3 = b3/b2.

Then the following conditions are equivalent:
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(a) The map

ψ : Z3 → C3, (r, s, t) 7→ (r + β1s, t+ β3s, α
r
1α

s
2α

t
3)

is not one-to-one (not injective).
(b) There exists some positive integer m such that

α2
mb2 = α1

mb1α3
mb3 .

(c) The number Λ belongs to the set iπQ.

Proof. Clearly, without loss of generality, we may assume that gcd(b1, b2, b3) = 1. Then we put

d1 = gcd(b1, b2), b1 = d1b
′
1, b2 = d1b

′
2, d3 = gcd(b3, b2), b3 = d3b

′′
3 , b2 = d3b

′′
2 .

Since b1, b2, b3 are coprime, we have gcd(d1, d3) = 1, thus

b2 = d1d3b̃2 (say), b′2 = d3b̃2, b′′2 = d1b̃2.

After these preliminaries, we prove the implication (a) ⇒ (b). Suppose that the map ψ is not
injective. Then there exist rational integers r, s, t, not all zero, such that

ψ(r, s, t) = (0, 0, 1).

That is,

r + sβ1 = 0, t+ sβ3 = 0, αr
1α

s
2α

t
3 = 1.

The first relation implies r = −kb′1 and s = kb′2 = kd3b̃2, for some rational integer k. The second

relation implies t = −lb′1 and s = lb′′2 = ld1b̃2, for some rational integer l. In particular, kd3 = ld1,
hence there exists m ∈ Z such that k = md1 and l = md3. Thus

r = −mb1, s = mb2, t = −mb3.
Clearly m 6= 0, and the third relation gives

α2
mb2 = α1

mb1α3
mb3 ,

as wanted.

Clearly, (b) implies (c).

To show that (c) implies (a), we suppose that (c) holds, i.e. that mΛ belongs to 2iπZ for some
positive rational integer m. Then it is clear that ψ(−mb1,mb2,−mb3) = (0, 0, 1), proving that the
map ψ is not injective. �

Corollary 3.10. If α1, α2 and α3 are non-zero complex numbers such that (for example) α1 and α2

are multiplicatively independent and α3 6= 1 is a root of unity, and let logαj be any determination
of the logarithm of αj for j = 1, 2, 3, then the numbers logα1, logα2 and logα3 are linearly
independent over the rationals. Indeed, if b1, b2 and b3 are non-zero rational integers then the
number b1 logα1 + b2 logα2 + b3 logα3 does not belong to the set iπQ.

Proof. Suppose that

Λ = b2 logα2 − b1 logα1 − b3 logα3 = 0

where b1, b2 and b3 are rational integers not all equal to zero. Then αb2
2 = αb1

1 α
b3
3 . Assume

that αd
3 = 1 with d > 0, then α2

db2 = α1
db1 , which implies b1 = b2 = 0 since α1 and α2 are

multiplicatively independent. Thus b3 6= 0 and Λ = b3 logα3 6= 0, contradiction. This proves the
first claim. The second claim is an obvious consequence of the first one. �
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We also assume that

(I1) Card
{

(x1, x2) : (x1, x2, y) ∈ Σ1

}

= (R1 + 1)(S1 + 1)(T1 + 1),

and

(I2) Card
{

(x1, x2) : (x1, x2, y) ∈ Σ2

}

= (R2 + 1)(S2 + 1)(T2 + 1).

Concerning the conditions (I1) and (I2), the following very elementary lemma is useful.

Lemma 3.11. Suppose that α1, α2 and α3 are non-zero complex numbers and that b1, b2 and b3
are positive rational integers which are coprime. Let R, S and T be positive integers and consider
the set

Σ̃ = {(r + sb1/b2, t+ sb3/b2) : 0 ≤ r ≤ R, 0 ≤ s ≤ S, 0 ≤ t ≤ T }.
Then

CardΣ̃ = (R + 1)(S + 1)(T + 1)

unless

b1 ≤ R and b2 ≤ S and b3 ≤ T.

Proof. Let

β1 = b1/b2, β3 = b3/b2.

As above, we put

d1 = gcd(b1, b2), b1 = d1b
′
1, b2 = d1b

′
2, d3 = gcd(b3, b2), b3 = d3b

′′
3 , b2 = d3b

′′
2 .

Since b1, b2, b3 are coprime, we have gcd(d1, d3) = 1, thus

b2 = d1d3b̃2 (say), b′2 = d3b̃2, b′′2 = d1b̃2.

After these preliminaries, we prove the result. Suppose that the map

ψ : Z3 → C2, (r, s, t) 7→ (r + β1s, t+ β3s)

is not injective. Then there exist two different triples of rational integers (r, s, t) and (r′, s′, t′),
with 0 ≤ r, r′ ≤ R, 0 ≤ s, s′ ≤ S and 0 ≤ t, t′ ≤ T such that

ψ(r, s, t) = ψ(r′, s′, t′).

That is,

(r − r′) + (s− s′)β1 = 0 and (t− t′) + (s− s′)β3 = 0.

The first relation implies r − r′ = −kb′1 and s − s′ = kb′2 = kd3b̃2, for some rational integer k.

The second relation implies t− t′ = −lb′′1 and s− s′ = lb′′2 = ld1b̃2, for some rational integer l. In
particular, kd3 = ld1, hence there exists m ∈ Z such that k = md1 and l = md3. Thus

r − r′ = −mb1, s− s′ = mb2, t− t′ = −mb3
and the conclusion follows since clearly m is non-zero. �

Because of the Lemma 3.9, we see that

Λ 6∈ iπQ =⇒ Card Σj = (Rj + 1)(Sj + 1)(Tj + 1), j = 1, 2, 3.

The conditions of the zero-lemma, Proposition 3.8, are the following:

(i) The first condition is divided into two subconditions, the first subcondition is

(i.1) Card
{

λx1 + µx2 : (x1, x2, y) ∈ Σ1

}

> K, ∀(λ, µ) 6= (0, 0).

This is the most technical of the above conditions, we study it in detail later.
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The second subcondition is

(i.2) Card
{

y : (x1, x2, y) ∈ Σ1

}

> L.

(ii) The second condition of the zero-lemma is also divided into two subconditions, the first being

(ii.1) Card
{

(λx1 + µx2, y) : (x1, x2, y) ∈ Σ2

}

> 2KL, ∀(λ, µ) 6= (0, 0).

We replace it by the stronger condition

Card
{

y : (x1, x2, y) ∈ Σ2

}

> 2KL.

The second subcondition of condition (ii) of the zero-lemma is

(ii.2) Card
{

(x1, x2) : (x1, x2, y) ∈ Σ2

}

> 2K2.

By (I2) this condition is equivalent to

(C.ii.2) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2.

(iii) There is just one condition, namely

Card Σ3 > 6KL2.

When Λ does not belong to the set iπQ, this is equivalent to

(C.iii) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L.

Now we have ‘translated’ all the conditions of Proposition 3.8, except the subcondition (i.1).
We come back to this situation in the following Lemma which brings some extra information to
Proposition 3.1.1 of [1], or also [12] Ex 6.4, p. 184.

Lemma 3.12. Let A, B and C be non-zero rational integers with gcd(A,B,C) = 1 and let D be
an integer. Define

Π =
{

(x, y, z) ∈ C3 : Ax+By + Cz = D
}

and consider the set

Σ =
{

(x, y, z) ∈ Z3 : 0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z
}

,

where X, Y and Z are positive integers. Let

M = Card
{

(x, y, z) ∈ Σ : Ax +By + Cz = D
}

.

Then

M ≤
(

1 +

⌊

X

α

⌋)(

1 +

⌊

Y

|C|/α

⌋)

and M ≤
(

1 +

⌊

X

α

⌋)(

1 +

⌊

Z

|B|/α

⌋)

,

where

α = gcd(B,C).

If we suppose that

M ≥ max
{

X + Y + 1, Y + Z + 1, Z +X + 1
}

then

|A| ≤ (Y + 1)(Z + 1)

M − max{Y, Z} , |B| ≤ (X + 1)(Z + 1)

M − max{X,Z} , |C| ≤ (X + 1)(Y + 1)

M − max{X,Y } .
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Proof. If the image (by the map (x, y, z) 7→ Ax+By+Cz) of a point (x, y, z) ∈ Z3 belongs to the
plane Π then

Ax ≡ D (mod α),

where A and α are coprime since gcd(A,B,C) = 1. This shows that the number of such x which
satisfy 0 ≤ x ≤ X is

≤ 1 +

⌊

X

α

⌋

.

To simplify the notation we suppose for a while that A, B and C are positive. Let now x be fixed,
with 0 ≤ x ≤ X , and such that the images of two points (x, y, z) and (x, y′, z′) belong to Π. Then

B(y′ − y) = C(z − z′),

where we suppose (as we may) that y is minimal (then y′ > y). Hence there exists k ∈ N such that

y′ − y = k(C/α) and z − z′ = k(B/α).

It follows that, for x fixed, the number of (x, y, z) ∈ Σ whose image belong to Π is

≤ 1 +

⌊

Y

C/α

⌋

.

Hence

M ≤
(

1 +

⌊

X

α

⌋)(

1 +

⌊

Y

C/α

⌋)

,

which proves the first inequality of the Lemma. The proof of the second one is the same (looking
at the coordinate z).

For ξ ≥ 1 put

f(ξ) =

(

1 +
X

ξ

)(

1 +
ξY

C

)

,

then

M ≤ f(α).

Suppose now

M > max
{

X + 1, Y + 1, Z + 1
}

.

Put

α1 = max{1, C/Y }, α2 = min{C,X}.
• If C > Y and 1 ≤ α < C/Y then we get M ≤ X + 1, contradiction, thus

C > Y =⇒ α ≥ α1 and f(α1) = 2

(

1 +
XY

C

)

.

• If C > X and α > X then we get M ≤ Y + 1, contradiction, thus

C > X =⇒ α ≤ α2 and f(α2) = 2

(

1 +
XY

C

)

.

• If C ≤ min{X,Y } then α1 = 1 and α2 = C and

f(α1) = (X + 1)

(

1 +
Y

C

)

, f(α2) =

(

1 +
X

C

)

(Y + 1).
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It is easy to check that f ′′ is positive and, from the previous study, it follows that

M ≤ max
{

f(α1), f(α2)
}

.

Considering the different cases C > max{X,Y }, X ≤ C < Y , Y ≤ C < X and C ≤ min{X,Y } we
get always

M ≤ max
{

(X + 1)
(

1 + Y
C

)

,
(

1 + X
C

)

(Y + 1)
}

=











(X + 1)
(

1 + Y
C

)

, if X ≥ Y ,

(

1 + X
C

)

(Y + 1), otherwise.

If X ≥ Y then

M ≤ (X + 1)

(

1 +
Y

C

)

,

which implies

M − (X + 1) ≤ Y (X + 1)

C
, hence C ≤ Y (X + 1)

M − (X + 1)
,

and the hypothesis M ≥ X + Y + 1 leads to

C ≤ (X + 1)(Y + 1)

M −X
,

otherwise (i.e., if X < Y ) we get

C ≤ (X + 1)(Y + 1)

M − Y
.

Finally, we always have

|C| ≤ (X + 1)(Y + 1)

M − max{X,Y } .

In the same way, considering now the z–coordinate, we get

|B| ≤ (X + 1)(Z + 1)

M − max{X,Z} .

Then, considering y fixed, a similar argument gives

|A| ≤ (Y + 1)(Z + 1)

M − max{Y, Z} .

�

Corollary 3.13. Let B and C be non-zero rational integers with gcd(B,C) = 1 and let D be an
integer. Define the plane Π (with A = 0), i.e.

Π =
{

(x, y, z) ∈ C3 : By + Cz = D
}

,

and Σ and M as in the above Lemma. Then

M ≤ (X + 1)

(

1 +

⌊

Y

|C|

⌋)

and M ≤ (X + 1)

(

1 +

⌊

Z

|B|

⌋)

.

Moreover, if we suppose that

M ≥ max{X + Y + 1, X + Z + 1}
then

|B| ≤ (X + 1)(Z + 1)

M −X
, |C| ≤ (X + 1)(Y + 1)

M −X
.

Proof. The proof is similar to that of the Lemma, but simpler. We omit the details. �
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Lemma 3.14. Let R1, S1 and T1 be positive integers and consider the set

Σ̃1 =
{

(x1, x2) = (r + sβ1, t+ sβ3) : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1

}

,

where β1 = b1/b2 and β3 = b3/b2 with b1, b2 and b3 coprime non-zero rational integers, and assume
that

Card Σ̃1 = (R1 + 1)(S1 + 1)(T1 + 1).

Put

V =
(

(R1 + 1)(S1 + 1)(T1 + 1)
)1/2

.

Let (λ, µ) ∈ C2 \ {(0, 0)} and let c be a complex number. Let χ be a positive real number. Then,

for any c, the number M of elements (x1, x2) ∈ Σ̃1 such that

λx1 + µx2 = c

satisfies

(1) M ≤ max
{

R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV
}

=: M,

— except if, either there exist two non-zero rational integers r0 and s0 such that

r0b2 = s0b1

with

|r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)

M− T1
,

or there exist rational integers r1, s1, t1 and t2, with r1s1 6= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

0 < |r1s1| ≤ δ · (R1 + 1)(S1 + 1)

M− max{R1, S1}
, |s1t1| ≤ δ · (S1 + 1)(T1 + 1)

M− max{S1, T1}
,

and |r1t2| ≤ δ · (R1 + 1)(T1 + 1)

M− max{R1, T1}
,

where

δ = gcd(r1, s1).

Moreover when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.
If the previous upper bound (1) for M holds then, for all (λ, µ) ∈ C2 \ {(0, 0)}, we have

Card
{

λx1 + µx2 : (x1, x2) ∈ Σ̃1

}

≥ (R1 + 1)(S1 + 1)(T1 + 1)

max
{

R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV
} .

Proof. Let

E1 =
{

(r, s, t) ∈ Z3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1

}

.

Recall the notation

x1 = r + β1s, x2 = t+ β3s, β1 =
b1
b2
, β3 =

b3
b2
.

For (λ, µ) ∈ C2 \ {(0, 0)}, we consider the cardinality

N = Card
{

λx1 + µx2 : (x1, x2) ∈ Σ̃1

}

.

We put

M = max
c∈C

Card
{

(x1, x2) ∈ Σ̃1 : λx1 + µx2 = c
}
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and
Πc =

{

(z1, z2) ∈ C2 : λz1 + µz2 = c
}

.

We clearly have

N ≥ Card Σ̃1/M,

so that the last claim of the Lemma is proved and we may also suppose that (1) does not hold.

Consider a complex number c such that the number of points (x1, x2) ∈ Σ̃1 for which λx1 +µx2

belongs to Πc is maximal (and so equal to M). We distinguish the following cases.

• If µ = 0: Apply the previous Corollary with (x, y, z) 7→ (r, s, t), (X,Y, Z) 7→ (R1, S1, T1),
(A,B,C) 7→ (b2/d1, b1/d1, 0), where

d1 = gcd(b1, b2),

and (b2/d1, b1/d1) 7→ (r0, s0). Then we get the wanted assertion (the ‘either’ case).

Now we assume µ 6= 0 and, to simplify the notation we take µ = 1.
• If λ = 0: Now, we apply the previous Corollary with (A,B,C) 7→ (0, b3/d3, b2/d3), where

d3 = gcd(b2, b3),

and (b2/d3, b3/d3) 7→ (s1, t2). Then we get the asserted relation

(t1b1 + r1b3)s1 = r1b2t2

with r1 = 1 and t1 = 0, and the asserted bounds on r1, s1, t1 and t2.
• If λb1 + b3 = 0: In this case (A,B,C) 7→ (−b3/d, 0, b1/d), where

d = gcd(b1, b3),

and (b1/d,−b3/d) 7→ (r1, t1). Then we get the asserted relation

(t1b1 + r1b3)s1 = r1b2t2

with s1 = 1 and t2 = 0, and the asserted bounds on r1, s1, t1 and t2.
• If λµ(λb1 + b3) 6= 0: Since M > S1 + 1, there exist two distinct triples (r, s0, t) and

(r′, s0, t
′) ∈ E such that

λ(r + β1s0) + (t+ β3s0) = λ(r′ + β1s0) + (t′ + β3s0),

which gives λ(r′−r) = t−t′, where we suppose (as we may) that r is minimal (then r′ > r)
and also that r′ − r > 0 is minimal. Put r1 = r′ − r and t1 = t− t′, then

λ = t1/r1.

Since M > R1 + 1, there exist two distinct triples (r0, s, t) and (r0, s
′, t′) ∈ E such that

t1b2r0 + (t1b1 + r1b3)s+ r1b2t = t1b2r0 + (t1b1 + r1b3)s
′ + r1b2t

′,

which gives now a relation of the form

(t1b1 + r1b3)s1 = r1b2t2, with t1t2 6= 0,

for which we may suppose that

gcd(r1, t1) = gcd(s1, t2) = 1.

Now we are ready to apply the above Lemma 3.12 with

(A,B,C) 7→ (t1s1/δ, r1t2/δ, r1s1/δ),

where
δ = gcd(t1s1, r1t2, r1s1),

and we get the conclusion, except that we have to prove that δ = gcd(r1, s1).
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Suppose that p is a prime divisor of δ, then p | r1s1. If p ∤ r1 then p | s1 and p ∤ t1, thus
p ∤ r1t1: contradiction. If p ∤ s1 then p | r1 and p ∤ t1, thus p ∤ s1t2: contradiction. Hence,
p | r1 and p | s1 and p ∤ t1t2. And now it is easy to conclude that

δ = gcd(r1, s1).

This ends the proof of the Lemma. �

Remark. Before leaving this Subsection, it is important to notice that the conclusion of the zero-
lemma, namely ‘. . . the only polynomial P ∈ C[X1, X2, Y ] with deg

Xi
P ≤ K for i = 1, 2, and

degY P ≤ L which is zero on the set Σ1+Σ2+Σ3, is the zero polynomial’ applied to the interpolation
matrix considered above implies that this interpolation matrix is of maximal rank, which means
that there exists a determinant ∆ as above which is nonzero.

3.6. Statement of the main result: a lower bound for the linear form. If we gather the
results obtained in the previous subsections, we get the following theorem.

Theorem 2. We consider three non-zero algebraic numbers α1, α2 and α3, which are either all
real and > 1 or all complex of modulus one and all 6= 1 . We also consider three positive rational
integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary. We assume that

0 < |Λ| < 2π/w,

where w is the maximal order of a root of unity belonging to the number field Q(α1, α2, α3)
2. And

we assume also that
b2| logα2| = b1 |logα1| + b3 |logα3| ± |Λ|.

We put
d1 = gcd(b1, b2), d3 = gcd(b3, b2), b2 = d1b

′
2 = d3b

′′
2 .

Let K, L, R, R1, R2, R3, S, S1, S2, S3, T , T1, T2, T3 be positive rational integers, with

K ≥ 3, L ≥ 5, R > R1 +R2 +R3, S > S1 + S2 + S3, T > T1 + T2 + T3.

Let ρ ≥ 2 be a real number. Assume first that
(

KL

2
+
L

4
− 1 − 2K

3L

)

log ρ ≥ (D + 1) logN + gL(a1R+ a2S + a3T )

+ D(K − 1) log b− 2 log(e/2),

(2)

where N = K2L, D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R], e = exp(1),

g =
1

4
− N

12RST
, b = (b′2η0)(b

′′
2ζ0)

(

K−1
∏

k=1

k!

)− 4
K(K−1)

,

with

η0 =
R− 1

2
+

(S − 1)b1
2b2

, ζ0 =
T − 1

2
+

(S − 1)b3
2b2

,

and
ai ≥ ρ|logαi| − log|αi| + 2D h(αi), i = 1, 2, 3.

2 If D is the degree of this number field then ϕ(w) ≤ D, where ϕ is the Euler totient function. It is easy to prove
that ϕ(w) ≥ (w/2)0.63, which implies w < 2D1.6. Hence the previous condition on Λ is satisfied if 0 < |Λ| ≤ πD−1.6

and then Λ 6∈ iπQ. Trivially, this last condition is also satisfied when Λ is real and non-zero.
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Put

V =
√

(R1 + 1)(S1 + 1)(T1 + 1).

If, for some positive real number χ,

(i) (R1 + 1)(S1 + 1)(T1 + 1) > K · max
{

R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV
}

,

(ii) Card
{

αr
1α

s
2α

t
3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1

}

> L,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2,

(iv) Card
{

αr
1α

s
2α

t
3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2

}

> 2KL, and

(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L,

then either

Λ′ > ρ−KL,

where

Λ′ = |Λ| · LSe
LS|Λ|/(2b2)

2|b2|
,

or at least one of the following conditions (C1), (C2), (C3) hold:

(C1) |b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1,

(C2) |b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2,

(C3) either there exist two non-zero rational integers r0 and s0 such that

r0b2 = s0b1

with

|r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)

M− T1
,

where

M = max
{

R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV
}

,

or there exist rational integers r1, s1, t1 and t2, with r1s1 6= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ δ · (R1 + 1)(S1 + 1)

M− max{R1, S1}
, |s1t1| ≤ δ · (S1 + 1)(T1 + 1)

M− max{S1, T1}
, |r1t2| ≤ δ · (R1 + 1)(T1 + 1)

M− max{R1, T1}
,

where

δ = gcd(r1, s1).

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

Proof. The assumption 0 < |Λ| < 2π/w implies that Λ 6∈ iπQ, by Lemma 3.9, the hypothesis (v)
of the Theorem implies condition (iii) of the zero-lemma. By Lemma 3.11, we get the conditions
(C1) and (C2) if, respectively, the condition (i.1) or (i.2) of the zero-lemma are not satisifed. This
finishes the proof. �

Warning . — In the above theorem, the roles of (α1, b1) and (α3, b3) are not completely symmetric.
Even if we do not make the hypothesis a1 ≥ a3 (and, of course, do not use it), in practice it is
sometimes better to choose the numerotation such that a1 ≥ a3, but one has also to deal with
(C3) which is also non-symmetrical. . .
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4. An estimate for linear forms in two logarithms

We need to use linear forms in two logarithms in a very special situation (related to condition
(C3) above) and it is difficult to find an easy-to-use result for such a case. This is the reason why
we write a suitable application of [9] in this Section.

Let α1, α2 be two non-zero algebraic numbers, and let logα1 and logα2 be any determinations
of their logarithms. We consider here the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Without loss of generality, we suppose that the absolute
values |α1| and |α2| are ≥ 1. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R].

4.1. Statement of the main result of [9]. The main result of [9], which we recall for the
convenience of the reader, is:

Theorem 3. Let K be an integer ≥ 3, L an integer ≥ 2, R1, R2, S1, S2 positive integers. Let ρ
be a real number > 1. Put R = R1 +R2 − 1, S = S1 + S2 − 1, N = KL,

g =
1

4
− N

12RS
, b =

(

(R− 1)b2 + (S − 1)b1
)

2

(

K−1
∏

k=1

k!

)−2/(K2−K)

.

Let a1, a2 be positive real numbers such that

ai ≥ ρ | logαi| − log |αi| + 2D h(αi),

for i = 1, 2. Suppose that:

(I) Card
{

αr
1 α

s
2 ; 0 ≤ r < R1, 0 ≤ s < S1

}

≥ L,

and

(II) Card
{

rb2 + sb1 ; 0 ≤ r < R2, 0 ≤ s < S2

}

> (K − 1)L

and also that

(III) K(L− 1) log ρ− (D + 1) logN −D(K − 1) log b − gL (Ra1 + Sa2) > 0.

Then,

|Λ′| ≥ ρ−KL+(1/2),

where

Λ′ = Λ · max

{

LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}

.
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4.2. A special estimate for linear forms in two logarithms. In the case when the number
α1 is not a root of unity we shall deduce the following result from Theorem 3, which is a variant
of Théorème 2 of [9], close to Theorem 1.5 of [11].

Proposition 4.1. Consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Suppose that α1 is not a root of unity. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R].

Let a1, a2, h, k be real positive numbers, and ρ a real number > 1. Put λ = log ρ and suppose that

(4) h ≥ max

{

1, 1.5λ, D
(

log
( b1
a2

+
b2
a1

)

+ logλ+ f(K)

)

+ ε

}

, ε = 0.0262,

(5) ai ≥ max
{

4, 2.7λ, ρ | logαi| − log |αi| + 2D h(αi)
}

, (i = 1, 2),

(6) a1a2 ≥ 20λ2,

where

f(x) = log

(

1 +
√
x− 1

)√
x

x− 1
+

log x

6x(x − 1)
+

3

2
+ log

3

4
+

log x
x−1

x− 1

and
L = 2 + ⌊2h/λ⌋ ≥ 5, K = 1 + ⌊kLa1a2⌋.

Then we have the lower bound

log |Λ| ≥ −λkL2a1a2 − max
{

λ(L − 0.5) + log
(

L2(1 +
√
k)a2

)

,D log 2
}

,

provided that k satisfies k ≤ 2.2λ−2 and

kU − V
√
k −W ≥ 0,

with

U = (L− 1)λ− h, V = L/3, W =
1

4

(

L

a2
+

1

a1

)

.

4.3. Estimates for the parameter k. Before proceeding to the proof of the above Proposition,
we need to compute upper and lower bounds for the parameter k.

Put ∆ = V 2 + 4UW , the condition on k implies k ≥ k0, where

√

k0 =
V +

√
∆

2U
, k0 =

V 2 + ∆ + 2V
√

∆

4U2
=

V 2

2U2
+
W

U
+

V

2U

√

V 2

U2
+

4W

U
≥ V 2

U2
+
W

U
,

with

8

9λ
≥ 1

3

λ−1(2h+ λ)

(2h+ λ) − (h+ λ)
≥ V

U
=

1

3

L

λL− (h+ λ)
≥ 1

3

λ−12(h+ λ)

2(h+ λ) − (h+ λ)
=

2

3λ
,

since ∂(V/U)/∂L < 0 and 1 + 2h/λ ≤ L ≤ 2(1 + h/λ), where h ≥ 1.5λ. Moreover W satisfies

W

U
=

1

4

(

L

a2
+

1

a1

)

1

λL − λ− h
≥ 1

4a1(λL− λ− h)
+

1

2a2λ
,

and also

W

U
≤ 1

4

(

1 + 2h/λ

a2
+

1

a1

)

1

h
=

2

a2λ
+

1
a1

+ 1
a2

4h
≤
{

1
2λ + 1

8×1.5λ , if λ ≤ 1,
2

2.7λ2 + 2
2.7×6λ2 , if λ ≥ 1,
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because of our hypotheses on a1, a2 and h. Thus we always have

W

U
≤ 7

8.1λ2
.

It is easy to check that the previous inequalities imply
√

k0 ≤ 1.48

λ
.

Hence k0 < 2.2λ−2 and we can always choose k satisfying

4

9λ2
≤ k ≤ 2.2

λ2
,

and then

kLa1a2 ≥
(

4

9λ2
+

L
a2

+ 1
a1

4(λL− λ− h)

)

La1a2

so that

kLa1a2 ≥ 4a1a2L

9λ2
+
a1L

2λ
+
a2

2λ
= ψ(L),

say.
Clearly ψ increases with L and it is easy to check that ψ(5) > 54 (use the fact that a1a2 ≥ 20λ2).

4.4. Proof of the Proposition. Now we are ready to prove Proposition 4.1.

We suppose that α1 is not a root of unity, and we apply Theorem 3 with a suitable choice of the
parameters. The proof follows the proof of Théorème 2 of [9]. For the convenience of the reader
we keep the numerotation of the formulas of [9], except that formula (5.i) in [9] is here formula
(4.i), moreover when there is some change the new formula is denoted by (4.i)′.

Put
L = 2 + ⌊2h/λ⌋, K = 1 + ⌊kLa1a2⌋,

thus L ≥ 5 and K ≥ 55,

(4.1)′ R1 = L, S1 = 1, R2 = 1 + ⌊
√
kLa2⌋, S2 = 1 + ⌊

√
kLa1⌋.

By Liouville inequality,

log |Λ| ≥ −D log 2 −D b1h(α1) −D b2h(α2) ≥ −D log 2 − 1
2 (b1a1 + b2a2) = −D log 2 − 1

2b
′a1a2,

where

b′ =
b1
a2

+
b2
a1
.

We consider two cases:
b′ ≤ 2λkL2, or b′ > 2λkL2.

In the first case, Liouville inequality implies

log |Λ| ≥ −D log 2 − λkL2a1a2

and Prop. 4.1 holds.

Suppose now that b′ > 2λkL2. Then max{b1/a2, b2/a1} > λkL2, hence

b1 > λ
√
kL×

√
kLa2 or b2 > λ

√
kL×

√
kLa1.

Since k ≥ (4/9)λ−2 and L ≥ 2, we have λ
√
kL > 1, which implies

b1 ≥ R2 or b2 ≥ S2,

hence
Card{rb2 + sb1 ; 0 ≤ r < R2, 0 ≤ s < S2} = R2S2 > (K − 1)L,
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by the choice of R2 and S2. Moreover, since α1 is not a root of unity, we have

Card{αr
1α

s
2 ; 0 ≤ r < R1, 0 ≤ s < S1} = R1 = L.

This ends the verification of conditions (I) and (II) of Theorem 3.

Remark. The condition b′ > 2kλL2 implies

λL

D ≥ 2h

D ≥ 2
(

log(2kλ2L2) + f(K)
)

≥ 2

(

log(8L2/9) +
3

2
+ log

3

4

)

> 8.626,

using the above estimates on k and L ≥ 5.

Suppose that (III) holds, then Theorem 3 implies

log |Λ′| ≥ −KLλ+ λ/2,

where

Λ′ = Λ · max

{

LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}

.

Notice that

R = R1 +R2 − 1 ≤ L+
√
kLa2 and S = S1 + S2 − 1 ≤ 1 +

√
kLa1.

This shows that

max{LR,LS} ≤ L2(1 +
√
ka2) < L2(1 + 1.5λ−1a2) = L2

(

1

a2
+

1.5

λ

)

a2 <
a1a2L

2

2λ
.

As we may, suppose that log |Λ| ≤ −λkL2a1a2, then

max

{

LR|Λ|
2b2

,
LS|Λ|
2b1

}

≤ (1 +
√
ka2)L

2 |Λ|
2

≤ L2a1a2

4λ
e−4L2a1a2/(9λ),

since (4/9)λ−2 ≤ k ≤ 2.2λ−2 and L2a1a2/λ > 100 (indeed, we have L ≥ 5, a1 ≥ 4 and a2 ≥ 2.7λ,
hence L2a1a2/λ ≥ 270), we get

max

{

LR|Λ|
2b2

,
LS|Λ|
2b1

}

< 10−10.

Thus,

|Λ′| ≤ |Λ| × L2(1 +
√
ka2),

which implies

log |Λ| ≥ −λkL2a1a2 − λ(L− 0.5) − log
(

L2(1 +
√
ka2)

)

and Prop. 4.1 follows.

Now we have to verify that condition (III) is satisfied: we have to prove that

Φ0 = K(L− 1) log ρ− (D + 1) logN −D(K − 1) log b− gL (Ra1 + Sa2) > 0,

when b′ > 2λkL2. Notice that the condition b′ > 2λkL2 implies

h ≥ D
(

log(2λ2kL2) + f(K)
)

≥ D
(

log
(8L2

9

)

+
3

2
+ log

3

4

)

> 4.313D.

We replace this condition by the two conditions Φ > 0, Θ > 0, where Φ0 ≥ Φ + Θ. The term
Φ is the main one, Θ is a sum of residual terms. As indicated in [9], the condition Φ > 0 leads to
the choice of the parameters (4.1)′, whereas Θ > 0 is a secondary condition, which leads to assume
some technical hypotheses on h and a1, a2.
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As in [9] (Lemme 8) we get

(4.17) log b ≤ log

(

b1
a2

+
b2
a1

)

+ log λ− log (2πK/
√
e)

K − 1
+ f(K) ≤ h

D − ε

D − log (2πK/
√
e)

K − 1
,

which follows from the condition

h ≥ D
(

log b′ + logλ+ f(K)
)

+ ε.

Here we have

gL(Ra1 + Sa2) ≤
(

1

4
− KL

12RS

)

L(Ra1 + Sa2) =
L(Ra1 + Sa2)

4
− KL2

12

(a1

S
+
a2

R

)

,

which implies

(4.18) gL(Ra1 + Sa2) ≤
L

4
(a1L+ a2 + 2L

√
ka1a2) −

KL

6
√
k
≤ L

4
(a1L+ a2) +

√
kL2a1a2

3
.

Put

(4.21) Φ = K(L− 1)λ−Kh−
√
kL2a1a2

3
− L(a1L+ a2)

4

and

(4.22) Θ = ε(K − 1) + h−D log
(√
eL/(2π)

)

− log(KL).

By (4.17) and (4.18) we see that Φ0 ≥ Φ + Θ, where kLa1a2 < K ≤ 1 + kLa1a2, hence

Φ

La1a2
> kU − V

√
k −W,

where

U = (L − 1)λ− h, V =
L

3
, W =

1

4

(

L

a2
+

1

a1

)

.

This proves that Φ > 0 provided that kU − V
√
k −W ≥ 0.

We have

Θ ≥ h− log(kL2a1a2) − D log
(√
eL/(2π)

)

+ ε(kLa1a2 − 1).

To prove that Θ ≥ 0, rewrite (4.22) as Θ = Θ0(D − 1) + Θ1, where

Θ0 = log(λb′) + f(K) − logL+ log

(

2π√
e

)

,

and

Θ1 = εK − logK − 2 logL+ log

(

2π√
e

)

+ log(λb′) + f(K).

We conclude by proving that Θ0 and Θ1 are both positive.
Since b′ > 2kλL2 and k ≥ 4/(9λ2), we have

log(λb′) > log(2kλ2L2) > log(8/9) + 2 logL,

and this implies that

Θ0 > log(8L/9) + f(K) + log(2π/
√
e) > log

8L

9
+

3

2
+ log

3

4
+ log

2π√
e

is positive. This implies also that

Θ1 ≥ εK − logK + log
8

9
+ log

2π√
e

+ f(K).
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Thus,

Θ1 ≥ 0.0262K − logK + log

(

16π

9
√
e

)

+ f(K)

and an elementary numerical verification shows that Θ1 is positive for K ≥ 55, which holds as we
saw in the previous Subsection.

Remark. We have proved that, under the hypotheses of our result, we can choose ε = 0.0262, more
generally the condition on ε is

εK − logK + log

(

16π

9
√
e

)

+ f(K) ≥ 0

for all K ≥ K0, where K0 = ⌈k0La1a2⌉.

5. How to use Theorem 2

5.1. About the multiplicative group G. In practical examples, generally the following condi-
tion holds:

(M)

{

either α1, α2 and α3 are multiplicatively independent, or

two multiplicatively independent, the third a root of unity 6= 1.

We use now hypothesis (M), which is clearly stronger than the standard hypothesis ‘the multi-
plicative group G is of rank at least two’, and we also notice that the order in C∗ of a root of unity
6= 1 is at least equal to 2, thus the condition (i.2) of Section 3 is satisfied if

(C.i.2)
2(R1 + 1)(S1 + 1)(T1 + 1)

W1 + 1
> L,

where W1 is defined by

W1 =



















R1, if α1 is a root of unity,

S1, if α2 is a root of unity,

T1, if α3 is a root of unity,

1, otherwise.

But see also the remark after (C.ii.1) below.
Then, by the study of the case (i.2), we see that, to satisfy the condition (ii.12) of Section 3 it

is enough to suppose that (when condition (M) holds)

(C.ii.1)
(R2 + 1)(S2 + 1)(T2 + 1)

W2 + 1
> KL,

where W2 is defined by

W2 =



















R2, if α1 is a root of unity,

S2, if α2 is a root of unity,

T2, if α3 is a root of unity,

1, otherwise.

Remark. When (for example) α3 is a root of unity of order ν, condition (C.ii.1) above can be
replaced by

(C′.ii.1) ν (R2 + 1)(S2 + 1) > 2KL,

(provided T2 ≥ ν − 1) and condition (C.i.2) can be replaced by

(C′.i.2) ν (R1 + 1)(S1 + 1) > L
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(provided T1 ≥ ν − 1).

Remark. Under a weaker condition one can obtain similar (but slightly weaker) conclusions, see [12],
Ex. 7.5, p. 229.

5.2. The choice of parameters. Here we assume that condition (M) holds, then by the above
Corollary 3.10 we know that Λ 6∈ iπQ.

To apply Theorem 2, we consider an integer L ≥ 5 and real parameters m > 0, ρ ≥ 2 (then one
can define the ai’s) and we put

K = ⌊mLa1a2a3⌋.
To simplify the presentation, even if we do not really need these conditions, we also assume

m ≥ 1 and Ω := a1a2a3 ≥ 2.

We define

R1 = ⌊c1a2a3⌋, S1 = ⌊c1a1a3⌋, T1 = ⌊c1a1a2⌋,
R2 = ⌊c2a2a3⌋, S2 = ⌊c2a1a3⌋, T2 = ⌊c2a1a2⌋,
R3 = ⌊c3a2a3⌋, S3 = ⌊c3a1a3⌋, T3 = ⌊c3a1a2⌋,

where the parameters c1, c2 and c3 will be chosen so that the conditions (i) up to (v) of the
Theorem are satisfied.

Clearly, condition (i) is satisfied if
(

c31(a1a2a3)
2
)1/2 ≥ χma1a2a3L and c21 · Ωa ≥ 2mL, where a = min{a1, a2, a3}.

Condition (ii) is true when 2c21a1a2a3 · min{a1, a2, a3} ≥ L. Thus, since we suppose m ≥ 1 and
also Ω ≥ 2, we can take

c1 = max

{

(χmL)2/3,

(

mL

a

)1/2
}

.

To satisfy (iii) and (iv) we can take

c2 = max
{

21/3(mL)2/3,
√

m/aL
}

.

Finally, since Λ 6∈ iπQ, by Lemma 3.9 condition (v) holds for

c3 = (6m2)1/3 L.

Remark. When α1, α2, α3 are multiplicatively independent then it is enough to take c1 and c3 as
above and

c2 = 21/3(mL)2/3.

Then we have to verify the condition (2) of Theorem 2. When this inequality holds, one obtains

|Λ′| > ρ−KL,

and we get

log |Λ| > −KL log ρ− log (SL),

except maybe if at least one of the conditions (C1), (C2) or (C3) holds.

It may be useful to notice that, because of the choice of these parameters, the previous lower
bound is essentially of the form

log |Λ| ≥ −CL2a1a2a3,



28 MAURICE MIGNOTTE

where C is some (rather large) constant. One may verify that condition (2) forces to choose L of
the order of magnitude of D log b, so that we have (to simplify)

log |Λ| ≥ −CD2a1a2a3 log2 B, where B = max{b1, b2, b3},
in the non degenerate case. We give a more detailed study below.

Remark. In many concrete applications (this is the case for the examples at the end of the paper)
one knows only some lower bound, say h0, for the height hi of αi, one of the algebraic numbers α1,
α2 or α3. To apply Theorem 2 we have to verify that condition (2) holds, and there is a difficulty.
But first notice that this condition is Φ = Φ(K) ≥ 0 where

Φ(K) = AK −B − C logK − E
logK

K
− F

K
,

with positive constants A, B, . . . , F , when the factor of g is expessed in terms of K using the
definitions of these parameters and of R, S, T (i.e., Ra1+Sa2+Ta3 ≈ 3cm2/3ΩL andK = ⌊mΩL⌋).
Thus the derivative Φ′(K) satisfies

KΦ′(K) = AK − C − E

K
+ E

logK

K
+
F

K
.

This short computation shows that if Φ(K0) is positive for some integer K0 ≥ 3 then it is positive
for any integer K ≥ K0, when A, B, . . . , E and F are fixed (this means in particular that m and
L are fixed). Notice also that the term b appearing in Theorem 2 is a decreasing function of ai.

3

The conjonction of these two remarks shows that we can study condition (2) with the value
ai = a0 (corresponding to h0) and with L fixed and the other parameters m, c1, c2, c3, R1, . . . ,
T3, K = K0 chosen as above with ai = a0. When Φ(K0) is positive, we also have Φ(K) > 0 for
the preceding values of L, m, c1, c2, c3 and any ai ≥ a0.

Now consider the conditions (C1), (C2) and (C3). For conditions (C1) and (C2) we have in
particular

(C1) or (C2) =⇒ b2 ≤ max{S1, S2}.
Condition (C3) will be studied in detail in the next subsection. Put

r1 = δr′1, s1 = δs′1,

where

δ = gcd(r1, s1).

We just notice, for the second alternative, namely

(t1b1 + r1b3)s1 = r1b2t2, with gcd(r1, t1) = gcd(s1, t2) = 1,

that r′1 | b1, say b1 = r′1b
′
1, hence

(t1b
′
1 + δb3)s

′
1 = b2t2, with b1 = r1b

′
1.

If t2 6= 0 this shows that s′1 | b2, say b2 = s′1b
′
2, so that

t1b
′
1 + δb3 = b′2t2, with b1 = r′1b

′
1, and b2 = s′1b

′
2.

3 More precisely, we never use the exact value of this term b but consider its upper bound implied by Lemma 3.4,
and the resulting quantity is a decreasing function of ai.
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5.3. The degenerate case. We have already seen the (easy) consequences of conditions (C1)
or (C2). We focus our attention on the third condition (C3). In this subsection we choose χ = 1.

The first subcase is

r0b2 = s0b1,

with the above bounds for r0 and s0. This implies

b1 = d1r0, b2 = d1s0

and one verifies that essentially (see below)

|r0| ≤
√
c1a2, |s0| ≤

√
c1a1, where c1 ≪ L2/3.

We consider the linear form Λ as a linear form in two logarithms:

Λ = d1(s0 logα2 − r0 logα1) − b3 logα3

and using Theorem 3 we get

log |Λ| ≫ −(s0a2 + r0a1)a3D2 log2B ≫ −√
c1a1a2a3D2 log2B ≫ −a1a2a3(D logB)7/3.

The second subcase is
(t1b1 + r1b3)s1 = r1t2b2.

If

t2 = 0

then we easily get

b1 = dr1, b3 = −dt1, where d = gcd(b1, b3).

One verifies that essentially

|r1| ≤
√
c1a3, |t1| ≤

√
c1a1, where c1 ≪ L2/3.

We consider the linear form in two logarithms

Λ = b2 logα2 − d(r1 logα1 − t1 logα3)

and using Theorem 3 we get now

log |Λ| ≫ −(
√
c1a3a1)a2D2 log2B ≫ −a1a2a3(D logB)7/3,

just as before.
Similarly, if

t1 = 0

then we get

b3 = d3t2, b2 = d3s1, where d3 = gcd(b2, b3).

And we get once more

log |Λ| ≫ −(
√
c1a3a1)a2D2 log2B ≫ −a1a2a3(D logB)7/3.

(In this third case, essentially, s1 ≤ √
c1 · min{a1, a3} and t2 ≤ √

c1 a2, and then we write Λ as
Λ = d3(s1 logα2 − t2 logα3) − b1 logα1.)

Thus we may now restrict our attention to the more serious case t1t2 6= 0. Then we have

(t1b1 + r1b3)s1 = r1t2b2, with b1 = r′1b
′
1 and b2 = s′1b

′
2,

where

r1 = δr′1, s1 = δs′1, δ := gcd(r1, s1).

And we have

gcd(r1, t1) = gcd(s1, t2) = gcd(r′1, s
′
1) = 1, t1b

′
1 + δb3 = t2b

′
2.
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[We have used new notation. The reader should not confuse these new definitions for b′1 and b′2
with the previous ones.] To simplify a little the notation, we put

VR = V − max{S1, T1}, VS = V − max{R1, T1}, VT = V − max{R1, S1},
where

V =
(

(R1 + 1)(S1 + 1)(T1 + 1)
)1/2

satisfies

V ≥ max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1}.
Now the previous bounds read

0 < |r1s1| < δ(R1 + 1)(S1 + 1)/VT , |s′1t1| < (S1 + 1)(T1 + 1)/VR, |r′1t2| < (R1 + 1)(T1 + 1)/VS.

Which essentially implies (notice that R1 ≈ c1a2a3, S1 ≈ c1a1a3, T1 ≈ c1a1a2 and V ≈ c
3/2
1 a1a2a3)

|r1s1| ≤ δ
√
c1a3, |s′1t1| ≤

√
c1a1, |r′1t2| ≤

√
c1a2.

We distinguish three cases according to the size of the terms ai’s.

Case 1: a1 = min{a1, a2, a3}
In this case, we write

t1Λ = t1r
′
1b

′
1ℓ1 + t1s

′
1b

′
2ℓ2 + t1b3ℓ3 = b′2(s

′
1t1ℓ2 + r′1t2ℓ1) + b3(t1ℓ3 − δr′1ℓ1),

where ℓj = logαj for j = 1, 2, 3. And applying [9] to this linear form in two logs we get

− log |Λ| ≪ (|s′1t1|a2 + |r′1t2|a2)(|t1|a3 + |r1|a2)D2 log2B,

where (being somewhat pessimistic)

B = max{|b1|, |b2|, |b3|},
and where the implied constant is an absolute constant. And using the upper bounds for the
integers |r1|, . . . , we get

− log |Λ| ≪ (
√
c1a1a2)(

√
c1a1a3)D2 log2B ≪ a2

1a2a3L
4/3D2 log2 B.

Since we have indeed

|δr′1s′1| ≪
√
c1a3, |s′1t1| ≪

√
c1a1, |r′1t2| ≪

√
c1a2, where c1 ≪ L2/3,

we get

− log |Λ| ≪ a2
1a2a3(D logB)8/3,

where the implied constant is absolute.

Case 2: a2 = min{a1, a2, a3}
In this second case, we write

t2Λ = t2r
′
1b

′
1ℓ1 + t2s

′
1b

′
2ℓ2 + t2b3ℓ3 = b′1(r

′
1t2ℓ1 + s′1t1ℓ2) + b3(t2ℓ3 + δs′1ℓ2).

Applying [9] to this linear form in two logs we get

− log |Λ| ≪ (|r′1t2|a1 + |s′1t1|a2)(|t2|a3 + |s1|a2)D2 log2B,

which, in this case, implies

− log |Λ| ≪ a1a
2
2a3(D logB)8/3,

where the implied constant is absolute.
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Case 3: a3 = min{a1, a2, a3}
In this last case, we write

δΛ = δr′1b
′
1ℓ1 + δs′1b

′
2ℓ2 + δb3ℓ3 = b′1(r1ℓ1 − t1ℓ3) + b′2(s1ℓ2 + t2ℓ3).

In this case, [9] gives

− log |Λ| ≪ (|r1|a1 + |t1|a3)(|t1|a3 + |s1|a2)D2 log2B,

which implies

− log |Λ| ≪ a1a2a
2
3(D logB)8/3,

where the implied constant is again absolute.

In is important to notice that, in any case, we have obtained

− log |Λ| ≪ a1a2a3 × min{a1, a2, a3} × (D logB)8/3,

where the implied constant is absolute. In particular, when min{a1, a2, a3} is bounded above then
we have essentially

− log |Λ| ≪ a1a2a3 (D logB)8/3,

with an implied constant depending only on min{a1, a2, a3}.

Remark. From the theoretical point of view, the above result is very poor. But, in practice, the
problem is with constants and — hopefully — our estimate will lead to good results when compared
to the other ones published previously.

5.4. Some special cases. We have just seen that the arithmetical nature of the coefficients b1,
b2 and b3 is very important for the study of the degenerate case. Here we consider some special
situations which, indeed, occur frequently in concrete applications to Diophantine problems. In all
these special cases we also assume that we have the relation (ii) with t1t2 6= 0.

S1 : b1 is prime or equal to one
We have seen that b1 = r′1b

′
1. Here there are at most two possibilities:

• b′1 = 1, then |b1| = |r′1| ≪ min{a2, a3}L1/3, where the implied constant is absolute.
• r′1 = 1, then

t1b1 + δb3 = t2b
′
2.

S2 : b2 is prime or equal to one
We have seen that b2 = s′1b

′
2. Here there are at most two possibilities:

• b′2 = 1, then |b2| = |s′1| ≪ min{a1, a3}L1/3, where the implied constant is absolute.
• s′1 = 1 and

t1b
′
1 + δb3 = t2b2.

S3 : b3 is prime or equal to one
Since the roles of b1 and b3 are more or less symmetrical, in this case it may be useful to

exchange these two coefficients and, simultaneously, α1 and α3 (the exchange has to be done from
the beginning of the study).
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5.5. A corollary of the main result. In this Subsection we give a corollary of our main result,
which is much easier to use that this general result and we restrict ourselves to light hypotheses.

Proposition 5.1. We consider three non-zero algebraic numbers α1, α2 and α3, which are either
all real and > 1 or all complex of modulus one and all 6= 1. Moreover, we assume that either
the three numbers α1, α2 and α3 are multiplicatively independent, or two of these numbers are
multiplicatively independent and the third one is a root of unity. Put

D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R].

We also consider three positive coprime rational integers b1, b2, b3, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary.

And we assume also that

b2| logα2| = b1 |logα1| + b3 |logα3| ± |Λ| .
We put

d1 = gcd(b1, b2), d3 = gcd(b3, b2), b2 = d1b
′
2 = d3b

′′
2 .

Let ρ ≥ e := exp(1) be a real number. Put λ = log ρ. Let a1, a2 and a3 be real numbers such that

ai ≥ ρ |logαi| − log |αi| + 2D h(αi), i = 1, 2, 3,

and assume further that

Ω := a1a2a3 ≥ 2.5 and a := min{a1, a2, a3} ≥ 0.62.

Let K and L be positive integers with

L ≥ 4 + D, K = ⌊mΩL⌋, where m ≥ 3.

Ler χ > 0 be fixed and ≤ 2. Define

c1 = max
{

(χmL)2/3,
√

2mL/a
}

, c2 = max
{

21/3(mL)2/3,
√

m/aL
}

, c3 = (6m2)1/3 L,

and then put

R1 = ⌊c1a2a3⌋, S1 = ⌊c1a1a3⌋, T1 = ⌊c1a1a2⌋, R2 = ⌊c2a2a3⌋, S2 = ⌊c2a1a3⌋, T2 = ⌊c2a1a2⌋,
and

R3 = ⌊c3a2a3⌋, S3 = ⌊c3a1a3⌋, T3 = ⌊c3a1a2⌋.
Let also

R = R1 +R2 +R3 + 1, S = S1 + S2 + S3 + 1, T = T1 + T2 + T3 + 1.

Define

c = max

{

R

La2a3
,

S

La1a3
,

T

La1a2

}

.

Finally assume that

(3)

(

KL

2
+
L

4
− 1 − 2K

3L

)

λ−(D+1) logL−3gL2cΩ−D(K−1) log b̃−2 logK+2D log 1.36 ≥ 0,

where

g =
1

4
− N

12RST
, b′ =

(

b′1
a2

+
b′2
a1

)(

b′′3
a2

+
b′′2
a3

)

, b̃ =
e3c2Ω2L2

4K2
× b′.

Then either
log |Λ| > −

(

KL+ log (3KL)
)

λ,
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or the condition (C3) of Theorem 2 holds.

Proof. Our first step in this proof is the study of the relationship between Λ and Λ′.

Recall that

Λ′ = |Λ| × LSeLS|Λ|/(2b2)

2b2
,

so that

Λ′ ≤ |Λ| × LSeLS|Λ|/2

2
.

First notice that

c1 ≤ (mL)2/3 × max

{

22/3,

√

2

0.62
× (mL)−1/6

}

= (2mL)2/3

and that

c2 = m2/3L× max

{

(

2

L

)1/3

,
m−1/6

√
a

}

≤ 3−1/6

√
0.62

×m2/3L < 1.058m2/3L.

Hence,

S ≤ Ω

a

(

(2mL)2/3 + 1.058m2/3L+ (6m2)1/3L
)

+ 1 ≤ m2/3LΩ

a

(

(

4

L

)1/3

+ 1.058 + 61/3

)

+ 1,

thus
S < 6.135m2/3LΩ < 4.26mLΩ,

since L ≥ 5, m ≥ 3, Ω ≥ 2.5 and a ≥ 0.62. This proves that

S ≤ 4.4K.

Then, under our present hypotheses, we have

Λ′ ≤ 3KL |Λ| if |Λ| ≤ exp(−KL).

This shows that the lower bound on Λ′ given in Theorem 2 implies

log |Λ| ≥ −KLλ− log (3KL).

Remark. Under the stronger hypotheses m ≥ 20, L ≥ 30 and a ≥ 4, one easily sees that

Λ′ ≤ KL |Λ| if |Λ| ≤ exp(−KL).

We have already seen that in the present case Λ 6∈ iπQ, thus we can ‘forget’ the condition
|Λ| < 2π/w in the statement. (See the footnote of Theorem 2.)

Now we study the present consequences of the conditions (C1) and (C2). With our choices of
R1, S1, . . . , S3 and T3, we see that if (C1) or (C2) holds then, using our previous upper bounds
for c1 and c2 we get

b1 ≤ (2m2)1/3La2a3, b2 ≤ (2m2)1/3La1a3, b3 ≤ (2m2)1/3La1a2.

But a Liouville estimate (see Lemma 3.3) applied to αb1
1 α

b3
3 α

−b2
2 − 1 implies that

log |Λ| ≥ −(b1h1 + b2h2 + b3h3)D −D log 2 ≥ −3

2
(2m2)1/3ΩL−D ≥ −0.5mL2 Ω,

(where hi = h(αi) for i = 1, 2, 3), since ai ≥ 2Dhi for i = 1, 2, 3, and L ≥ 4 + D, m ≥ 3, Ω ≥ 1.
This short study proves that, presently, either (C1) or (C2) implies

log |Λ| ≥ −KLλ.
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It follows that we can also ‘forget’ these conditions in the statement.

Notice that, by definition,

η0 · ζ0 ≤
(

cL

2

)2

(a2a3b
′
2 + a1a3b

′
1) (a1a2b

′′
2 + a1a3b

′′
1) =

(

cLΩ

2

)2

× b′,

so that

log b ≤ log b′ + 2 log

(

cLΩ

2

)

− 2 logK + 3 − 2
log
(

2πKe−3/2
)

K − 1
+

2 + 6π−2 + logK

3K(K − 1)
,

by Lemma 3.4. This implies (since here K ≥ ⌊3 × 5 × 2.5⌋ ≥ 37)

log b ≤ log b′ + log

(

e3c2L2Ω2

4K2

)

− 2
log (1.36K)

K − 1

and we see now that condition (2) of Theorem (2) holds when the inequality (3) is satisfied. This
ends the proof of the Proposition. �

5.6. Some explicit estimate. In this Subsection we give explicit lower bounds for |Λ| under
some natural hypotheses, but somewhat stronger than just above.

Here, we work under the following hypotheses:

a := min{a1, a2, a3} ≥ 4, L ≥ 30D, Ω ≥ 100.

Recall that we choose

R1 = ⌊c1a2a3⌋, S1 = ⌊c1a1a3⌋, T1 = ⌊c1a1a2⌋, R2 = ⌊c2a2a3⌋ S2 = ⌊c2a1a3⌋, T2 = ⌊c2a1a2⌋,
and

R3 = ⌊c3a2a3⌋, S3 = ⌊c3a1a3⌋, T3 = ⌊c3a1a2⌋, K = ⌊mΩL⌋,
where now the parameters c1, c2 and c3 satisfy (we take χ = 1 to simplify the study):

c1 = (mL)2/3, c2 = max
{

21/3(mL)2/3,
√

m/aL
}

and c3 = (6m2)1/3 L,

and we assume a priori that the parameter m satisfies

49 ≤ m ≤ 60.

Notice that this implies

K ≥ mLΩ − 1 ≥ 146,999

and

log b ≤ log b′ + 2 log

(

e3/2cLΩ

2K

)

− 2
log (θK)

K − 1
,

where

log θ := log
(

2πKe−3/2
)

− 2 + 6π−2 + logK

6K
> log 1.4019.

We take again

R = R1 +R2 +R3 + 1, S = S1 + S2 + S3 + 1, T = T1 + T2 + T3 + 1,

and

c = max

{

R

La2a3
,

S

La1a3
,

T

La1a2

}

.
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Condition (3) (with θ instead of 1.36) holds when

Φ :=

(

KL

2
+
L

4
− 1 − 2K

3L

)

λ− (D + 1) logL− 3cgL2 Ω −D(K − 1) log b̃− 2 logK + 2D log θ

is non-negative. We choose

L =

⌈

5

λ
D logB

⌉

=
µ

λ
D logB

(which defines µ), where

logB = max {10, log b̃}.
Thus

5 ≤ µ < µ1 := 5 +
λ

D logB ≤ 5L

L− 1
.

Then

Φ ≥ (mLΩ−1)

(

L

2
− 2

3L

)

λ+
L− 4

4
λ−3cgL2 Ω− λL

µ
(mLΩ−2)−2 logK−(D+1) logL+2D log θ

= L2Ω

(

λm

(

1

2
− 2

3L2
− 1

µ

)

− 3cg

)

−
(

L+ 4

4
+

2

3L
− 2L

µ

)

λ− 2 logK − (D+1) logL+2D log θ

≥ L2Ω

(

λm

(

0.499259− 1

µ

)

− 3cg

)

−L

(

1

4
− 2

µ
+ 0.0326

)

λ− 2 logK − (D + 1) logL+ 2D log θ

≥ L2Ω

(

λm

(

0.499259− 1

µ

)

− 3cg

)

+ 0.1044L− 3 logL− 2 log (mΩ) −D log
L

θ2

≥ L2Ω

(

λm

(

0.499259− 1

µ

)

− 3cg

)

− 0.2358L− 2 log (mΩ) −D log
L

θ2
.

Hence,

Φ

L2Ω
≥ λm

(

0.499259− 1

µ

)

− 3cg − 0.2358

LΩ
− 2

log (60 Ω)

L2Ω
− 2

1

30LΩ
log

L

θ2
.

And finally
Φ

L2Ω
≥ λm

(

0.499259− 1

µ

)

− 3gc− 3 · 10−4.

By definition,

c ≤ c1 + c2 + c3
L

+
1

La2
.

Recall that (here)

c1 = (mL)2/3, c2 = max
{

21/3(mL)2/3,
√

m/aL
}

, c3 = 61/3m2/3L.

Notice that
21/3(mL)2/3 ≤

√

m/aL ⇐⇒ 2
√
ma3 ≤ L,

and that this last inequality implies L ≥ 2 × 7 × 8 = 112 since m ≥ 49 and a ≥ 4. It is easy to
check that

30−1/3 + (2/30)1/3 > 112−1/3 +m−1/6/
√
a,

hence c satisfies

c ≤
(

30−1/3 + (2/30)1/3 + 61/3 +
1

16 × 302 × 492/3

)

m2/3 < 2.54444m2/3,

and

g ≤ 1

4
− 0.999992m2

12c3
< 0.244942.
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And we get

Φ

ΩL2
≥ λ

(

0.499259− 1

µ

)

m− 3 × 10−4 − 1.86972m2/3 > λ

(

0.499259− 1

µ

)

m− 1.86975m2/3.

We take

m =

(

1.8699

0.499259− 1
µ

)3

· λ−3,

thus

m1 :=

(

1.86975

0.499259− 1
µ1

)3

· λ−3 ≤ m ≤
(

1.86975

0.499259− 1
5

)3

· λ−3 < 244λ−3.

It is easy to see that the worst case for the term mµ2 (occuring in the final estimate) is reached
when µ is maximal, i.e. when µ = µ1, and then m = m1.

We have

b̃ ≤ e3c2

3.999m2
b′, where b′ =

(

b′2
a1

+
b′1
a2

)(

b′′2
a3

+
b′3
a2

)

,

and
e3c2

3.999m2
< 32.5175m−2/3.

Then — in the non-degenerate case —

log |Λ| > −KLλ− log(KL) ≥ −
(

KL+ log (KL)
)

λ.

since ρ ≥ e, which gives

log |Λ| > −1.000004KLλ≥ −6109.598λ−4 × Ω ×D2 log2 B.

For example, if we choose ρ = 5.296, then log ρ = 1.6669518 . . . and

L ≥
⌈

50D
λ

⌉

= 30D, 5 ≤ µ ≤ 155

30
, 49.39124 ≤ m < 53,

as wanted, and then

log |Λ| > −790.9478 Ω · D2 log2 B,
where

logB = max {10/D, log b̃} and b̃ ≤ 2.4156 b′.

With this choice we take

ai = max {4, ρ ℓi − log |αi| + 2Dhi}, for i = 1, 2, 3,

(with the obvious notation ℓi = |logαi|), and then

log |Λ| > −6327.59D2 log2B
3
∏

i=1

max{2,Dhi +2.648ℓi} ≥ −307,187D5 log2B
3
∏

i=1

max{0.55, hi, ℓi/D},

where

logB = max {0.882 + log b′, 10/D}.

We are now ready to state our explicit estimate.
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Proposition 5.2. We consider three non-zero algebraic numbers α1, α2 and α3, which are either
all real and > 1 or all complex of modulus one and all 6= 1. Moreover, we assume that either
the three numbers α1, α2 and α3 are multiplicatively independent, or two of these numbers are
multiplicatively independent and the third one is a root of unity. Put

D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R].

We also consider three coprime positive rational integers b1, b2, b3, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary.

And we assume also that

b2| logα2| = b1 |logα1| + b3 |logα3| ± |Λ| .
We put

d1 = gcd(b1, b2), d3 = gcd(b3, b2), b2 = d1b
′
2 = d3b

′′
2 .

Let a1, a2 and a3 be real numbers such that

ai ≥ max {4, 5.296 ℓi − log |αi| + 2D h(αi)}, where ℓi = |logαi| , i = 1, 2, 3,

and

Ω := a1a2a3 ≥ 100.

Put

b′ =

(

b′1
a2

+
b′2
a1

)(

b′′3
a2

+
b′′2
a3

)

and

logB = max
{

0.882 + log b′, 10/D
}

, Ω = a1a2a3.

Then either

log |Λ| > − 790.95 · Ω · D2 log2 B > − 307,187 ×D5 log2 B ×
3
∏

i=1

max {0.55, hi, ℓi/D},

or the following condition holds:

— either there exist two non-zero rational integers r0 and s0 such that

r0b2 = s0b1

with

|r0| ≤ 5.61 (D logB)1/3a2 and |s0| ≤ 5.61 (D logB)1/3a1,

— or there exist rational integers r1, s1, t1 and t2, with r1s1 6= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ δ · 5.61 (D logB)1/3a3, |s1t1| ≤ δ · 5.61 (D logB)1/3a1, |r1t2| ≤ δ · 5.61 (D logB)1/3a2,

where

δ = gcd(r1, s1).

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.
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Proof. The only remaining point is concerned with condition (C3) of Theorem 2. First, notice
that, for χ = 1,

V :=
(

(R1 + 1)(S1 + 1)(T1 + 1)
)1/2 ≥ c

3/2
1 Ω = mLΩ.

Moreover,

max{R1, S1, T1} ≤ c1Ω/a.

Thus,
V

max{R1, S1, T1}
≥ a

√
c1 = a(mL)1/3,

and we have

V > max{R1, S1, T1}.
(Remark: it would certainly be more clever to choose some χ < 1, but this does not improve a
lot the result. Nevertheless, the freedom given by this parameter may be useful in concrete cases:
see the two examples given below where we choose χ in order that the estimate obtained in the
non-degenerate case for three logarithms is essentially the same than the estimate obtained in the
degenerate case with lower bounds of linear forms in two logarithms. Notice that the first estimate
is better when χ is small, whereas the second one increases when when χ decreases.)

We have chosen

R1 = ⌊c1a2a3⌋,
hence

R1 + 1 ≤ c1a2a3

(

1 +
1

16(mL)2/3

)

< 1.0005 c1a2a3,

since our choices give m ≥ 49 and L ≥ 30. For the same reasons,

S1 + 1 < 1.0005 c1a1a3,

which implies4

BT :=
(R1 + 1)(S1 + 1)

V − max{R1, S1, T1}
<

1.00052

1 −
(

4
√
c1
)−1

√
c1 a3 < 3.843L1/3a3 < 5.61 (D logB)1/3a3.

Similarly,

BR :=
(S1 + 1)(T1 + 1)

V − max{R1, S1, T1}
< 3.843L1/3a3 < 5.61 (D logB)1/3a1

and

BS :=
(R1 + 1)(T1 + 1)

V − max{R1, S1, T1}
< 3.843L1/3a3 < 5.61 (D logB)1/3a2.

This proves that our last claims are consequences of condition (C3) and this ends the verification
of the result. �

It may be interesting to compare the above result with the main theorem of [1], which is the
following.

4Since the function x 7→ 1

1−(4
√

x)−1

√
x is increasing for x > 1, for the term in the middles the worst case is

obtained when c1 is maximum, i.e. for m maximum, and we get an upper bound repleacing m by 53, which implies
the second inequality. The last one comes from the definition of L, namely L = ⌈(5/λ)D logB⌉.



A KIT ON LINEAR FORMS IN THREE LOGARITHMS 39

Proposition 5.3. We consider three non-zero rational numbers α1, α2 and α3, which are all > 1
and multiplicatively independent.

We also consider three positive rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the linear
form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are the ordinary determinations of the logarithm. We assume that
Λ is non-zero and that

b2| logα2| = b1 |logα1| + b3 |logα3| ± |Λ| .
Let a′1, a

′
2 and a′3 be real numbers such that

a′i ≥ max {1, h(αi)}, i = 1, 2, 3.

Put

b′′ =

(

b1
a′2

+
b2
a′1

)(

b3
a′2

+
b2
a′3

)

and

B′ = max {log b′′, 10}, Ω′ = a′1a
′
2a

′
3.

Then either

log |Λ| > −4.5 × 105 × Ω′ log2 B′,

or there exists a non trivial relation

u1b1 + u2b2 + u3b3 = 0

over the rational integers with

|u1| , |u3| ≤ 104 × logB′ × a′1a
′
3, and |u2| ≤ 104 × logB′ × a′2 × min {a′1, a′3}.

With the same hypotheses, our result gives

— either

log |Λ| > −1.974 × 105 × h1h2h3 × log2 B ≥ −1.974× 105 × Ω′ log2 B′,

where

logB = max {10, 0.882 + log b′} ≤ max {10, log b′′ − 0.59},
[take ai = 6.296 hi for i = 1, 2, 3 and notice that ai ≥ 6.296 log 2 > 4.364 for i = 1, 2, 3 and also
that a1a2a3 ≥ 6.2963 log 2 · log 3 · log 5 > 300]

— or there exists a non trivial relation

u1b1 + u2b2 + u3b3

over the rational integers with

|ui| < 36
(

max{10, 0.882 + log b′}
)1/3

hi, i = 1, 2, 3.

This result may also be compared to the estimate implied by Matveev’s theorem., which gives
unconditionally

log |Λ| > −1.7 × 1010 × h1h2h3 × log (4.08B),

where

B = max
{

1, max {bjhj/hi ; 1 ≤ j ≤ 3}
}

.
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6. A first example

Using the previous estimates, we can prove:

Theorem 6.1. All the solutions of equation

xn − 2α5βyn = ±1

in integers x, y ≥ 1, n ≥ 3 prime and 0 ≤ β < n, with α = 1, 2, 3 satisfy

n ≤ 3.88 · 107.

Proof. It is clear that x > y. First, we give an upper bound for the exponent n using Matveev’s
estimate.

Let

Λ1 = 1 − 2α5βyn

xn
,

so that |Λ1| = 1/xn. Set
Λ = n log x/y − α log 2 − β log 5,

then
|Λ| ≤ 2x−n.

Matveev’s theorem gives (for x ≥ 5)

log |Λ| ≥ −5 · 165 · 1.52 · e4 · (20.2 + 5.5 log 3) · log x · log 2 · log 5 · (log n+ 1.41)

and we obtain n ≤ 5.36 · 1011.
We suppose

n > 2 × 107,

and it is possible to restrict our study to the case (see...)

log x > 5000.

For this linear form Λ in three logarithms, we keep the notation of the previous parts. Set

α1 = 2, α2 = x/y, α3 = 5.

We take χ = 0.5 and
L = 100, m = 41.28955, ρ1 = ρ = 7,

a1 = (ρ+ 1) log 2, a2 = 6(log 2 + log 5) + 2 logx, a3 = (ρ+ 1) log 5,

b1 = α = 1, 2, 3, b2 = n, b3 = β,

and finally
c1 = 162.133741 . . . , c2 = 324.267482 . . . , c3 = 2170.753371 . . .

Using these values we get

R1 = ⌊c1a2a3⌋ = ⌊4176.8434 log x⌋, R2 = ⌊c2a2a3⌋ = ⌊8353.6867 log x⌋,
and

R3 = ⌊c3a2a3⌋ = ⌊55922.3320 log x⌋,
further

S1 = ⌊c1a1a3⌋ = 11575, S2 = ⌊c2a1a3⌋ = 23151, S3 = ⌊c3a1a3⌋ = 154985

and finally

T1 = ⌊c1a1a2⌋ = ⌊1798.8684 log x⌋, T2 = ⌊c2a1a2⌋ = ⌊3597.7370 log x⌋,
and

T3 = ⌊c3a1a2⌋ = ⌊24084.4374 log x⌋.
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Put

V =
(

(R1 + 1)(S1 + 1)(T1 + 1)
)1/2

,

then

χV ≥ max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1},
and

BR :=
(S1 + 1)(T1 + 1)

χV − max{S1, T1}
≤ 143, BT :=

(R1 + 1)(S1 + 1)

χV − max{R1, S1}
≤ 338,

independently of x (for x > e5000).

We have

K = ⌊Lma1a2a3⌋ = ⌊589834.7288 logx⌋.
As seen above, these choices imply that the conditions (i)–(iv) of Theorem 2 hold. Moreover the
above choices have been made so that condition (2) holds.

Thus we have

log |Λ| ≥ −KL logρ− log(KL) > −114.777 · 106 log x,

and we get

n < 115 · 106.

In the cases (C1) and (C2) we obtain

n ≤ max{S1, S2} < 30000,

which is excluded since we assume n > 107. Moreover, the first case case of condition (C3), i.e.
the case r0b2 = s0b1 cannot hold because of the bound on s0 (namely |s0| ≤ BR) and the fact that
b2 = n is prime. On supposing that (C3) holds then we have necessarily

s′t′α+ r′t′′n+ r′s′β = 0,

where α = 1, 2, 3 and the factors of β, n, b3 are bounded as in the main theorem. We have

gcd(r′, s′) = δ, gcd(r′, t′) = gcd(s′, t′′) = 1

and we put

r′ = δr′1, s′ = δs′1.

With this notation

s′1t
′α+ r′1t

′′n+ δr′1s
′
1β = 0.

Then s′1 | t′′n and using that n is prime, |s′1| < n and gcd(s′, t′′) = 1 we get s′1 = 1, and thus

t′α+ r′1t
′′n+ δr′1β = 0,

where gcd(r′1, t
′) = 1. Since α ∈ {1, 2, 3}, we have |r′1| = 1 or |r′1| = α. In the first case,

±t′α+ t′′n+ δβ = 0,

and, in the second case,

±t′ + t′′n+ δβ = 0.

Clearly, t′′ and δ are not of the same sign and we may assume that δ > 0 and t′′ ≤ 0.
This implies

|t′′| ≤ δ +
3 |t′|
n

< δ + 1,

where

0 < |r′1δ| ≤ 143.
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We rewrite Λ as a linear form in two logarithms:

Λ = n log

(

(x

y

)t′

2r′

1t′′
)

− β log
(

5t′2−r′

1δ
)

.

Proposition 4.1 (applied four consecutive times with the interpolation radius ρ2 = 18) yields the
estimate

n < 39 × 106.

Thus we have proved that n ≤ 1.15 · 108.

From this upper bound for n we iterate four times this process, but with the choices L = 90,
χ = 0.29, ρ1 = 7.1 and ρ2 = 20. We get a better bound for n, namely, n < 3.88 × 107. �

7. A second example

Using the previous estimates, we can also prove:

Theorem 7.1. All the solutions of equation

2αxn − 5βyn = ±1

in integers x, y ≥ 1, where n ≥ 3 is prime and 0 ≤ α, β < n, satisfy

n ≤ 4.96 · 107.

if we suppose max{x, y} > e50. Whereas the weaker assumption max{x, y} ≥ 3 leads to

n ≤ 3.3 · 108.

Proof. In a first time, we consider more generally the Diophantine equation

pαxn − qβyn = 1.

We consider the linear form

±Λ = α log p+ n log(x/y) − β log q.

If x > y we write

Λ = β log q − n log(x/y) − α log p

and define

α1 = x/y, α2 = q, α3 = p, b1 = n, b2 = β, b3 = α,

according to the conventions of our main theorem.

Whereas, if x < y then we write

Λ = α log p− n log(y/x) − β log q

and define

α1 = y/x, α2 = p, α3 = q, b1 = n, b2 = α, b3 = β,

again according to the conventions of our main theorem. Except for notation, this is similar to the
first case. In both cases we have

Λ = εα log p− n |log(x/y)| − εβ log q,

where ε = ±1. Changing notation if necessary, we limit our study to the case ε = 1.

We put

z = max{x, y}.
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It is easy to see that
|Λ| < 2z−n.

First, we give an upper bound for the exponent n using Matveev’s theorem, which gives (for
z ≥ max{p, q})

log |Λ| ≥ −5 · 165 · 1.52 · e4 · (20.2 + 5.5 log 3) · log z · log p · log q · (logn+ 1.41)

and — for example — we obtain n ≤ 5.36 · 1011 when {p, q} = {2, 5} and z ≥ 5.

We suppose

n > 2 × 107,

and we first restrict our study to the case

log z > 50.

Now we apply our result on linear forms for p = 5 and q = 2, taking χ = 1 and

L = 100, m = 47.6623398, ρ1 = ρ = 7,

a1 = (ρ− 1) log p+ 2 log z, a2 = (ρ+ 1) log p, a3 = (ρ+ 1) log q,

b1 = n, b2 = α, b3 = β,

and finally

c1 = 283.2154268 . . . , c2 = c2 = 356.82907799 . . . , c3 = 2388.73142356 . . .

Using these constants we get

R1 = ⌊c1a2a3⌋ = 20220, R2 = ⌊c2a2a3⌋ = 25476, R3 = ⌊c3a2a3⌋ = 170548,

further,
S1 = ⌊c1a1a3⌋ ≤ ⌊3444.261 log z⌋, S2 = ⌊c2a1a3⌋ ≤ ⌊4339.501 log z⌋

and
S3 = ⌊c3a1a3⌋ ≤ ⌊29050.101 log z⌋,

and finally

T1 = ⌊c1a1a2⌋ ≤ ⌊7997.341 log z⌋, T2 = ⌊c2a1a2⌋ ≤ ⌊100726.021 log z⌋,
and

T3 = ⌊c3a1a2⌋ ≤ ⌊67452.241 log z⌋.
Put

V =
(

(R1 + 1)(S1 + 1)(T1 + 1)
)1/2

,

then

χV ≥ max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1},
and

BS :=
(R1 + 1)(T1 + 1)

χV − max{R1, T1}
≤ 220, BT :=

(R1 + 1)(S1 + 1)

χV − max{R1, S1}
≤ 94,

independently of z (for z > e50).

As seen above, these choices imply that the conditions (i)–(iv) hold. Moreover, these choices
have been made (with the help of a computer) so that inequality (2) holds.

Thus we have
log |Λ| ≥ −KL logρ− log(KL) > −145.25 · 106 log z,

and

n < 145.3 · 106.
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In the cases (C1) or (C2) we have

n ≤ max{R1, R2} < 30000,

which is excluded since we assume n > 107. Moreover, the first case of condition (C3), i.e.
r0b2 = s0b1 cannot hold because of the bound on r0 (namely |r0| ≤ BS) and the fact that b1 = n
is prime. On supposing that (C3) holds then we necessarily have

s′t′n+ r′t′′α+ r′s′β = 0,

where the factors of α, n and β are bounded as in the main theorem. We have

gcd(r′, s′) = δ, gcd(r′, t′) = gcd(s′, t′′) = 1

and we put
r′ = δr′1, s′ = δs′1.

With this notation
s′1t

′n+ r′1t
′′α+ δr′1s

′
1β = 0.

Then r′1 | t′n and using that n is prime, |r′1| < n and gcd(r′1, t
′) = 1 we get r′1 = 1, and thus

s′1t
′n+ t′′α+ δs′1β = 0,

where gcd(s′1, t
′′) = 1.

This implies
|s′1t′| ≤ |t′′| + |δs′1| ,

where
|t′′| ≤ BS and |δs′1| ≤ BT .

Thus
|s′1t′| ≤ BS +BT ≤ 314,

whenever is z ≥ e50.
We rewrite t′′Λ as a linear form in two logarithms:

t′′Λ = β log
(

5t′′ × 2δs′

1

)

− n log
(

(x/y)±t′′ × 2−s′

1t′
)

.

Proposition 4.1 (applied twice with the choice ρ2 = 20) yields

n < 58 × 106.

Thus we have proved that n ≤ 1.46 · 108.

From this upper bound for n we iterate four times this process, choosing now L = 90 and
χ = 0.65, but keeping ρ1 = 7 and ρ2 = 20. We get a better bound for n, namely n < 4.96× 107 in
the first case.

In the second case, the conclusion is obtained with the choices L = 90, ρ1 = 7, χ = 0.91 and
ρ2 = 6. �
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