A KIT ON LINEAR FORMS IN THREE LOGARITHMS

MAURICE MIGNOTTE

Abstract

In this paper we give a general presentation of the results to be used to get a 'good' lower bound for a linear form in three logarithms of algebraic numbers in the so-called rational case. We recall the best existing general result - Matveev's theorem - and we add a powerful new lower bound for linear forms in three logarithms. We treat in detail the 'degenerate' case, i.e. the case when the conditions of the zero-lemma are not satisfied.

1. Introduction

In this paper we give a general presentation of the results to be used to get a 'good' lower bound for a linear form in three logarithms of algebraic numbers. We recall the best existing general result - Matveev's theorem - and we add a powerful new lower bound for linear forms in three logarithms in the so-called rational case, i.e. when the coefficients of the linear form are rational integers. We use this result as a first step in our computation of a lower bound. Even if this is not necessary from the logical point of view, this helps a lot for the study of the 'degenerate' case, i.e. the case when the conditions of the zero-lemma are not satisfied. We treat in detail the degenerate case, using linear forms in two logarithms. In the degenerate case, another approach (see [12]) is to use determinants of interpolation especially built according to the conditions of the zero-lemma; maybe this approach gives better results but this is not clear in our case. It seems that the published results in this case give weaker results than ours.

Essentially, the present paper is extracted from [2] and [3], but we give much more details in order that this presentation is almost self-contained. Our method is the method of interpolation determinants introduced by Michel Laurent in [5], [6] and [7]. In the case of three logarithms, this method was used by C.D. Bennett et al. [1]. But the present paper brings some progress when compared to [1]: we treat the general case of algebraic numbers (not only multiplicatively independent rational integers), many technical details have been improved and, more importantly, a new zero-lemma of Michel Laurent leads to much better estimates.

Our aim, suggested by the title a kit..., is to explain how to deal with concrete cases to get a lower bound of a linear form Λ in three logarithms of algebraic numbers. The process contains three steps. First, using a general estimate of Matveev, we obtain some lower bound, say B_{1}. Then, this first result is used in our estimate for which there are two cases, the non-degenerate case and the degenerate case. In the non-degenerate case we get a second lower bound B_{2}, and if B_{2} is smaller than B_{1} we study the degenerate case. In this case, we consider our linear form in three logarithms as a linear form in two logarithms and we apply the results of Laurent-MignotteNesterenko [9] to this linear form and get a third lower bound B_{3}. Of course, the conclusion is $|\Lambda| \geq \min \left\{B_{2}, B_{3}\right\}$. In the degenerate case, there are other ways to proceed in the literature, see the comments in Section 5.

[^0]
2. Matveev's theorem for three logarithms

First, we need the special case of three logarithms of the Theorem of E. M. Matveev, thus we quote his result. This theorem enables us to get a first bound in our studies and this bound can be used as the departure for further improvements. The reason for this should appear later.

Theorem 1 (Matveev). Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be \mathbb{Q}-linearly independent logarithms of non-zero algebraic numbers and let b_{1}, b_{2}, b_{3} be rational integers with $b_{1} \neq 0$. Define $\alpha_{j}=\exp \left(\lambda_{j}\right)$ for $j=1,2,3$ and

$$
\Lambda=b_{1} \lambda_{1}+b_{2} \lambda_{2}+b_{3} \lambda_{3}
$$

Let D be the degree of the number field $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ over \mathbb{Q}. Put

$$
\chi=\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{R}\right]
$$

Let A_{1}, A_{2}, A_{3} be positive real numbers, which satisfy

$$
A_{j} \geq \max \left\{\operatorname{Dh}\left(\alpha_{j}\right),\left|\lambda_{j}\right|, 0.16\right\} \quad(1 \leq j \leq 3)
$$

Assume that

$$
B \geq \max \left\{1, \max \left\{\left|b_{j}\right| A_{j} / A_{1} ; 1 \leq j \leq 3\right\}\right\}
$$

Define also

$$
C_{1}=\frac{5 \times 16^{5}}{6 \chi} e^{3}(7+2 \chi)\left(\frac{3 e}{2}\right)^{\chi}\left(20.2+\log \left(3^{5.5} D^{2} \log (e D)\right)\right)
$$

Then

$$
\log |\Lambda|>-C_{1} D^{2} A_{1} A_{2} A_{3} \log (1.5 e D B \log (e D))
$$

Proof. See [10].

3. A new estimate on linear forms in three logarithms

We present the type of linear forms in three logarithms that we shall study. We consider three non-zero algebraic numbers α_{1}, α_{2} and α_{3} and positive rational integers b_{1}, b_{2}, b_{3} with $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$, and the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3} \neq 0
$$

We restrict our study to the following cases:

- the real case: α_{1}, α_{2} and α_{3} are real numbers >1, and the logarithms of the α_{i} are all real (and >0). Moreover, in concrete cases, α_{1}, α_{2} and α_{3} are multiplicatively independent. Of course, then the $\log \alpha_{j}$'s are \mathbb{Q}-linearly independent.
- the complex case: α_{1}, α_{2} and α_{3} are complex numbers $\neq 1$ of modulus one, and the logarithms of the α_{i} are arbitrary determinations of the logarithm (then any of these determinations is purely imaginary). In practical examples, two of these α 's are multiplicatively independent and the third one is a root of unity. We shall see later that (see Corollary 3.10), in this case, the $\log \alpha_{j}$'s are again \mathbb{Q}-linearly independent.
In practice this restriction does not cause any inconvenience since

$$
|\Lambda| \geq \max \{|\Re(\Lambda)|,|\Im(\Lambda)|\}
$$

and so we can always reduce to the above cases.
Without loss of generality, we may assume that

$$
b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda| .
$$

But notice than this introduces some important dissymmetry between the roles of the coefficients b_{1}, b_{2} and b_{3}.

Like the authors of [1], we use Laurent's method, and consider a suitable interpolation determinant Δ.

We shall choose rational positive integers K, L, R, S, T, with $K, L \geq 2$, we put $N=K^{2} L$ and we assume $R S T \geq N$. Let i be an index such that $\left(k_{i}, m_{i}, \ell_{i}\right)$ runs trough all triples of integers with $0 \leq k_{i} \leq K-1,0 \leq m_{i} \leq K-1$ and $0 \leq \ell_{i} \leq L-1$. So each number $0, \ldots, K-1$ occurs $K L$ times as a k_{i}, and similarly as an m_{i}, and each number $0, \ldots, L-1$ occurs K^{2} times as an ℓ_{i}.

Put

$$
b_{1}=d_{1} b_{1}^{\prime}, b_{3}=d_{3} b_{3}^{\prime \prime}, b_{2}=d_{1} b_{2}^{\prime}=d_{3} b_{2}^{\prime \prime}, \beta_{1}=b_{1} / b_{2}=b_{1}^{\prime} / b_{2}^{\prime}, \beta_{3}=b_{3} / b_{2}=b_{3}^{\prime \prime} / b_{2}^{\prime \prime}
$$

where

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right) \quad \text { and } \quad d_{3}=\operatorname{gcd}\left(b_{3}, b_{2}\right) .
$$

With the above definitions, let

$$
\Delta=\operatorname{det}\left\{\binom{r_{j} b_{2}^{\prime}+s_{j} b_{1}^{\prime}}{k_{i}}\binom{t_{j} b_{2}^{\prime \prime}+s_{j} b_{3}^{\prime \prime}}{m_{i}} \alpha_{1}^{\ell_{i} r_{j}} \alpha_{2}^{\ell_{i} s_{j}} \alpha_{3}^{\ell_{i} t_{j}}\right\}
$$

where r_{j}, s_{j}, t_{j} are non-negative integers less than R, S, T, respectively, such that $\left(r_{j}, s_{j}, t_{j}\right)$ runs over N distinct triples.

Let

$$
\lambda_{i}=\ell_{i}-\frac{L-1}{2}, \quad \eta_{0}=\frac{R-1}{2}+\beta_{1} \frac{S-1}{2}, \quad \zeta_{0}=\frac{T-1}{2}+\beta_{3} \frac{S-1}{2},
$$

and

$$
b=\left(b_{2}^{\prime} \eta_{0}\right)\left(b_{2}^{\prime \prime} \zeta_{0}\right)\left(\prod_{k=1}^{K-1} k!\right)^{-\frac{4}{K(K-1)}}
$$

Following [9], Lemme 8, we can prove that

$$
\begin{aligned}
\log b \leq & \log \frac{(R-1) b_{2}+(S-1) b_{1}}{2 d_{1}}+\log \frac{(T-1) b_{2}+(S-1) b_{3}}{2 d_{3}} \\
& -2 \log K+3-\frac{2 \log \left(2 \pi K / e^{3 / 2}\right)}{K-1}+\frac{2+6 \pi^{-2}+\log K}{3 K(K-1)} .
\end{aligned}
$$

Then, we have $\sum_{i=0}^{N-1} \lambda_{i}=0$ and ([1], formula (2.1))

$$
\alpha_{1}^{\lambda_{i} r_{j}} \alpha_{2}^{\lambda_{i} s_{j}} \alpha_{3}^{\lambda_{i} t_{j}}=\alpha_{1}^{\lambda_{i}\left(r_{j}+s_{j} \beta_{1}\right)} \alpha_{3}^{\lambda_{i}\left(t_{j}+s_{j} \beta_{3}\right)} e^{\lambda_{i} s_{j} \Lambda / b_{2}}=\alpha_{1}^{\lambda_{i}\left(r_{j}+s_{j} \beta_{1}\right)} \alpha_{3}^{\lambda_{i}\left(t_{j}+s_{j} \beta_{3}\right)}\left(1+\theta_{i j} \Lambda^{\prime}\right)
$$

where

$$
\theta_{i j}=\frac{e^{\lambda_{i} s_{j} \Lambda / b_{2}}-1}{\Lambda^{\prime}}
$$

and

$$
\Lambda^{\prime}=|\Lambda| \cdot \frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2\left|b_{2}\right|}
$$

where all $\left|\theta_{i j}\right|$ are ≤ 1. Proof: since s_{j}, b_{2}, L and $|\Lambda|$ are all positive, $\left|\lambda_{j}\right| \leq L / 2$ and also $s_{j} \leq S$ we have

$$
\left|\theta_{i j}\right| \leq \frac{e^{x}-1}{x e^{x}} \leq 1, \quad \text { where } x=\frac{L S|\Lambda|}{2 b_{2}}>0
$$

3.1. Preliminaries. This subsection contains some technical results used in the estimates of the interpolation determinant.

Lemma 3.1. Let K, L, R, S, T be positive integers, put $N=K^{2} L$ and assume $N \leq R S T$, put also

$$
\ell_{n}=\left\lfloor\frac{n-1}{K^{2}}\right\rfloor, \quad 1 \leq n \leq N
$$

and $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1, \ldots, R-1\}^{N}$. Suppose that for each $r \in\{0,1, \ldots, R-1\}$ there are at most $S T$ indices such that $r_{j}=r$. Then

$$
\left|\sum_{n=1}^{N} \ell_{n} r_{n}-M_{R}\right| \leq G_{R}
$$

where

$$
M_{R}=\left(\frac{L-1}{2}\right) \sum_{n=1}^{N} r_{n} \quad \text { and } \quad G_{R}=\frac{N L R}{2}\left(\frac{1}{4}-\frac{N}{12 R S T}\right) .
$$

Proof. Apply [9], Lemme 4.
As in [1] or [12] p. 192, for $(k, m) \in \mathbb{N}^{2}$, we put $\|(k, m)\|=k+m$. And we put

$$
\Theta\left(K_{0}, I\right)=\min \left\{\left\|\left(k_{1}, m_{1}\right)\right\|+\cdots+\left\|\left(k_{I}, m_{I}\right)\right\|\right\}
$$

where the minimum is taken over if the I couples $\left(k_{1}, m_{1}\right), \ldots,\left(k_{I}, m_{I}\right) \in \mathbb{N}^{2}$ which are pairwise distinct and satisfy $m_{1}, \ldots, m_{I} \leq K_{0}$. Then, we have:

Lemma 3.2. Let K_{0}, L and I be positive integers with $K_{0} \geq 3, L \geq 2$ and $I \geq K_{0}\left(K_{0}+1\right) / 2$. Then

$$
\Theta\left(K_{0}, I\right) \geq\left(\frac{I^{2}}{2\left(K_{0}+1\right)}\right)\left(1+\frac{\left(K_{0}-1\right)\left(K_{0}+1\right)}{I}-\frac{K_{0}\left(K_{0}+2\right)\left(K_{0}+1\right)^{2}}{12 I^{2}}\right)
$$

Proof. This is an improvement of the Lemma 1.4 of [1]. We follow more or less the proof of this result.

The argument is elementary: the smallest value for the sum $\left\|\left(k_{1}, m_{1}\right)\right\|+\cdots+\left\|\left(k_{I}, m_{I}\right)\right\|$ is reached when we choose successively, for each integer $n=0,1, \ldots$ all the points in the domain

$$
D_{n}=\left\{(k, m) \in \mathbb{N}^{2} ; m \leq K_{0}, k+m=n\right\},
$$

and stop when the total number of points is I. Moreover,

$$
\operatorname{Card}\left(D_{n}\right)= \begin{cases}n+1, & \text { if } n \leq K_{0} \\ K_{0}+1, & \text { if } n \geq K_{0}\end{cases}
$$

Hence the number of points obtained when n varies between 0 and, say, $A-1$ (with $A \geq K_{0}$) is

$$
\sum_{n=0}^{K_{0}-1}(n+1)+\sum_{n=K_{0}}^{A-1}\left(K_{0}+1\right)=\left(A-K_{0}+\frac{K_{0}}{2}\right)\left(K_{0}+1\right)=\left(A-\frac{K_{0}}{2}\right)\left(K_{0}+1\right)
$$

With this notation, the number I of points can be written as

$$
I=\left(A-\frac{K_{0}}{2}\right)\left(K_{0}+1\right)+r, \quad \text { with } 0 \leq r \leq K_{0}
$$

provided that $I \geq K_{0}\left(K_{0}+1\right) / 2$, which is one hypothesis of the Lemma.

Then, the computation of [1] shows that

$$
\Theta\left(K_{0}, I\right) \geq \tilde{\Theta}\left(K_{0}, I\right):=\sum_{n=0}^{K_{0}-1} n(n+1)+\sum_{n=K_{0}}^{A-1} n\left(K_{0}+1\right)+r A,
$$

where

$$
\begin{aligned}
\sum_{n=0}^{K_{0}-1} n(n+1) & +\sum_{n=K_{0}}^{A-1} n\left(K_{0}+1\right) \\
& =\frac{\left(K_{0}-1\right) K_{0}\left(2 K_{0}-1\right)}{6}+\frac{\left(K_{0}-1\right) K_{0}}{2}+\frac{K_{0}+1}{2}\left(A(A-1)-K_{0}\left(K_{0}-1\right)\right) \\
& =\frac{\left(K_{0}-1\right) K_{0}\left(2 K_{0}+2\right)}{6}+\frac{K_{0}+1}{2} A(A-1)-\frac{\left(K_{0}-1\right) K_{0}\left(K_{0}+1\right)}{2} \\
& =\frac{K_{0}+1}{2}\left(A(A-1)-\frac{1}{3} K_{0}\left(K_{0}-1\right)\right) .
\end{aligned}
$$

And we get

$$
\Theta\left(K_{0}, I\right) \geq \frac{K_{0}+1}{2}\left(A(A-1)-\frac{1}{3} K_{0}\left(K_{0}-1\right)\right)+r A .
$$

In terms of I,

$$
A=\frac{K_{0}}{2}+\frac{I-r}{K_{0}+1} .
$$

We have,

$$
\frac{\partial \tilde{\Theta}}{\partial r}=\frac{K_{0}+1}{2}(2 A-1) \frac{\partial A}{\partial r}+A+r \frac{\partial A}{\partial r}=-\frac{2 A-1}{2}+A-\frac{r}{K_{0}+1}=\frac{1}{2}-\frac{r}{K_{0}+1},
$$

which shows that the minimum of $\tilde{\Theta}$ is reached either for $r=0$ or $r=K_{0}$. It is easy to verify that $\tilde{\Theta}$ takes the same value for $r=0$ and $r=K_{0}+1$ (which is indeed out of the range of r), this implies that the minimum is reached for $r=0$. It follows that

$$
\begin{aligned}
\frac{2 \Theta\left(K_{0}, I\right)}{K_{0}+1} & \geq\left(\frac{K_{0}}{2}+\frac{I}{K_{0}+1}\right)\left(\frac{K_{0}}{2}+\frac{I}{K_{0}+1}-1\right)-\frac{K_{0}\left(K_{0}-1\right)}{3} \\
& =\frac{K_{0}^{2}}{4}+\frac{I^{2}}{\left(K_{0}+1\right)^{2}}+\frac{K_{0} I}{K_{0}+1}-\frac{K_{0}}{2}-\frac{I}{K_{0}+1}-\frac{K_{0}^{2}}{3}+\frac{K_{0}}{3} \\
& =\frac{I^{2}}{\left(K_{0}+1\right)^{2}}+\frac{\left(K_{0}-1\right) I}{K_{0}+1}-\frac{K_{0}^{2}}{12}-\frac{K_{0}}{6} \\
& =\left(\frac{I}{K_{0}+1}\right)^{2}\left(1+\frac{\left(K_{0}-1\right)\left(K_{0}+1\right)}{I}-\frac{K_{0}\left(K_{0}+2\right)\left(K_{0}+1\right)^{2}}{12 I^{2}}\right),
\end{aligned}
$$

which proves the lemma.
The version of Liouville inequality that we use is the same as in [9] (p. 298-99) or in [12] Ex. 3.2, p. 106:

Lemma 3.3. Let α_{1}, α_{2} and α_{3} be non-zero algebraic numbers and a polynomial $f \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ such that $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq 0$, then

$$
\left|f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right| \geq|f|^{-D+1}\left(\alpha_{1}^{*}\right)^{d_{1}}\left(\alpha_{2}^{*}\right)^{d_{2}}\left(\alpha_{3}^{*}\right)^{d_{3}} \times \exp \left\{-\mathcal{D}\left(d_{1} \mathrm{~h}\left(\alpha_{1}\right)+d_{2} \mathrm{~h}\left(\alpha_{2}\right)+d_{3} \mathrm{~h}\left(\alpha_{3}\right)\right)\right\}
$$

where $\mathcal{D}=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{R}\right]$,

$$
d_{i}=\operatorname{deg}_{X_{i}} f, \quad i=1,2,3, \quad|f|=\max \left\{\left|f\left(z_{1}, z_{2}, z_{3}\right)\right| ;\left|z_{i}\right| \leq 1, i=1,2,3\right\}
$$

and $\mathrm{h}(\alpha)$ is the absolute logarithmic height of the algebraic number α, and $\alpha^{*}=\max \{1,|\alpha|\}$.

Remark. See also [12] Ex. 3.5, p. 108, for a stronger version using projective height.

Lemma 3.4. Let $K>1$ be an integer, then

$$
\log \left(\prod_{k=1}^{K-1} k!\right)^{\frac{4}{K(K-1)}} \geq 2 \log K-3+\frac{2 \log \left(2 \pi K / e^{3 / 2}\right)}{K-1}-\frac{2+6 \pi^{-2}+\log K}{3 K(K-1)} .
$$

Proof. This is a consequence of a variant of the proof of Lemme 8 of [9].
3.2. An upper bound for $|\Delta|$. Let

$$
z_{j}=r_{j}+s_{j} \beta_{1}-\eta_{0} \quad \text { and } \quad \zeta_{j}=t_{j}+s_{j} \beta_{3}-\zeta_{0}
$$

so $\left|z_{j}\right| \leq \eta_{0}$ and $\left|\zeta_{j}\right| \leq \zeta_{0}$. Since,

$$
\binom{r_{j} b_{2}^{\prime}+s_{j} b_{1}^{\prime}}{k_{i}}=\frac{b_{2}^{\prime} k_{i}}{k_{i}!} z_{j}^{k_{i}}+\text { terms in } z_{j} \text { of degree less than } k_{i},
$$

and similary for $\left(\underset{m_{i}}{t_{j} b_{2}^{\prime \prime}+s_{j} b_{1}^{\prime \prime}}\right)$, using the multilinearity of determinants we obtain the formula

$$
\Delta=\operatorname{det}\left(\frac{b_{2}^{\prime k_{i}} b_{2}^{\prime \prime m_{i}}}{k_{i}!m_{i}!} z_{j}^{k_{i}} \zeta_{j}^{m_{i}} \alpha_{1}^{\ell_{1} r_{j}} \alpha_{2}^{\ell_{1} s_{j}} \alpha_{3}^{\ell_{1} t_{j}}\right)
$$

Let

$$
M_{1}=\frac{L-1}{2} \sum_{j=1}^{N} r_{j}, \quad M_{2}=\frac{L-1}{2} \sum_{j=1}^{N} s_{j}, \quad M_{3}=\frac{L-1}{2} \sum_{j=1}^{N} t_{j} .
$$

From the two above relations, and the definition of λ_{i}, it follows that

$$
\Delta=\alpha_{1}{ }^{M_{1}} \alpha_{2}^{M_{2}} \alpha_{3}^{M_{3}} \operatorname{det}\left(\frac{b_{2}^{\prime} k_{i} b_{2}^{\prime \prime m_{i}}}{k_{i}!m_{i}!} z_{j}^{k_{i}} \zeta_{j}^{m_{i}} \alpha_{1}^{\lambda_{i}\left(r_{j}+s_{j} \beta_{1}\right)} \alpha_{3}^{\lambda_{i}\left(t_{j}+s_{j} \beta_{3}\right)}\left(1+\Lambda^{\prime} \theta_{i j}\right)\right) .
$$

Since $\sum_{i} \lambda_{i}=0$, we deduce that

$$
\Delta=\alpha_{1}{ }^{M_{1}} \alpha_{2}^{M_{2}} \alpha_{3}^{M_{3}} \operatorname{det}\left(\frac{b_{2}^{\prime} k_{i} b_{2}^{\prime m_{i}}}{k_{i}!m_{i}!} z_{j}^{k_{i}} \zeta_{j}^{m_{i}} \alpha_{1}^{\lambda_{i} z_{j}} \alpha_{3}^{\lambda_{i} \zeta_{j}}\left(1+\Lambda^{\prime} \theta_{i j}\right)\right)
$$

Expanding this determinant, we obtain

$$
\Delta=\alpha_{1}{ }^{M_{1}} \alpha_{2}^{M_{2}} \alpha_{3}{ }^{M_{3}} \sum_{\mathcal{I} \subseteq \mathcal{N}}\left(\Lambda^{\prime}\right)^{N-|\mathcal{I}|} \Delta_{\mathcal{I}}
$$

where $\mathcal{N}=\{0,1, \ldots, N-1\}$ and $\Delta_{\mathcal{I}}$ is the determinant of a certain matrix $\mathcal{M}_{\mathcal{I}}$ defined below. Let

$$
\phi_{j}(z, \zeta)=\frac{b_{2}^{k_{i}} b_{2}^{\prime \prime} m_{i}}{k_{i}!m_{i}!} z^{k_{i}} \zeta^{m_{i}} \alpha_{1}^{\lambda_{i} z} \alpha_{3}^{\lambda_{i} \zeta}
$$

[where $\alpha_{1}^{\lambda_{i} z}=\exp \left(\lambda_{i} z \log \alpha_{1}\right)$ and similarly for $\alpha_{3}^{\lambda_{i} \zeta}$] and

$$
\Phi_{\mathcal{I}}(x)_{i j}= \begin{cases}\phi_{j}\left(x z_{j}, x \zeta_{j}\right), & \text { if } i \in \mathcal{I} \\ \theta_{i j} \phi_{j}\left(x z_{j}, x \zeta_{j}\right), & \text { if } i \notin \mathcal{I}\end{cases}
$$

Then, $\mathcal{M}_{\mathcal{I}}=\left(\Phi_{\mathcal{I}}(1)_{i j}\right)$ and letting $\Psi_{\mathcal{I}}(x)=\operatorname{det}\left(\Phi_{\mathcal{I}}(x)\right)$, gives

$$
\left|\Delta_{\mathcal{I}}\right|=\left|\operatorname{det}\left(\Phi_{\mathcal{I}}(1)\right)\right|=\left|\Psi_{\mathcal{I}}(1)\right|
$$

Now, let

$$
J_{\mathcal{I}}=\operatorname{order}(\Psi, 0),
$$

the maximum modulus principle implies

$$
\left|\Psi_{\mathcal{I}}(1)\right| \leq \rho^{-J_{\mathcal{I}}} \cdot \max _{|x|=\rho}\left|\Psi_{\mathcal{I}}(x)\right| .
$$

Since $\left|z_{j}\right| \leq \eta_{0}$ and $\left|\zeta_{j}\right| \leq \zeta_{0}$,

$$
\begin{aligned}
\max _{|x|=\rho}\left|\Psi_{\mathcal{I}}(x)\right| \leq N!\frac{b_{2}^{\prime \sum k_{i}} b_{2}^{\prime \prime \sum m_{i}}}{\prod k_{i}!\prod m_{i}!} & \left(\rho \eta_{0}\right)^{\sum k_{i}}\left(\rho \zeta_{0}\right)^{\sum m_{i}} \\
& \times \max _{\sigma \in \mathfrak{S}(\mathcal{N})} \exp \left\{\rho\left(\left(\sum \lambda_{i} z_{\sigma(i)}\right) \log \alpha_{1}+\left(\sum \lambda_{i} \zeta_{\sigma(i)}\right) \log \alpha_{2}\right)\right\} .
\end{aligned}
$$

Put

$$
g=\frac{1}{4}-\frac{N}{12 R S T}, \quad G_{1}=\frac{N L R}{2} g, \quad G_{2}=\frac{N L S}{2} g, \quad G_{3}=\frac{N L T}{2} g
$$

Then, using Lemma 1 and the relation $\sum_{i=0}^{N-1} \lambda_{i}=0$, we get

$$
\begin{aligned}
\sum_{i=0}^{N-1} \lambda_{i} z_{\sigma(i)} & =\sum_{i=0}^{N-1} \lambda_{i}\left(r_{i}+s_{i} \beta_{1}-\eta_{0}\right)=\sum_{i=0}^{N-1} \lambda_{i}\left(r_{i}+s_{i} \beta_{1}\right) \\
& =\sum_{i=0}^{N-1}\left(\ell_{i}-\frac{L-1}{2}\right) r_{\sigma(i)}+\beta_{1} \sum_{i=0}^{N-1}\left(\ell_{i}-\frac{L-1}{2}\right) s_{\sigma(i)}
\end{aligned}
$$

and thus

$$
\sum_{i=0}^{N-1} \lambda_{i} z_{\sigma(i)} \leq G_{1}+\beta_{1} G_{2}
$$

In a similar way,

$$
\sum_{i=0}^{N-1} \lambda_{i} \zeta_{\sigma(i)} \leq G_{3}+\beta_{3} G_{2}
$$

It follows that (recall that $b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda|$)

$$
\begin{aligned}
& \exp \left\{\rho\left(\left(\sum_{i} z_{\sigma(i)}\right)\left|\log \alpha_{1}\right|+\left(\sum \lambda_{i} \zeta_{\sigma(i)}\right)\left|\log \alpha_{3}\right|\right)\right\} \\
& \quad \leq \exp \left\{\rho\left(\left(G_{1}+\beta_{1} G_{2}\right)\left|\log \alpha_{1}\right|+\left(G_{3}+\beta_{3} G_{2}\right)\left|\log \alpha_{3}\right|\right)\right\} \\
& \quad \leq \exp \left\{\rho\left(G_{1}\left|\log \alpha_{1}\right|+G_{2}\left(\left|\log \alpha_{2}\right|+\frac{|\Lambda|}{b_{2}}\right)+G_{3}\left|\log \alpha_{3}\right|\right)\right\} .
\end{aligned}
$$

As in [1], we see that if

$$
\begin{equation*}
\Lambda^{\prime}<\rho^{-K L} \tag{*}
\end{equation*}
$$

then, for $\rho \geq 2$,

$$
\rho G_{2} \frac{|\Lambda|}{b_{2}} \leq \rho g \frac{N L S}{b_{2}} \frac{|\Lambda|}{2} \leq \rho K^{2} L \frac{\Lambda^{\prime}}{4} \leq \frac{\rho K^{2} L}{2 \rho^{K L}} \leq \frac{K^{2} L^{2}}{10 \cdot 2^{K L}}<10^{-3}
$$

for $K \geq 3$ and $L \geq 5$. Putting these estimates together, we get that condition $\left({ }^{*}\right)$ implies the upper bound

$$
\begin{aligned}
|\Delta| \leq 1.001 \alpha_{1}{ }^{M_{1}+\rho G_{1}} \alpha_{2}{ }^{M_{2}+\rho G_{2}} & \alpha_{3}{ }^{M_{3}+\rho G_{3}} N!\times 2^{N} \rho^{\sum\left(k_{i}+m_{i}\right)} \\
& \times \frac{\left(b_{2}^{\prime} \eta_{0}\right)^{\sum k_{i}}}{\prod k_{i}!} \frac{\left(b_{2}^{\prime \prime} \zeta_{0}\right)^{\sum m_{i}}}{\prod m_{i}!} \max _{\sigma \in \mathfrak{S}(\mathcal{N})} \frac{\left|\Lambda^{\prime}\right|^{N-|\mathcal{I}|}}{\rho^{J_{\mathcal{I}}}},
\end{aligned}
$$

where

$$
J_{\mathcal{I}}=\operatorname{order}\left(\Psi_{\mathcal{I}}, 0\right)
$$

Under condition (*), we have

$$
\frac{\left|\Lambda^{\prime}\right|^{N-|\mathcal{I}|}}{\rho^{J_{\mathcal{I}}}} \leq \rho^{-K L(N-|\mathcal{I}|)-J_{\mathcal{I}}}
$$

If $|\mathcal{I}| \leq 0.5 N$ then

$$
K L(N-|\mathcal{I}|) \geq 0.5 K L N \geq \frac{N K L}{4}\left(1+\frac{4}{L}+\frac{1}{2 K-1}\right)
$$

as soon as $K \geq 3$ and $L \geq 5$, conditions that we assume from now on.
If $|\mathcal{I}| \geq 0.5 N$, then using Lemma 1.3 of [1] or Lemma 6.4 of $[12]^{1}$, we obtain

$$
J_{\mathcal{I}} \geq \Theta\left(K_{0},|\mathcal{I}|\right), \quad \text { for } \quad K_{0}=2(K-1)
$$

Now, $|\mathcal{I}| \geq 0.5 K^{2} L$ implies $|\mathcal{I}| \geq 2.5 K^{2}$ and using Lemma 2 we get (with the notation $I=|\mathcal{I}|$)

$$
K L(N-I)+J_{\mathcal{I}} \geq K L(N-I)+\frac{I^{2}}{2\left(K_{0}+1\right)}\left(1+\frac{\left(K_{0}-1\right)\left(K_{0}+1\right)}{I}-\frac{K_{0}\left(K_{0}+2\right)\left(K_{0}+1\right)^{2}}{12 I^{2}}\right)
$$

It is easy to verify that the right handside is a decreasing function of I in the range $[N / 2, N]$, since $L \geq 5$, and we get (recall that $N=K^{2} L$ and $K_{0}=2 K-2$)

$$
\begin{aligned}
K L(N-|\mathcal{I}|)+J_{\mathcal{I}} & \geq \frac{N^{2}}{2\left(K_{0}+1\right)}\left(1+\frac{K_{0}^{2}-1}{N}-\frac{K_{0}\left(K_{0}+2\right)\left(K_{0}+1\right)^{2}}{12 N^{2}}\right) \\
& =\frac{N^{2}}{4 K}\left(\frac{2 K}{K_{0}+1}+\frac{2 K\left(K_{0}-1\right)}{N}-\frac{K K_{0}\left(K_{0}+1\right)\left(K_{0}+2\right)}{6 N^{2}}\right) \\
& =\frac{N^{2}}{4 K}\left(1+\frac{1}{2 K-1}+\frac{2(2 K-3)}{K L}-\frac{2(K-1)(2 K-1)}{3 K^{2} L^{2}}\right) \\
& =\frac{N^{2}}{4 K}\left(1+\frac{4}{L}+\frac{1}{2 K-1}-\frac{4}{3 L^{2}}-\frac{6}{K L}+\frac{2}{K L^{2}}-\frac{2}{3 K^{2} L^{2}}\right) \\
& \geq \frac{N^{2}}{4 K}\left(1+\frac{4}{L}+\frac{1}{2 K-1}-\frac{4}{3 L^{2}}-\frac{6}{K L}\right)
\end{aligned}
$$

because $L \geq 5$, and this implies, in all cases,

$$
K L(N-|\mathcal{I}|)+J_{\mathcal{I}} \geq \frac{N^{2}}{4 K}\left(1+\frac{4}{L}+\frac{1}{2 K-1}-\frac{6}{K L}-\frac{4}{3 L^{2}}\right)
$$

Thus, gathering all the previous estimates and using the relations

$$
\sum_{i=0}^{N-1} k_{i}=\sum_{i=0}^{N-1} m_{i}=\frac{(K-1) K}{2} K L=\frac{N}{2}(K-1)
$$

and the definition of b, we obtain the following result (see [2]).

$$
\begin{aligned}
& { }^{1} \text { That is: the function of a complex variable } x \text { given by } \\
& \qquad \psi(x)=\operatorname{det}\left(f_{i}\left(x z_{j}, x \zeta_{j}\right)\right)_{1 \leq i, j \leq I}
\end{aligned}
$$

has a zero at $x=0$ of multiplicity at least $\Theta\left(K_{0}, I\right)$, when $f_{i}(z, \zeta)=z^{k_{i}} \zeta^{m_{i}} \phi_{i}\left(l_{1} z+l_{2} \zeta\right)$, where ϕ_{i} is an analytic function in \mathbb{C}.

Proposition 3.5. With the previous notation, if $K \geq 3, L \geq 5$ and $\Lambda^{\prime} \leq \rho^{-K L}$, for some real number $\rho \geq 2$, then

$$
\begin{gathered}
\log |\Delta| \leq \sum_{i=1}^{3} M_{i} \log \left|\alpha_{i}\right|+\rho \sum_{i=1}^{3} G_{i}\left|\log \alpha_{i}\right|+\log (N!)+N \log 2+\frac{N}{2}(K-1) \log b \\
-\left(\frac{N K L}{4}+\frac{N K L}{4(2 K-1)}-\frac{N K}{3 L}-\frac{N}{2}\right) \log \rho+0.001
\end{gathered}
$$

3.3. A lower bound for $|\Delta|$. Using a Liouville estimate as in Lemma 3.3 above, we get (as in [2]):

Proposition 3.6. If $\Delta \neq 0$ then

$$
\begin{aligned}
\log |\Delta| \geq & -\frac{\mathcal{D}-1}{2} N \log N+\sum_{i=1}^{3}\left(M_{i}+G_{i}\right) \log \left|\alpha_{i}\right| \\
& -2 \mathcal{D} \sum_{i=1}^{3} G_{i} \mathrm{~h}\left(\alpha_{i}\right)-\frac{\mathcal{D}-1}{2}(K-1) N \log b .
\end{aligned}
$$

Proof. We have $\Delta=P\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ where $P \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ is given by

$$
P\left(X_{1}, X_{2}, X_{3}\right)=\sum_{\sigma \in \mathfrak{G}_{N}} \operatorname{sg}(\sigma) \cdot \prod_{i=1}^{N}\binom{r_{\sigma(i)} b_{2}^{\prime}+s_{\sigma(i)} b_{1}^{\prime}}{k_{i}}\binom{t_{\sigma(i)} b_{2}^{\prime \prime}+s_{\sigma(i)} b_{3}^{\prime \prime}}{m_{i}} X_{1}^{n_{r, \sigma}} X_{2}^{n_{s, \sigma}} X_{1}^{n_{t, \sigma}}
$$

and where

$$
n_{r, \sigma}=\sum_{i=1}^{N} \ell_{i} r_{\sigma(i)}, \quad n_{s, \sigma}=\sum_{i=1}^{N} \ell_{i} s_{\sigma(i)}, \quad n_{t, \sigma}=\sum_{i=1}^{N} \ell_{i} t_{\sigma(i)} .
$$

By Lemma 1,

$$
\left|\operatorname{deg}_{X_{i}} P-M_{i}\right| \leq G_{i}, \quad i=1,2,3 .
$$

Let

$$
V_{i}=\left\lfloor M_{i}+G_{i}\right\rfloor, \quad U_{i}=\left\lceil M_{i}-G_{i}\right\rceil, \quad i=1,2,3
$$

then

$$
\Delta=\alpha_{1}{ }^{V_{1}} \alpha_{2}{ }^{V_{2}} \alpha_{3}{ }^{V_{3}} \tilde{P}\left(\alpha_{1}^{-1}, \alpha_{2}^{-1}, \alpha_{3}^{-1}\right)
$$

where

$$
\operatorname{deg}_{X_{i}} \tilde{P} \leq V_{i}-U_{i}, \quad i=1,2,3
$$

By our Liouville estimate

$$
\log \left|\tilde{P}\left(\alpha_{1}^{-1}, \alpha_{2}^{-1}, \alpha_{3}^{-1}\right)\right| \geq-(\mathcal{D}-1) \log |\tilde{P}|-\mathcal{D} \sum_{i=1}^{3}\left(V_{i}-U_{i}\right) \mathrm{h}\left(\alpha_{i}\right)
$$

Now we have to find an upper bound for $|\tilde{P}|$ (or for $|P|$, which is equal to $|\tilde{P}|$). By the multilinearity of the determinant, for all $\eta, \zeta \in \mathbb{C}$,

$$
P\left(z_{1}, z_{2}, z_{3}\right)=\operatorname{det}\left(\frac{\left(r_{j} b_{2}^{\prime}+s_{j} b_{1}^{\prime}-\eta\right)^{k_{i}}}{k_{i}!} \frac{\left(t_{j} b_{2}^{\prime \prime}+s_{j} b_{3}^{\prime \prime}-\zeta\right)^{m_{i}}}{m_{i}!} \cdot z_{1}^{\ell_{i} r_{j}} \cdot z_{2}^{\ell_{i} s_{j}} \cdot z_{3}^{\ell_{i} t_{j}}\right)
$$

Choose

$$
\eta=\frac{(R-1) b_{2}^{\prime}+(S-1) b_{1}^{\prime}}{2}, \quad \zeta=\frac{(T-1) b_{2}^{\prime \prime}+(S-1) b_{3}^{\prime \prime}}{2}
$$

Notice that, for $1 \leq j \leq N$,

$$
\left|r_{j} b_{2}^{\prime}+s_{j} b_{1}^{\prime}-\eta\right|^{k_{i}} \leq\left(\frac{(R-1) b_{2}+(S-1) b_{1}}{2 d_{1}}\right)^{k_{i}}, \quad\left|t_{j} b_{2}^{\prime \prime}+s_{j} b_{3}^{\prime \prime}-\zeta\right|^{k_{i}} \leq\left(\frac{(T-1) b_{2}+(S-1) b_{3}}{2 d_{3}}\right)^{m_{i}}
$$

and that

$$
\sum_{i=0}^{N-1} k_{i}=\sum_{i=0}^{N-1} m_{i}=\frac{(K-1) K}{2} K L=\frac{N}{2}(K-1)
$$

then Hadamard's inequality implies

$$
\begin{aligned}
&|P| \leq N^{N / 2}\left(\frac{(R-1) b_{2}+(S-1) b_{1}}{2 d_{1}}\right)^{(K-1) N / 2}\left(\frac{(T-1) b_{2}+(S-1) b_{3}}{2 d_{3}}\right)^{(K-1) N / 2} \\
& \times\left(\prod_{i=0}^{K-1} k_{i}!\right)^{-1}\left(\prod_{i=0}^{K-1} m_{i}!\right)^{-1}
\end{aligned}
$$

Recall that

$$
b=\left(b_{2}^{\prime} \eta_{0}\right)\left(b_{2}^{\prime \prime} \zeta_{0}\right)\left(\prod_{k=1}^{K-1} k!\right)^{-\frac{4}{K(K-1)}}, \text { where } \eta_{0}=\frac{R-1}{2}+\beta_{1} \frac{S-1}{2}, \zeta_{0}=\frac{T-1}{2}+\beta_{3} \frac{S-1}{2} .
$$

Thus we get,

$$
|P| \leq N^{N / 2} b^{(K-1) N / 2}
$$

Collecting all the above estimates, we find

$$
\log |\Delta| \geq-(\mathcal{D}-1)\left(\log \left(N^{N / 2}\right)+\frac{(K-1) N}{2} \log b\right)-\mathcal{D} \sum_{i=1}^{3}\left(V_{i}-U_{i}\right) \mathrm{h}\left(\alpha_{i}\right)+\sum_{i=1}^{3} V_{i} \log \left|\alpha_{i}\right| .
$$

The inequalities $\operatorname{Dh}\left(\alpha_{i}\right) \geq \log \left|\alpha_{i}\right| \geq 0$ imply

$$
V_{i} \log \left|\alpha_{i}\right|-\mathcal{D}\left(V_{i}-U_{i}\right) \mathrm{h}\left(\alpha_{i}\right) \geq\left(M_{i}+G_{i}\right) \log \left|\alpha_{i}\right|-2 \mathcal{D} G_{i} \mathrm{~h}\left(\alpha_{i}\right)
$$

and the result follows.
3.4. Synthesis. Under the hypotheses of the previous Propositions we get

$$
\begin{gathered}
-\frac{\mathcal{D}-1}{2} N \log N+\sum_{i=1}^{3}\left(M_{i}+G_{i}\right) \log \left|\alpha_{i}\right|-2 \mathcal{D} \sum_{i=1}^{3} G_{i} \mathrm{~h}\left(\alpha_{i}\right)-\frac{\mathcal{D}-1}{2}(K-1) N \log b \\
\leq \sum_{i=1}^{3} M_{i} \log \left|\alpha_{i}\right|+\rho \sum_{i=1}^{3} G_{i}\left|\log \alpha_{i}\right|+\log (N!)+N \log 2+\frac{N}{2}(K-1) \log b \\
\quad-\left(\frac{N K L}{4}+\frac{N K L}{4(2 K-1)}-\frac{N K}{3 L}-\frac{N}{2}\right) \log \rho+0.001
\end{gathered}
$$

Or, after some simplification,

$$
\begin{aligned}
-\frac{\mathcal{D}-1}{2} & N \log N \leq \sum_{i=1}^{3} G_{i}\left(\rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D h}\left(\alpha_{i}\right)\right)+\log (N!)+N \log 2 \\
& +\frac{K-1}{2} \mathcal{D} N \log b-\left(\frac{N K L}{4}+\frac{N K L}{4(2 K-1)}-\frac{K N}{3 L}-\frac{N}{2}\right) \log \rho+0.001
\end{aligned}
$$

This result implies (divide by $N / 2$ and use $N!<0.96 N(N / e)^{N}$, true for $N>7$) the following proposition (already appearing in [2]):

Proposition 3.7. With the previous notation, if $K \geq 3, L \geq 5, \rho \geq 2$, and if $\Delta \neq 0$ then

$$
\Lambda^{\prime}>\rho^{-K L}
$$

provided that

$$
\begin{aligned}
\left(\frac{K L}{2}+\frac{L}{4}-1-\frac{2 K}{3 L}\right) \log \rho \geq & (\mathcal{D}+1) \log N+g L\left(a_{1} R+a_{2} S+a_{3} T\right) \\
& +\mathcal{D}(K-1) \log b-2 \log (e / 2)
\end{aligned}
$$

where the a_{i} are positive real numbers which satisfy

$$
a_{i} \geq \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D} \mathrm{~h}\left(\alpha_{i}\right), \quad i=1,2,3
$$

3.5. A zero-lemma. To conclude we need to find conditions under which one of our determinants Δ is non-zero, a so-called zero-lemma. We use a zero-lemma due to M. Laurent [8] which is already used in [3] and improves [4] and provides an important improvement on the zero-lemma of [1]:
Proposition 3.8 (M. Laurent). Suppose that K, L are positive integers and that Σ_{1}, Σ_{2} and Σ_{3} are finite subsets of $\mathbb{C}^{2} \times \mathbb{C}^{*}$ containing the origin and such that

$$
\begin{cases}\operatorname{Card}\left\{\lambda x_{1}+\mu x_{2}:\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\} & >K, \quad \forall(\lambda, \mu) \neq(0,0) \tag{i}\\ \operatorname{Card}\left\{y:\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\} & >L,\end{cases}
$$

and

$$
\begin{cases}\operatorname{Card}\left\{\left(\lambda x_{1}+\mu x_{2}, y\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\} & >2 K L, \quad \forall(\lambda, \mu) \neq(0,0), \tag{ii}\\ \operatorname{Card}\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\} & >2 K^{2},\end{cases}
$$

and also that

$$
\begin{equation*}
\operatorname{Card} \Sigma_{3}>6 K^{2} L \tag{iii}
\end{equation*}
$$

Then, the only polynomial $P \in \mathbb{C}\left[X_{1}, X_{2}, Y\right]$ with $\operatorname{deg}_{X_{i}} P \leq K$ for $i=1$, 2 , and $\operatorname{deg}_{Y} P \leq L$ which is zero on the set $\Sigma_{1}+\Sigma_{2}+\Sigma_{3}$, is the zero polynomial.

We now study the above conditions in detail. For $j=1,2$, 3 , we shall consider finite sets Σ_{j} defined by

$$
\Sigma_{j}=\left\{\left(r+s \beta_{1}, t+s \beta_{3}, \alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}\right): 0 \leq r \leq R_{j}, 0 \leq s \leq S_{j}, 0 \leq t \leq T_{j}\right\}
$$

where R_{j}, S_{j} and T_{j} are positive integers and where

$$
\beta_{1}=\frac{b_{1}}{b_{2}}=\frac{b_{1}^{\prime}}{b_{2}^{\prime}}, \quad \beta_{3}=\frac{b_{3}}{b_{2}}=\frac{b_{3}^{\prime \prime}}{b_{2}^{\prime \prime}} .
$$

Of course, this choice corresponds to the entries of the arithmetical matrices introduced previously.
We have to consider the multiplicative group \mathcal{G} generated by the three algebraic numbers α_{1}, α_{2} and α_{3}.

Concerning the above group, the following elementary lemma is important.
Lemma 3.9. Suppose that α_{1}, α_{2} and α_{3} are non-zero complex numbers. Let b_{1}, b_{2} and b_{3} be non-zero rational integers. Let $\log \alpha_{j}$ be any determination of the logarithm of α_{j} for $j=1$, 2, 3 and put

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3}
$$

Let

$$
\beta_{1}=b_{1} / b_{2}, \quad \beta_{3}=b_{3} / b_{2} .
$$

Then the following conditions are equivalent:
(a) The map

$$
\psi: \mathbb{Z}^{3} \rightarrow \mathbb{C}^{3}, \quad(r, s, t) \mapsto\left(r+\beta_{1} s, t+\beta_{3} s, \alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}\right)
$$

is not one-to-one (not injective).
(b) There exists some positive integer m such that

$$
\alpha_{2}{ }^{m b_{2}}=\alpha_{1}{ }^{m b_{1}} \alpha_{3}{ }^{m b_{3}} .
$$

(c) The number Λ belongs to the set $i \pi \mathbb{Q}$.

Proof. Clearly, without loss of generality, we may assume that $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$. Then we put

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right), b_{1}=d_{1} b_{1}^{\prime}, b_{2}=d_{1} b_{2}^{\prime}, \quad d_{3}=\operatorname{gcd}\left(b_{3}, b_{2}\right), b_{3}=d_{3} b_{3}^{\prime \prime}, b_{2}=d_{3} b_{2}^{\prime \prime}
$$

Since b_{1}, b_{2}, b_{3} are coprime, we have $\operatorname{gcd}\left(d_{1}, d_{3}\right)=1$, thus

$$
b_{2}=d_{1} d_{3} \tilde{b}_{2}(\text { say }), \quad b_{2}^{\prime}=d_{3} \tilde{b}_{2}, \quad b_{2}^{\prime \prime}=d_{1} \tilde{b}_{2} .
$$

After these preliminaries, we prove the implication $(a) \Rightarrow(b)$. Suppose that the map ψ is not injective. Then there exist rational integers r, s, t, not all zero, such that

$$
\psi(r, s, t)=(0,0,1) .
$$

That is,

$$
r+s \beta_{1}=0, \quad t+s \beta_{3}=0, \quad \alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}=1
$$

The first relation implies $r=-k b_{1}^{\prime}$ and $s=k b_{2}^{\prime}=k d_{3} \tilde{b}_{2}$, for some rational integer k. The second relation implies $t=-l b_{1}^{\prime}$ and $s=l b_{2}^{\prime \prime}=l d_{1} \tilde{b}_{2}$, for some rational integer l. In particular, $k d_{3}=l d_{1}$, hence there exists $m \in \mathbb{Z}$ such that $k=m d_{1}$ and $l=m d_{3}$. Thus

$$
r=-m b_{1}, \quad s=m b_{2}, \quad t=-m b_{3} .
$$

Clearly $m \neq 0$, and the third relation gives

$$
\alpha_{2}{ }^{m b_{2}}=\alpha_{1}{ }^{m b_{1}} \alpha_{3}{ }^{m b_{3}},
$$

as wanted.
Clearly, (b) implies (c).
To show that (c) implies (a), we suppose that (c) holds, i.e. that $m \Lambda$ belongs to $2 i \pi \mathbb{Z}$ for some positive rational integer m. Then it is clear that $\psi\left(-m b_{1}, m b_{2},-m b_{3}\right)=(0,0,1)$, proving that the map ψ is not injective.

Corollary 3.10. If α_{1}, α_{2} and α_{3} are non-zero complex numbers such that (for example) α_{1} and α_{2} are multiplicatively independent and $\alpha_{3} \neq 1$ is a root of unity, and let $\log \alpha_{j}$ be any determination of the logarithm of α_{j} for $j=1$, 2, 3, then the numbers $\log \alpha_{1}, \log \alpha_{2}$ and $\log \alpha_{3}$ are linearly independent over the rationals. Indeed, if b_{1}, b_{2} and b_{3} are non-zero rational integers then the number $b_{1} \log \alpha_{1}+b_{2} \log \alpha_{2}+b_{3} \log \alpha_{3}$ does not belong to the set $i \pi \mathbb{Q}$.

Proof. Suppose that

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3}=0
$$

where b_{1}, b_{2} and b_{3} are rational integers not all equal to zero. Then $\alpha_{2}^{b_{2}}=\alpha_{1}^{b_{1}} \alpha_{3}^{b_{3}}$. Assume that $\alpha_{3}^{d}=1$ with $d>0$, then $\alpha_{2}{ }^{d b_{2}}=\alpha_{1}{ }^{d b_{1}}$, which implies $b_{1}=b_{2}=0$ since α_{1} and α_{2} are multiplicatively independent. Thus $b_{3} \neq 0$ and $\Lambda=b_{3} \log \alpha_{3} \neq 0$, contradiction. This proves the first claim. The second claim is an obvious consequence of the first one.

We also assume that

$$
\begin{equation*}
\operatorname{Card}\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\}=\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Card}\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\}=\left(R_{2}+1\right)\left(S_{2}+1\right)\left(T_{2}+1\right) \tag{2}
\end{equation*}
$$

Concerning the conditions $\left(\mathbf{I}_{1}\right)$ and $\left(\mathbf{I}_{2}\right)$, the following very elementary lemma is useful.
Lemma 3.11. Suppose that α_{1}, α_{2} and α_{3} are non-zero complex numbers and that b_{1}, b_{2} and b_{3} are positive rational integers which are coprime. Let R, S and T be positive integers and consider the set

$$
\tilde{\Sigma}=\left\{\left(r+s b_{1} / b_{2}, t+s b_{3} / b_{2}\right): 0 \leq r \leq R, 0 \leq s \leq S, 0 \leq t \leq T\right\}
$$

Then

$$
\operatorname{Card} \tilde{\Sigma}=(R+1)(S+1)(T+1)
$$

unless

$$
b_{1} \leq R \quad \text { and } \quad b_{2} \leq S \quad \text { and } \quad b_{3} \leq T
$$

Proof. Let

$$
\beta_{1}=b_{1} / b_{2}, \quad \beta_{3}=b_{3} / b_{2}
$$

As above, we put

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right), b_{1}=d_{1} b_{1}^{\prime}, b_{2}=d_{1} b_{2}^{\prime}, \quad d_{3}=\operatorname{gcd}\left(b_{3}, b_{2}\right), b_{3}=d_{3} b_{3}^{\prime \prime}, b_{2}=d_{3} b_{2}^{\prime \prime}
$$

Since b_{1}, b_{2}, b_{3} are coprime, we have $\operatorname{gcd}\left(d_{1}, d_{3}\right)=1$, thus

$$
b_{2}=d_{1} d_{3} \tilde{b}_{2}(\text { say }), \quad b_{2}^{\prime}=d_{3} \tilde{b}_{2}, \quad b_{2}^{\prime \prime}=d_{1} \tilde{b}_{2}
$$

After these preliminaries, we prove the result. Suppose that the map

$$
\psi: \mathbb{Z}^{3} \rightarrow \mathbb{C}^{2}, \quad(r, s, t) \mapsto\left(r+\beta_{1} s, t+\beta_{3} s\right)
$$

is not injective. Then there exist two different triples of rational integers (r, s, t) and $\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$, with $0 \leq r, r^{\prime} \leq R, 0 \leq s, s^{\prime} \leq S$ and $0 \leq t, t^{\prime} \leq T$ such that

$$
\psi(r, s, t)=\psi\left(r^{\prime}, s^{\prime}, t^{\prime}\right)
$$

That is,

$$
\left(r-r^{\prime}\right)+\left(s-s^{\prime}\right) \beta_{1}=0 \quad \text { and } \quad\left(t-t^{\prime}\right)+\left(s-s^{\prime}\right) \beta_{3}=0
$$

The first relation implies $r-r^{\prime}=-k b_{1}^{\prime}$ and $s-s^{\prime}=k b_{2}^{\prime}=k d_{3} \tilde{b}_{2}$, for some rational integer k. The second relation implies $t-t^{\prime}=-l b_{1}^{\prime \prime}$ and $s-s^{\prime}=l b_{2}^{\prime \prime}=l d_{1} \tilde{b}_{2}$, for some rational integer l. In particular, $k d_{3}=l d_{1}$, hence there exists $m \in \mathbb{Z}$ such that $k=m d_{1}$ and $l=m d_{3}$. Thus

$$
r-r^{\prime}=-m b_{1}, \quad s-s^{\prime}=m b_{2}, \quad t-t^{\prime}=-m b_{3}
$$

and the conclusion follows since clearly m is non-zero.
Because of the Lemma 3.9, we see that

$$
\Lambda \notin i \pi \mathbb{Q} \Longrightarrow \operatorname{Card} \Sigma_{j}=\left(R_{j}+1\right)\left(S_{j}+1\right)\left(T_{j}+1\right), \quad j=1,2,3 .
$$

The conditions of the zero-lemma, Proposition 3.8, are the following:
(i) The first condition is divided into two subconditions, the first subcondition is

$$
\begin{equation*}
\operatorname{Card}\left\{\lambda x_{1}+\mu x_{2}:\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\}>K, \quad \forall(\lambda, \mu) \neq(0,0) \tag{i.1}
\end{equation*}
$$

This is the most technical of the above conditions, we study it in detail later.

The second subcondition is

$$
\begin{equation*}
\operatorname{Card}\left\{y:\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\}>L \tag{i.2}
\end{equation*}
$$

(ii) The second condition of the zero-lemma is also divided into two subconditions, the first being

$$
\begin{equation*}
\operatorname{Card}\left\{\left(\lambda x_{1}+\mu x_{2}, y\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\}>2 K L, \quad \forall(\lambda, \mu) \neq(0,0) \tag{ii.1}
\end{equation*}
$$

We replace it by the stronger condition

$$
\operatorname{Card}\left\{y:\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\}>2 K L
$$

The second subcondition of condition (ii) of the zero-lemma is

$$
\begin{equation*}
\operatorname{Card}\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\}>2 K^{2} \tag{ii.2}
\end{equation*}
$$

By $\left(\mathbf{I}_{2}\right)$ this condition is equivalent to

$$
\begin{equation*}
\left(R_{2}+1\right)\left(S_{2}+1\right)\left(T_{2}+1\right)>2 K^{2} \tag{C.ii.2}
\end{equation*}
$$

(iii) There is just one condition, namely

$$
\operatorname{Card} \Sigma_{3}>6 K L^{2}
$$

When Λ does not belong to the set $i \pi \mathbb{Q}$, this is equivalent to

$$
\begin{equation*}
\left(R_{3}+1\right)\left(S_{3}+1\right)\left(T_{3}+1\right)>6 K^{2} L \tag{C.iii}
\end{equation*}
$$

Now we have 'translated' all the conditions of Proposition 3.8, except the subcondition (i.1). We come back to this situation in the following Lemma which brings some extra information to Proposition 3.1.1 of [1], or also [12] Ex 6.4, p. 184.

Lemma 3.12. Let A, B and C be non-zero rational integers with $\operatorname{gcd}(A, B, C)=1$ and let D be an integer. Define

$$
\Pi=\left\{(x, y, z) \in \mathbb{C}^{3}: A x+B y+C z=D\right\}
$$

and consider the set

$$
\Sigma=\left\{(x, y, z) \in \mathbb{Z}^{3}: 0 \leq x \leq X, 0 \leq y \leq Y, 0 \leq z \leq Z\right\}
$$

where X, Y and Z are positive integers. Let

$$
M=\operatorname{Card}\{(x, y, z) \in \Sigma: A x+B y+C z=D\}
$$

Then

$$
M \leq\left(1+\left\lfloor\frac{X}{\alpha}\right\rfloor\right)\left(1+\left\lfloor\frac{Y}{|C| / \alpha}\right\rfloor\right) \quad \text { and } \quad M \leq\left(1+\left\lfloor\frac{X}{\alpha}\right\rfloor\right)\left(1+\left\lfloor\frac{Z}{|B| / \alpha}\right\rfloor\right)
$$

where

$$
\alpha=\operatorname{gcd}(B, C)
$$

If we suppose that

$$
M \geq \max \{X+Y+1, Y+Z+1, Z+X+1\}
$$

then

$$
|A| \leq \frac{(Y+1)(Z+1)}{M-\max \{Y, Z\}}, \quad|B| \leq \frac{(X+1)(Z+1)}{M-\max \{X, Z\}}, \quad|C| \leq \frac{(X+1)(Y+1)}{M-\max \{X, Y\}}
$$

Proof. If the image (by the map $(x, y, z) \mapsto A x+B y+C z)$ of a point $(x, y, z) \in \mathbb{Z}^{3}$ belongs to the plane Π then

$$
A x \equiv D \quad(\bmod \alpha)
$$

where A and α are coprime since $\operatorname{gcd}(A, B, C)=1$. This shows that the number of such x which satisfy $0 \leq x \leq X$ is

$$
\leq 1+\left\lfloor\frac{X}{\alpha}\right\rfloor .
$$

To simplify the notation we suppose for a while that A, B and C are positive. Let now x be fixed, with $0 \leq x \leq X$, and such that the images of two points (x, y, z) and $\left(x, y^{\prime}, z^{\prime}\right)$ belong to Π. Then

$$
B\left(y^{\prime}-y\right)=C\left(z-z^{\prime}\right),
$$

where we suppose (as we may) that y is minimal (then $y^{\prime}>y$). Hence there exists $k \in \mathbb{N}$ such that

$$
y^{\prime}-y=k(C / \alpha) \quad \text { and } \quad z-z^{\prime}=k(B / \alpha) .
$$

It follows that, for x fixed, the number of $(x, y, z) \in \Sigma$ whose image belong to Π is

$$
\leq 1+\left\lfloor\frac{Y}{C / \alpha}\right\rfloor
$$

Hence

$$
M \leq\left(1+\left\lfloor\frac{X}{\alpha}\right\rfloor\right)\left(1+\left\lfloor\frac{Y}{C / \alpha}\right\rfloor\right),
$$

which proves the first inequality of the Lemma. The proof of the second one is the same (looking at the coordinate z).

For $\xi \geq 1$ put

$$
f(\xi)=\left(1+\frac{X}{\xi}\right)\left(1+\frac{\xi Y}{C}\right)
$$

then

$$
M \leq f(\alpha)
$$

Suppose now

$$
M>\max \{X+1, Y+1, Z+1\}
$$

Put

$$
\alpha_{1}=\max \{1, C / Y\}, \quad \alpha_{2}=\min \{C, X\}
$$

- If $C>Y$ and $1 \leq \alpha<C / Y$ then we get $M \leq X+1$, contradiction, thus

$$
C>Y \Longrightarrow \alpha \geq \alpha_{1} \text { and } f\left(\alpha_{1}\right)=2\left(1+\frac{X Y}{C}\right)
$$

- If $C>X$ and $\alpha>X$ then we get $M \leq Y+1$, contradiction, thus

$$
C>X \Longrightarrow \alpha \leq \alpha_{2} \text { and } f\left(\alpha_{2}\right)=2\left(1+\frac{X Y}{C}\right)
$$

- If $C \leq \min \{X, Y\}$ then $\alpha_{1}=1$ and $\alpha_{2}=C$ and

$$
f\left(\alpha_{1}\right)=(X+1)\left(1+\frac{Y}{C}\right), \quad f\left(\alpha_{2}\right)=\left(1+\frac{X}{C}\right)(Y+1)
$$

It is easy to check that $f^{\prime \prime}$ is positive and, from the previous study, it follows that

$$
M \leq \max \left\{f\left(\alpha_{1}\right), f\left(\alpha_{2}\right)\right\}
$$

Considering the different cases $C>\max \{X, Y\}, X \leq C<Y, Y \leq C<X$ and $C \leq \min \{X, Y\}$ we get always

$$
M \leq \max \left\{(X+1)\left(1+\frac{Y}{C}\right),\left(1+\frac{X}{C}\right)(Y+1)\right\}= \begin{cases}(X+1)\left(1+\frac{Y}{C}\right), & \text { if } X \geq Y \\ \left(1+\frac{X}{C}\right)(Y+1), & \text { otherwise }\end{cases}
$$

If $X \geq Y$ then

$$
M \leq(X+1)\left(1+\frac{Y}{C}\right)
$$

which implies

$$
M-(X+1) \leq \frac{Y(X+1)}{C}, \quad \text { hence } C \leq \frac{Y(X+1)}{M-(X+1)}
$$

and the hypothesis $M \geq X+Y+1$ leads to

$$
C \leq \frac{(X+1)(Y+1)}{M-X}
$$

otherwise (i.e., if $X<Y$) we get

$$
C \leq \frac{(X+1)(Y+1)}{M-Y}
$$

Finally, we always have

$$
|C| \leq \frac{(X+1)(Y+1)}{M-\max \{X, Y\}}
$$

In the same way, considering now the z-coordinate, we get

$$
|B| \leq \frac{(X+1)(Z+1)}{M-\max \{X, Z\}}
$$

Then, considering y fixed, a similar argument gives

$$
|A| \leq \frac{(Y+1)(Z+1)}{M-\max \{Y, Z\}}
$$

Corollary 3.13. Let B and C be non-zero rational integers with $\operatorname{gcd}(B, C)=1$ and let D be an integer. Define the plane Π (with $A=0$), i.e.

$$
\Pi=\left\{(x, y, z) \in \mathbb{C}^{3}: B y+C z=D\right\}
$$

and Σ and M as in the above Lemma. Then

$$
M \leq(X+1)\left(1+\left\lfloor\frac{Y}{|C|}\right\rfloor\right) \quad \text { and } \quad M \leq(X+1)\left(1+\left\lfloor\frac{Z}{|B|}\right\rfloor\right)
$$

Moreover, if we suppose that

$$
M \geq \max \{X+Y+1, X+Z+1\}
$$

then

$$
|B| \leq \frac{(X+1)(Z+1)}{M-X}, \quad|C| \leq \frac{(X+1)(Y+1)}{M-X}
$$

Proof. The proof is similar to that of the Lemma, but simpler. We omit the details.

Lemma 3.14. Let R_{1}, S_{1} and T_{1} be positive integers and consider the set

$$
\tilde{\Sigma}_{1}=\left\{\left(x_{1}, x_{2}\right)=\left(r+s \beta_{1}, t+s \beta_{3}\right): 0 \leq r \leq R_{1}, 0 \leq s \leq S_{1}, 0 \leq t \leq T_{1}\right\}
$$

where $\beta_{1}=b_{1} / b_{2}$ and $\beta_{3}=b_{3} / b_{2}$ with b_{1}, b_{2} and b_{3} coprime non-zero rational integers, and assume that

$$
\operatorname{Card} \tilde{\Sigma}_{1}=\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)
$$

Put

$$
\mathcal{V}=\left(\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)\right)^{1 / 2}
$$

Let $(\lambda, \mu) \in \mathbb{C}^{2} \backslash\{(0,0)\}$ and let c be a complex number. Let χ be a positive real number. Then, for any c, the number M of elements $\left(x_{1}, x_{2}\right) \in \tilde{\Sigma}_{1}$ such that

$$
\lambda x_{1}+\mu x_{2}=c
$$

satisfies

$$
\begin{equation*}
M \leq \max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1, \chi \mathcal{V}\right\}=: \mathcal{M} \tag{1}
\end{equation*}
$$

- except if, either there exist two non-zero rational integers r_{0} and s_{0} such that

$$
r_{0} b_{2}=s_{0} b_{1}
$$

with

$$
\left|r_{0}\right| \leq \frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-T_{1}} \quad \text { and } \quad\left|s_{0}\right| \leq \frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-T_{1}}
$$

or there exist rational integers r_{1}, s_{1}, t_{1} and t_{2}, with $r_{1} s_{1} \neq 0$, such that

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}, \quad \operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=1
$$

which also satisfy

$$
\begin{aligned}
& 0<\left|r_{1} s_{1}\right| \leq \delta \cdot \frac{\left(R_{1}+1\right)\left(S_{1}+1\right)}{\mathcal{M}-\max \left\{R_{1}, S_{1}\right\}}, \quad\left|s_{1} t_{1}\right| \leq \delta \cdot \frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-\max \left\{S_{1}, T_{1}\right\}} \\
& \text { and } \quad\left|r_{1} t_{2}\right| \leq \delta \cdot \frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-\max \left\{R_{1}, T_{1}\right\}}
\end{aligned}
$$

where

$$
\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)
$$

Moreover when $t_{1}=0$ we can take $r_{1}=1$, and when $t_{2}=0$ we can take $s_{1}=1$.
If the previous upper bound (1) for M holds then, for all $(\lambda, \mu) \in \mathbb{C}^{2} \backslash\{(0,0)\}$, we have

$$
\operatorname{Card}\left\{\lambda x_{1}+\mu x_{2}:\left(x_{1}, x_{2}\right) \in \tilde{\Sigma}_{1}\right\} \geq \frac{\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)}{\max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1, \chi \mathcal{V}\right\}}
$$

Proof. Let

$$
E_{1}=\left\{(r, s, t) \in \mathbb{Z}^{3}: 0 \leq r \leq R_{1}, 0 \leq s \leq S_{1}, 0 \leq t \leq T_{1}\right\} .
$$

Recall the notation

$$
x_{1}=r+\beta_{1} s, \quad x_{2}=t+\beta_{3} s, \quad \beta_{1}=\frac{b_{1}}{b_{2}}, \quad \beta_{3}=\frac{b_{3}}{b_{2}} .
$$

For $(\lambda, \mu) \in \mathbb{C}^{2} \backslash\{(0,0)\}$, we consider the cardinality

$$
N=\operatorname{Card}\left\{\lambda x_{1}+\mu x_{2}:\left(x_{1}, x_{2}\right) \in \tilde{\Sigma}_{1}\right\} .
$$

We put

$$
M=\max _{c \in \mathbb{C}} \operatorname{Card}\left\{\left(x_{1}, x_{2}\right) \in \tilde{\Sigma}_{1}: \lambda x_{1}+\mu x_{2}=c\right\}
$$

and

$$
\Pi_{c}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \lambda z_{1}+\mu z_{2}=c\right\} .
$$

We clearly have

$$
N \geq \operatorname{Card} \tilde{\Sigma}_{1} / M
$$

so that the last claim of the Lemma is proved and we may also suppose that (1) does not hold.
Consider a complex number c such that the number of points $\left(x_{1}, x_{2}\right) \in \tilde{\Sigma}_{1}$ for which $\lambda x_{1}+\mu x_{2}$ belongs to Π_{c} is maximal (and so equal to M). We distinguish the following cases.

- If $\mu=0$: Apply the previous Corollary with $(x, y, z) \mapsto(r, s, t),(X, Y, Z) \mapsto\left(R_{1}, S_{1}, T_{1}\right)$, $(A, B, C) \mapsto\left(b_{2} / d_{1}, b_{1} / d_{1}, 0\right)$, where

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right),
$$

and $\left(b_{2} / d_{1}, b_{1} / d_{1}\right) \mapsto\left(r_{0}, s_{0}\right)$. Then we get the wanted assertion (the 'either' case).
Now we assume $\mu \neq 0$ and, to simplify the notation we take $\mu=1$.

- If $\lambda=0$: Now, we apply the previous Corollary with $(A, B, C) \mapsto\left(0, b_{3} / d_{3}, b_{2} / d_{3}\right)$, where

$$
d_{3}=\operatorname{gcd}\left(b_{2}, b_{3}\right),
$$

and $\left(b_{2} / d_{3}, b_{3} / d_{3}\right) \mapsto\left(s_{1}, t_{2}\right)$. Then we get the asserted relation

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}
$$

with $r_{1}=1$ and $t_{1}=0$, and the asserted bounds on r_{1}, s_{1}, t_{1} and t_{2}.

- If $\lambda b_{1}+b_{3}=0$: In this case $(A, B, C) \mapsto\left(-b_{3} / d, 0, b_{1} / d\right)$, where

$$
d=\operatorname{gcd}\left(b_{1}, b_{3}\right),
$$

and $\left(b_{1} / d,-b_{3} / d\right) \mapsto\left(r_{1}, t_{1}\right)$. Then we get the asserted relation

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}
$$

with $s_{1}=1$ and $t_{2}=0$, and the asserted bounds on r_{1}, s_{1}, t_{1} and t_{2}.

- If $\lambda \mu\left(\lambda b_{1}+b_{3}\right) \neq 0$: Since $M>S_{1}+1$, there exist two distinct triples $\left(r, s_{0}, t\right)$ and $\left(r^{\prime}, s_{0}, t^{\prime}\right) \in E$ such that

$$
\lambda\left(r+\beta_{1} s_{0}\right)+\left(t+\beta_{3} s_{0}\right)=\lambda\left(r^{\prime}+\beta_{1} s_{0}\right)+\left(t^{\prime}+\beta_{3} s_{0}\right)
$$

which gives $\lambda\left(r^{\prime}-r\right)=t-t^{\prime}$, where we suppose (as we may) that r is minimal (then $r^{\prime}>r$) and also that $r^{\prime}-r>0$ is minimal. Put $r_{1}=r^{\prime}-r$ and $t_{1}=t-t^{\prime}$, then

$$
\lambda=t_{1} / r_{1} .
$$

Since $M>R_{1}+1$, there exist two distinct triples $\left(r_{0}, s, t\right)$ and $\left(r_{0}, s^{\prime}, t^{\prime}\right) \in E$ such that

$$
t_{1} b_{2} r_{0}+\left(t_{1} b_{1}+r_{1} b_{3}\right) s+r_{1} b_{2} t=t_{1} b_{2} r_{0}+\left(t_{1} b_{1}+r_{1} b_{3}\right) s^{\prime}+r_{1} b_{2} t^{\prime}
$$

which gives now a relation of the form

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}, \quad \text { with } t_{1} t_{2} \neq 0
$$

for which we may suppose that

$$
\operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=1
$$

Now we are ready to apply the above Lemma 3.12 with

$$
(A, B, C) \mapsto\left(t_{1} s_{1} / \delta, r_{1} t_{2} / \delta, r_{1} s_{1} / \delta\right)
$$

where

$$
\delta=\operatorname{gcd}\left(t_{1} s_{1}, r_{1} t_{2}, r_{1} s_{1}\right)
$$

and we get the conclusion, except that we have to prove that $\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)$.

Suppose that p is a prime divisor of δ, then $p \mid r_{1} s_{1}$. If $p \nmid r_{1}$ then $p \mid s_{1}$ and $p \nmid t_{1}$, thus $p \nmid r_{1} t_{1}$: contradiction. If $p \nmid s_{1}$ then $p \mid r_{1}$ and $p \nmid t_{1}$, thus $p \nmid s_{1} t_{2}$: contradiction. Hence, $p \mid r_{1}$ and $p \mid s_{1}$ and $p \nmid t_{1} t_{2}$. And now it is easy to conclude that

$$
\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)
$$

This ends the proof of the Lemma.
Remark. Before leaving this Subsection, it is important to notice that the conclusion of the zerolemma, namely '.. the only polynomial $P \in \mathbb{C}\left[X_{1}, X_{2}, Y\right]$ with $\operatorname{deg}_{\mathbf{x}_{\mathbf{i}}} P \leq K$ for $i=1$, 2 , and $\operatorname{deg}_{Y} P \leq L$ which is zero on the set $\Sigma_{1}+\Sigma_{2}+\Sigma_{3}$, is the zero polynomial' applied to the interpolation matrix considered above implies that this interpolation matrix is of maximal rank, which means that there exists a determinant Δ as above which is nonzero.
3.6. Statement of the main result: a lower bound for the linear form. If we gather the results obtained in the previous subsections, we get the following theorem.

Theorem 2. We consider three non-zero algebraic numbers α_{1}, α_{2} and α_{3}, which are either all real and >1 or all complex of modulus one and all $\neq 1$. We also consider three positive rational integers b_{1}, b_{2}, b_{3} with $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$, and the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3}
$$

where the logarithms of the α_{i} are arbitrary determinations of the logarithm, but which are all real or all purely imaginary. We assume that

$$
0<|\Lambda|<2 \pi / w
$$

where w is the maximal order of a root of unity belonging to the number field $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{2}$. And we assume also that

$$
b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda| .
$$

We put

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right), \quad d_{3}=\operatorname{gcd}\left(b_{3}, b_{2}\right), \quad b_{2}=d_{1} b_{2}^{\prime}=d_{3} b_{2}^{\prime \prime} .
$$

Let $K, L, R, R_{1}, R_{2}, R_{3}, S, S_{1}, S_{2}, S_{3}, T, T_{1}, T_{2}, T_{3}$ be positive rational integers, with

$$
K \geq 3, \quad L \geq 5, \quad R>R_{1}+R_{2}+R_{3}, \quad S>S_{1}+S_{2}+S_{3}, \quad T>T_{1}+T_{2}+T_{3}
$$

Let $\rho \geq 2$ be a real number. Assume first that

$$
\begin{align*}
\left(\frac{K L}{2}+\frac{L}{4}-1-\frac{2 K}{3 L}\right) \log \rho \geq & (\mathcal{D}+1) \log N+g L\left(a_{1} R+a_{2} S+a_{3} T\right) \tag{2}\\
& +\mathcal{D}(K-1) \log b-2 \log (e / 2)
\end{align*}
$$

where $N=K^{2} L, \mathcal{D}=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{R}\right], e=\exp (1)$,

$$
g=\frac{1}{4}-\frac{N}{12 R S T}, \quad b=\left(b_{2}^{\prime} \eta_{0}\right)\left(b_{2}^{\prime \prime} \zeta_{0}\right)\left(\prod_{k=1}^{K-1} k!\right)^{-\frac{4}{K(K-1)}},
$$

with

$$
\eta_{0}=\frac{R-1}{2}+\frac{(S-1) b_{1}}{2 b_{2}}, \quad \zeta_{0}=\frac{T-1}{2}+\frac{(S-1) b_{3}}{2 b_{2}},
$$

and

$$
a_{i} \geq \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D} \mathrm{~h}\left(\alpha_{i}\right), \quad i=1,2,3
$$

[^1]Put

$$
\mathcal{V}=\sqrt{\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)}
$$

If, for some positive real number χ,
(i) $\quad\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)>K \cdot \max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1, \chi \mathcal{V}\right\}$,
(ii) $\operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}: 0 \leq r \leq R_{1}, 0 \leq s \leq S_{1}, 0 \leq t \leq T_{1}\right\}>L$,
(iii) $\quad\left(R_{2}+1\right)\left(S_{2}+1\right)\left(T_{2}+1\right)>2 K^{2}$,
(iv) $\operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}: 0 \leq r \leq R_{2}, 0 \leq s \leq S_{2}, 0 \leq t \leq T_{2}\right\}>2 K L$, and
(v) $\quad\left(R_{3}+1\right)\left(S_{3}+1\right)\left(T_{3}+1\right)>6 K^{2} L$,

then either

$$
\Lambda^{\prime}>\rho^{-K L}
$$

where

$$
\Lambda^{\prime}=|\Lambda| \cdot \frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2\left|b_{2}\right|}
$$

or at least one of the following conditions (C1), (C2), (C3) hold:
(C1)

$$
\left|b_{1}\right| \leq R_{1} \quad \text { and } \quad\left|b_{2}\right| \leq S_{1} \quad \text { and } \quad\left|b_{3}\right| \leq T_{1}
$$

$$
\begin{equation*}
\left|b_{1}\right| \leq R_{2} \quad \text { and } \quad\left|b_{2}\right| \leq S_{2} \quad \text { and } \quad\left|b_{3}\right| \leq T_{2} \tag{C2}
\end{equation*}
$$

(C3) either there exist two non-zero rational integers r_{0} and s_{0} such that

$$
r_{0} b_{2}=s_{0} b_{1}
$$

with

$$
\left|r_{0}\right| \leq \frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-T_{1}} \quad \text { and } \quad\left|s_{0}\right| \leq \frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-T_{1}}
$$

where

$$
\mathcal{M}=\max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1, \chi \mathcal{V}\right\}
$$

or there exist rational integers r_{1}, s_{1}, t_{1} and t_{2}, with $r_{1} s_{1} \neq 0$, such that

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}, \quad \operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=1
$$

which also satisfy
$\left|r_{1} s_{1}\right| \leq \delta \cdot \frac{\left(R_{1}+1\right)\left(S_{1}+1\right)}{\mathcal{M}-\max \left\{R_{1}, S_{1}\right\}}, \quad\left|s_{1} t_{1}\right| \leq \delta \cdot \frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-\max \left\{S_{1}, T_{1}\right\}}, \quad\left|r_{1} t_{2}\right| \leq \delta \cdot \frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-\max \left\{R_{1}, T_{1}\right\}}$,
where

$$
\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)
$$

Moreover, when $t_{1}=0$ we can take $r_{1}=1$, and when $t_{2}=0$ we can take $s_{1}=1$.

Proof. The assumption $0<|\Lambda|<2 \pi / w$ implies that $\Lambda \notin i \pi \mathbb{Q}$, by Lemma 3.9, the hypothesis (v) of the Theorem implies condition (iii) of the zero-lemma. By Lemma 3.11, we get the conditions (C1) and (C2) if, respectively, the condition (i.1) or (i.2) of the zero-lemma are not satisifed. This finishes the proof.
Warning . - In the above theorem, the roles of $\left(\alpha_{1}, b_{1}\right)$ and $\left(\alpha_{3}, b_{3}\right)$ are not completely symmetric. Even if we do not make the hypothesis $a_{1} \geq a_{3}$ (and, of course, do not use it), in practice it is sometimes better to choose the numerotation such that $a_{1} \geq a_{3}$, but one has also to deal with (C3) which is also non-symmetrical...

4. An estimate for linear forms in two logarithms

We need to use linear forms in two logarithms in a very special situation (related to condition (C3) above) and it is difficult to find an easy-to-use result for such a case. This is the reason why we write a suitable application of [9] in this Section.

Let α_{1}, α_{2} be two non-zero algebraic numbers, and let $\log \alpha_{1}$ and $\log \alpha_{2}$ be any determinations of their logarithms. We consider here the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1},
$$

where b_{1} and b_{2} are positive integers. Without loss of generality, we suppose that the absolute values $\left|\alpha_{1}\right|$ and $\left|\alpha_{2}\right|$ are ≥ 1. Put

$$
\mathcal{D}=\left[\mathbf{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbf{Q}\right] /\left[\mathbf{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbf{R}\right] .
$$

4.1. Statement of the main result of [9]. The main result of [9], which we recall for the convenience of the reader, is:

Theorem 3. Let K be an integer ≥ 3, L an integer $\geq 2, R_{1}, R_{2}, S_{1}, S_{2}$ positive integers. Let ρ be a real number >1. Put $R=R_{1}+R_{2}-1, S=S_{1}+S_{2}-1, N=K L$,

$$
g=\frac{1}{4}-\frac{N}{12 R S}, \quad b=\frac{\left((R-1) b_{2}+(S-1) b_{1}\right)}{2}\left(\prod_{k=1}^{K-1} k!\right)^{-2 /\left(K^{2}-K\right)} .
$$

Let a_{1}, a_{2} be positive real numbers such that

$$
a_{i} \geq \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D} \mathrm{~h}\left(\alpha_{i}\right)
$$

for $i=1,2$. Suppose that:

$$
\begin{equation*}
\operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s} ; 0 \leq r<R_{1}, 0 \leq s<S_{1}\right\} \geq L \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Card}\left\{r b_{2}+s b_{1} ; 0 \leq r<R_{2}, 0 \leq s<S_{2}\right\}>(K-1) L \tag{II}
\end{equation*}
$$

and also that

$$
\begin{equation*}
K(L-1) \log \rho-(\mathcal{D}+1) \log N-\mathcal{D}(K-1) \log b-g L\left(R a_{1}+S a_{2}\right)>0 \tag{III}
\end{equation*}
$$

Then,

$$
\left|\Lambda^{\prime}\right| \geq \rho^{-K L+(1 / 2)}
$$

where

$$
\Lambda^{\prime}=\Lambda \cdot \max \left\{\frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2 b_{2}}, \frac{L R e^{L R|\Lambda| /\left(2 b_{1}\right)}}{2 b_{1}}\right\}
$$

4.2. A special estimate for linear forms in two logarithms. In the case when the number α_{1} is not a root of unity we shall deduce the following result from Theorem 3, which is a variant of Théorème 2 of [9], close to Theorem 1.5 of [11].

Proposition 4.1. Consider the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}
$$

where b_{1} and b_{2} are positive integers. Suppose that α_{1} is not a root of unity. Put

$$
\mathcal{D}=\left[\mathbf{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbf{Q}\right] /\left[\mathbf{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbf{R}\right] .
$$

Let a_{1}, a_{2}, h, k be real positive numbers, and ρ a real number >1. Put $\lambda=\log \rho$ and suppose that

$$
\begin{equation*}
h \geq \max \left\{1,1.5 \lambda, \mathcal{D}\left(\log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda+f(K)\right)+\varepsilon\right\}, \quad \varepsilon=0.0262 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a_{i} \geq \max \left\{4,2.7 \lambda, \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D} \mathrm{~h}\left(\alpha_{i}\right)\right\}, \quad(i=1,2), \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
a_{1} a_{2} \geq 20 \lambda^{2} \tag{6}
\end{equation*}
$$

where

$$
f(x)=\log \frac{(1+\sqrt{x-1}) \sqrt{x}}{x-1}+\frac{\log x}{6 x(x-1)}+\frac{3}{2}+\log \frac{3}{4}+\frac{\log \frac{x}{x-1}}{x-1}
$$

and

$$
L=2+\lfloor 2 h / \lambda\rfloor \geq 5, \quad K=1+\left\lfloor k L a_{1} a_{2}\right\rfloor .
$$

Then we have the lower bound

$$
\log |\Lambda| \geq-\lambda k L^{2} a_{1} a_{2}-\max \left\{\lambda(L-0.5)+\log \left(L^{2}(1+\sqrt{k}) a_{2}\right), \mathcal{D} \log 2\right\}
$$

provided that k satisfies $k \leq 2.2 \lambda^{-2}$ and

$$
k U-V \sqrt{k}-W \geq 0
$$

with

$$
U=(L-1) \lambda-h, \quad V=L / 3, \quad W=\frac{1}{4}\left(\frac{L}{a_{2}}+\frac{1}{a_{1}}\right) .
$$

4.3. Estimates for the parameter k. Before proceeding to the proof of the above Proposition, we need to compute upper and lower bounds for the parameter k.

Put $\Delta=V^{2}+4 U W$, the condition on k implies $k \geq k_{0}$, where

$$
\sqrt{k_{0}}=\frac{V+\sqrt{\Delta}}{2 U}, \quad k_{0}=\frac{V^{2}+\Delta+2 V \sqrt{\Delta}}{4 U^{2}}=\frac{V^{2}}{2 U^{2}}+\frac{W}{U}+\frac{V}{2 U} \sqrt{\frac{V^{2}}{U^{2}}+\frac{4 W}{U}} \geq \frac{V^{2}}{U^{2}}+\frac{W}{U}
$$

with

$$
\frac{8}{9 \lambda} \geq \frac{1}{3} \frac{\lambda^{-1}(2 h+\lambda)}{(2 h+\lambda)-(h+\lambda)} \geq \frac{V}{U}=\frac{1}{3} \frac{L}{\lambda L-(h+\lambda)} \geq \frac{1}{3} \frac{\lambda^{-1} 2(h+\lambda)}{2(h+\lambda)-(h+\lambda)}=\frac{2}{3 \lambda}
$$

since $\partial(V / U) / \partial L<0$ and $1+2 h / \lambda \leq L \leq 2(1+h / \lambda)$, where $h \geq 1.5 \lambda$. Moreover W satisfies

$$
\frac{W}{U}=\frac{1}{4}\left(\frac{L}{a_{2}}+\frac{1}{a_{1}}\right) \frac{1}{\lambda L-\lambda-h} \geq \frac{1}{4 a_{1}(\lambda L-\lambda-h)}+\frac{1}{2 a_{2} \lambda}
$$

and also

$$
\frac{W}{U} \leq \frac{1}{4}\left(\frac{1+2 h / \lambda}{a_{2}}+\frac{1}{a_{1}}\right) \frac{1}{h}=\frac{2}{a_{2} \lambda}+\frac{\frac{1}{a_{1}}+\frac{1}{a_{2}}}{4 h} \leq \begin{cases}\frac{1}{2 \lambda}+\frac{1}{8 \times 1.5 \lambda}, & \text { if } \lambda \leq 1 \\ \frac{2}{2.7 \lambda^{2}}+\frac{2}{2.7 \times 6 \lambda^{2}}, & \text { if } \lambda \geq 1\end{cases}
$$

because of our hypotheses on a_{1}, a_{2} and h. Thus we always have

$$
\frac{W}{U} \leq \frac{7}{8.1 \lambda^{2}}
$$

It is easy to check that the previous inequalities imply

$$
\sqrt{k_{0}} \leq \frac{1.48}{\lambda}
$$

Hence $k_{0}<2.2 \lambda^{-2}$ and we can always choose k satisfying

$$
\frac{4}{9 \lambda^{2}} \leq k \leq \frac{2.2}{\lambda^{2}}
$$

and then

$$
k L a_{1} a_{2} \geq\left(\frac{4}{9 \lambda^{2}}+\frac{\frac{L}{a_{2}}+\frac{1}{a_{1}}}{4(\lambda L-\lambda-h)}\right) L a_{1} a_{2}
$$

so that

$$
k L a_{1} a_{2} \geq \frac{4 a_{1} a_{2} L}{9 \lambda^{2}}+\frac{a_{1} L}{2 \lambda}+\frac{a_{2}}{2 \lambda}=\psi(L)
$$

say.
Clearly ψ increases with L and it is easy to check that $\psi(5)>54$ (use the fact that $a_{1} a_{2} \geq 20 \lambda^{2}$).
4.4. Proof of the Proposition. Now we are ready to prove Proposition 4.1.

We suppose that α_{1} is not a root of unity, and we apply Theorem 3 with a suitable choice of the parameters. The proof follows the proof of Théorème 2 of [9]. For the convenience of the reader we keep the numerotation of the formulas of [9], except that formula (5.i) in [9] is here formula (4.i), moreover when there is some change the new formula is denoted by $(4 . i)^{\prime}$.

Put

$$
L=2+\lfloor 2 h / \lambda\rfloor, \quad K=1+\left\lfloor k L a_{1} a_{2}\right\rfloor,
$$

thus $L \geq 5$ and $K \geq 55$,

$$
\begin{equation*}
R_{1}=L, \quad S_{1}=1, \quad R_{2}=1+\left\lfloor\sqrt{k} L a_{2}\right\rfloor, \quad S_{2}=1+\left\lfloor\sqrt{k} L a_{1}\right\rfloor . \tag{4.1}
\end{equation*}
$$

By Liouville inequality,
$\log |\Lambda| \geq-\mathcal{D} \log 2-\mathcal{D} b_{1} \mathrm{~h}\left(\alpha_{1}\right)-\mathcal{D} b_{2} \mathrm{~h}\left(\alpha_{2}\right) \geq-\mathcal{D} \log 2-\frac{1}{2}\left(b_{1} a_{1}+b_{2} a_{2}\right)=-\mathcal{D} \log 2-\frac{1}{2} b^{\prime} a_{1} a_{2}$, where

$$
b^{\prime}=\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}
$$

We consider two cases:

$$
b^{\prime} \leq 2 \lambda k L^{2}, \quad \text { or } \quad b^{\prime}>2 \lambda k L^{2}
$$

In the first case, Liouville inequality implies

$$
\log |\Lambda| \geq-\mathcal{D} \log 2-\lambda k L^{2} a_{1} a_{2}
$$

and Prop. 4.1 holds.
Suppose now that $b^{\prime}>2 \lambda k L^{2}$. Then $\max \left\{b_{1} / a_{2}, b_{2} / a_{1}\right\}>\lambda k L^{2}$, hence

$$
b_{1}>\lambda \sqrt{k} L \times \sqrt{k} L a_{2} \quad \text { or } \quad b_{2}>\lambda \sqrt{k} L \times \sqrt{k} L a_{1} .
$$

Since $k \geq(4 / 9) \lambda^{-2}$ and $L \geq 2$, we have $\lambda \sqrt{k} L>1$, which implies

$$
b_{1} \geq R_{2} \quad \text { or } \quad b_{2} \geq S_{2}
$$

hence

$$
\operatorname{Card}\left\{r b_{2}+s b_{1} ; 0 \leq r<R_{2}, 0 \leq s<S_{2}\right\}=R_{2} S_{2}>(K-1) L
$$

by the choice of R_{2} and S_{2}. Moreover, since α_{1} is not a root of unity, we have

$$
\operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s} ; 0 \leq r<R_{1}, 0 \leq s<S_{1}\right\}=R_{1}=L
$$

This ends the verification of conditions (I) and (II) of Theorem 3.
Remark. The condition $b^{\prime}>2 k \lambda L^{2}$ implies

$$
\frac{\lambda L}{\mathcal{D}} \geq \frac{2 h}{\mathcal{D}} \geq 2\left(\log \left(2 k \lambda^{2} L^{2}\right)+f(K)\right) \geq 2\left(\log \left(8 L^{2} / 9\right)+\frac{3}{2}+\log \frac{3}{4}\right)>8.626
$$

using the above estimates on k and $L \geq 5$.
Suppose that (III) holds, then Theorem 3 implies

$$
\log \left|\Lambda^{\prime}\right| \geq-K L \lambda+\lambda / 2
$$

where

$$
\Lambda^{\prime}=\Lambda \cdot \max \left\{\frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2 b_{2}}, \frac{L R e^{L R|\Lambda| /\left(2 b_{1}\right)}}{2 b_{1}}\right\} .
$$

Notice that

$$
R=R_{1}+R_{2}-1 \leq L+\sqrt{k} L a_{2} \quad \text { and } \quad S=S_{1}+S_{2}-1 \leq 1+\sqrt{k} L a_{1}
$$

This shows that

$$
\max \{L R, L S\} \leq L^{2}\left(1+\sqrt{k} a_{2}\right)<L^{2}\left(1+1.5 \lambda^{-1} a_{2}\right)=L^{2}\left(\frac{1}{a_{2}}+\frac{1.5}{\lambda}\right) a_{2}<\frac{a_{1} a_{2} L^{2}}{2 \lambda}
$$

As we may, suppose that $\log |\Lambda| \leq-\lambda k L^{2} a_{1} a_{2}$, then

$$
\max \left\{\frac{L R|\Lambda|}{2 b_{2}}, \frac{L S|\Lambda|}{2 b_{1}}\right\} \leq \frac{\left(1+\sqrt{k} a_{2}\right) L^{2}|\Lambda|}{2} \leq \frac{L^{2} a_{1} a_{2}}{4 \lambda} e^{-4 L^{2} a_{1} a_{2} /(9 \lambda)}
$$

since $(4 / 9) \lambda^{-2} \leq k \leq 2.2 \lambda^{-2}$ and $L^{2} a_{1} a_{2} / \lambda>100$ (indeed, we have $L \geq 5, a_{1} \geq 4$ and $a_{2} \geq 2.7 \lambda$, hence $L^{2} a_{1} a_{2} / \lambda \geq 270$), we get

$$
\max \left\{\frac{L R|\Lambda|}{2 b_{2}}, \frac{L S|\Lambda|}{2 b_{1}}\right\}<10^{-10}
$$

Thus,

$$
\left|\Lambda^{\prime}\right| \leq|\Lambda| \times L^{2}\left(1+\sqrt{k} a_{2}\right)
$$

which implies

$$
\log |\Lambda| \geq-\lambda k L^{2} a_{1} a_{2}-\lambda(L-0.5)-\log \left(L^{2}\left(1+\sqrt{k} a_{2}\right)\right)
$$

and Prop. 4.1 follows.
Now we have to verify that condition (III) is satisfied: we have to prove that

$$
\Phi_{0}=K(L-1) \log \rho-(\mathcal{D}+1) \log N-\mathcal{D}(K-1) \log b-g L\left(R a_{1}+S a_{2}\right)>0
$$

when $b^{\prime}>2 \lambda k L^{2}$. Notice that the condition $b^{\prime}>2 \lambda k L^{2}$ implies

$$
h \geq \mathcal{D}\left(\log \left(2 \lambda^{2} k L^{2}\right)+f(K)\right) \geq \mathcal{D}\left(\log \left(\frac{8 L^{2}}{9}\right)+\frac{3}{2}+\log \frac{3}{4}\right)>4.313 \mathcal{D} .
$$

We replace this condition by the two conditions $\Phi>0, \Theta>0$, where $\Phi_{0} \geq \Phi+\Theta$. The term Φ is the main one, Θ is a sum of residual terms. As indicated in [9], the condition $\Phi>0$ leads to the choice of the parameters (4.1)', whereas $\Theta>0$ is a secondary condition, which leads to assume some technical hypotheses on h and a_{1}, a_{2}.

As in [9] (Lemme 8) we get

$$
\begin{equation*}
\log b \leq \log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda-\frac{\log (2 \pi K / \sqrt{e})}{K-1}+f(K) \leq \frac{h}{\mathcal{D}}-\frac{\varepsilon}{\mathcal{D}}-\frac{\log (2 \pi K / \sqrt{e})}{K-1} \tag{4.17}
\end{equation*}
$$

which follows from the condition

$$
h \geq \mathcal{D}\left(\log b^{\prime}+\log \lambda+f(K)\right)+\varepsilon
$$

Here we have

$$
g L\left(R a_{1}+S a_{2}\right) \leq\left(\frac{1}{4}-\frac{K L}{12 R S}\right) L\left(R a_{1}+S a_{2}\right)=\frac{L\left(R a_{1}+S a_{2}\right)}{4}-\frac{K L^{2}}{12}\left(\frac{a_{1}}{S}+\frac{a_{2}}{R}\right)
$$

which implies

$$
\begin{equation*}
g L\left(R a_{1}+S a_{2}\right) \leq \frac{L}{4}\left(a_{1} L+a_{2}+2 L \sqrt{k} a_{1} a_{2}\right)-\frac{K L}{6 \sqrt{k}} \leq \frac{L}{4}\left(a_{1} L+a_{2}\right)+\frac{\sqrt{k} L^{2} a_{1} a_{2}}{3} . \tag{4.18}
\end{equation*}
$$

Put

$$
\begin{equation*}
\Phi=K(L-1) \lambda-K h-\frac{\sqrt{k} L^{2} a_{1} a_{2}}{3}-\frac{L\left(a_{1} L+a_{2}\right)}{4} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta=\varepsilon(K-1)+h-\mathcal{D} \log (\sqrt{e} L /(2 \pi))-\log (K L) \tag{4.22}
\end{equation*}
$$

By (4.17) and (4.18) we see that $\Phi_{0} \geq \Phi+\Theta$, where $k L a_{1} a_{2}<K \leq 1+k L a_{1} a_{2}$, hence

$$
\frac{\Phi}{L a_{1} a_{2}}>k U-V \sqrt{k}-W
$$

where

$$
U=(L-1) \lambda-h, \quad V=\frac{L}{3}, \quad W=\frac{1}{4}\left(\frac{L}{a_{2}}+\frac{1}{a_{1}}\right) .
$$

This proves that $\Phi>0$ provided that $k U-V \sqrt{k}-W \geq 0$.
We have

$$
\Theta \geq h-\log \left(k L^{2} a_{1} a_{2}\right)-\mathcal{D} \log (\sqrt{e} L /(2 \pi))+\varepsilon\left(k L a_{1} a_{2}-1\right) .
$$

To prove that $\Theta \geq 0$, rewrite (4.22) as $\Theta=\Theta_{0}(D-1)+\Theta_{1}$, where

$$
\Theta_{0}=\log \left(\lambda b^{\prime}\right)+f(K)-\log L+\log \left(\frac{2 \pi}{\sqrt{e}}\right)
$$

and

$$
\Theta_{1}=\varepsilon K-\log K-2 \log L+\log \left(\frac{2 \pi}{\sqrt{e}}\right)+\log \left(\lambda b^{\prime}\right)+f(K) .
$$

We conclude by proving that Θ_{0} and Θ_{1} are both positive.
Since $b^{\prime}>2 k \lambda L^{2}$ and $k \geq 4 /\left(9 \lambda^{2}\right)$, we have

$$
\log \left(\lambda b^{\prime}\right)>\log \left(2 k \lambda^{2} L^{2}\right)>\log (8 / 9)+2 \log L
$$

and this implies that

$$
\Theta_{0}>\log (8 L / 9)+f(K)+\log (2 \pi / \sqrt{e})>\log \frac{8 L}{9}+\frac{3}{2}+\log \frac{3}{4}+\log \frac{2 \pi}{\sqrt{e}}
$$

is positive. This implies also that

$$
\Theta_{1} \geq \varepsilon K-\log K+\log \frac{8}{9}+\log \frac{2 \pi}{\sqrt{e}}+f(K)
$$

Thus,

$$
\Theta_{1} \geq 0.0262 K-\log K+\log \left(\frac{16 \pi}{9 \sqrt{e}}\right)+f(K)
$$

and an elementary numerical verification shows that Θ_{1} is positive for $K \geq 55$, which holds as we saw in the previous Subsection.

Remark. We have proved that, under the hypotheses of our result, we can choose $\varepsilon=0.0262$, more generally the condition on ε is

$$
\varepsilon K-\log K+\log \left(\frac{16 \pi}{9 \sqrt{e}}\right)+f(K) \geq 0
$$

for all $K \geq K_{0}$, where $K_{0}=\left\lceil k_{0} L a_{1} a_{2}\right\rceil$.

5. How to use Theorem 2

5.1. About the multiplicative group \mathcal{G}. In practical examples, generally the following condition holds:

$$
\left\{\begin{array}{l}
\text { either } \alpha_{1}, \alpha_{2} \text { and } \alpha_{3} \text { are multiplicatively independent, or } \tag{M}\\
\text { two multiplicatively independent, the third a root of unity } \neq 1 .
\end{array}\right.
$$

We use now hypothesis (\mathbf{M}), which is clearly stronger than the standard hypothesis 'the multiplicative group \mathcal{G} is of rank at least two', and we also notice that the order in \mathbb{C}^{*} of a root of unity $\neq 1$ is at least equal to 2 , thus the condition (i.2) of Section 3 is satisfied if

$$
\begin{equation*}
\frac{2\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)}{W_{1}+1}>L \tag{C.i.2}
\end{equation*}
$$

where W_{1} is defined by

$$
W_{1}= \begin{cases}R_{1}, & \text { if } \alpha_{1} \text { is a root of unity } \\ S_{1}, & \text { if } \alpha_{2} \text { is a root of unity } \\ T_{1}, & \text { if } \alpha_{3} \text { is a root of unity } \\ 1, & \text { otherwise }\end{cases}
$$

But see also the remark after (C.ii.1) below.
Then, by the study of the case (i.2), we see that, to satisfy the condition (ii.12) of Section 3 it is enough to suppose that (when condition (M) holds)

$$
\begin{equation*}
\frac{\left(R_{2}+1\right)\left(S_{2}+1\right)\left(T_{2}+1\right)}{W_{2}+1}>K L \tag{C.ii.1}
\end{equation*}
$$

where W_{2} is defined by

$$
W_{2}= \begin{cases}R_{2}, & \text { if } \alpha_{1} \text { is a root of unity, } \\ S_{2}, & \text { if } \alpha_{2} \text { is a root of unity } \\ T_{2}, & \text { if } \alpha_{3} \text { is a root of unity } \\ 1, & \text { otherwise }\end{cases}
$$

Remark. When (for example) α_{3} is a root of unity of order ν, condition (C.ii.1) above can be replaced by

$$
\begin{equation*}
\nu\left(R_{2}+1\right)\left(S_{2}+1\right)>2 K L \tag{C'.ii.1}
\end{equation*}
$$

(provided $T_{2} \geq \nu-1$) and condition (C.i.2) can be replaced by

$$
\begin{equation*}
\nu\left(R_{1}+1\right)\left(S_{1}+1\right)>L \tag{C'i.i.2}
\end{equation*}
$$

(provided $\left.T_{1} \geq \nu-1\right)$.
Remark. Under a weaker condition one can obtain similar (but slightly weaker) conclusions, see [12], Ex. 7.5, p. 229.
5.2. The choice of parameters. Here we assume that condition (M) holds, then by the above Corollary 3.10 we know that $\Lambda \notin i \pi \mathbb{Q}$.

To apply Theorem 2, we consider an integer $L \geq 5$ and real parameters $m>0, \rho \geq 2$ (then one can define the a_{i} 's) and we put

$$
K=\left\lfloor m L a_{1} a_{2} a_{3}\right\rfloor .
$$

To simplify the presentation, even if we do not really need these conditions, we also assume

$$
m \geq 1 \quad \text { and } \quad \Omega:=a_{1} a_{2} a_{3} \geq 2
$$

We define

$$
\begin{array}{lll}
R_{1}=\left\lfloor c_{1} a_{2} a_{3}\right\rfloor, & S_{1}=\left\lfloor c_{1} a_{1} a_{3}\right\rfloor, & T_{1}=\left\lfloor c_{1} a_{1} a_{2}\right\rfloor, \\
R_{2}=\left\lfloor c_{2} a_{2} a_{3}\right\rfloor, & S_{2}=\left\lfloor c_{2} a_{1} a_{3}\right\rfloor, & T_{2}=\left\lfloor c_{2} a_{1} a_{2}\right\rfloor, \\
R_{3}=\left\lfloor c_{3} a_{2} a_{3}\right\rfloor, & S_{3}=\left\lfloor c_{3} a_{1} a_{3}\right\rfloor, & T_{3}=\left\lfloor c_{3} a_{1} a_{2}\right\rfloor,
\end{array}
$$

where the parameters c_{1}, c_{2} and c_{3} will be chosen so that the conditions (i) up to (v) of the Theorem are satisfied.

Clearly, condition (i) is satisfied if

$$
\left(c_{1}^{3}\left(a_{1} a_{2} a_{3}\right)^{2}\right)^{1 / 2} \geq \chi m a_{1} a_{2} a_{3} L \quad \text { and } \quad c_{1}^{2} \cdot \Omega a \geq 2 m L, \quad \text { where } a=\min \left\{a_{1}, a_{2}, a_{3}\right\}
$$

Condition (ii) is true when $2 c_{1}^{2} a_{1} a_{2} a_{3} \cdot \min \left\{a_{1}, a_{2}, a_{3}\right\} \geq L$. Thus, since we suppose $m \geq 1$ and also $\Omega \geq 2$, we can take

$$
c_{1}=\max \left\{(\chi m L)^{2 / 3},\left(\frac{m L}{a}\right)^{1 / 2}\right\} .
$$

To satisfy (iii) and (iv) we can take

$$
c_{2}=\max \left\{2^{1 / 3}(m L)^{2 / 3}, \sqrt{m / a} L\right\} .
$$

Finally, since $\Lambda \notin i \pi \mathbb{Q}$, by Lemma 3.9 condition (v) holds for

$$
c_{3}=\left(6 m^{2}\right)^{1 / 3} L
$$

Remark. When $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are multiplicatively independent then it is enough to take c_{1} and c_{3} as above and

$$
c_{2}=2^{1 / 3}(m L)^{2 / 3}
$$

Then we have to verify the condition (2) of Theorem 2. When this inequality holds, one obtains

$$
\left|\Lambda^{\prime}\right|>\rho^{-K L}
$$

and we get

$$
\log |\Lambda|>-K L \log \rho-\log (S L)
$$

except maybe if at least one of the conditions (C1), (C2) or (C3) holds.
It may be useful to notice that, because of the choice of these parameters, the previous lower bound is essentially of the form

$$
\log |\Lambda| \geq-C L^{2} a_{1} a_{2} a_{3}
$$

where C is some (rather large) constant. One may verify that condition (2) forces to choose L of the order of magnitude of $\mathcal{D} \log b$, so that we have (to simplify)

$$
\log |\Lambda| \geq-C \mathcal{D}^{2} a_{1} a_{2} a_{3} \log ^{2} B, \quad \text { where } B=\max \left\{b_{1}, b_{2}, b_{3}\right\}
$$

in the non degenerate case. We give a more detailed study below.

Remark. In many concrete applications (this is the case for the examples at the end of the paper) one knows only some lower bound, say h_{0}, for the height h_{i} of α_{i}, one of the algebraic numbers α_{1}, α_{2} or α_{3}. To apply Theorem 2 we have to verify that condition (2) holds, and there is a difficulty. But first notice that this condition is $\Phi=\Phi(K) \geq 0$ where

$$
\Phi(K)=A K-B-C \log K-E \frac{\log K}{K}-\frac{F}{K}
$$

with positive constants A, B, \ldots, F, when the factor of g is expessed in terms of K using the definitions of these parameters and of R, S, T (i.e., $R a_{1}+S a_{2}+T a_{3} \approx 3 \mathrm{~cm}^{2 / 3} \Omega L$ and $K=\lfloor m \Omega L\rfloor$). Thus the derivative $\Phi^{\prime}(K)$ satisfies

$$
K \Phi^{\prime}(K)=A K-C-\frac{E}{K}+E \frac{\log K}{K}+\frac{F}{K}
$$

This short computation shows that if $\Phi\left(K_{0}\right)$ is positive for some integer $K_{0} \geq 3$ then it is positive for any integer $K \geq K_{0}$, when A, B, \ldots, E and F are fixed (this means in particular that m and L are fixed). Notice also that the term b appearing in Theorem 2 is a decreasing function of $a_{i} .{ }^{3}$

The conjonction of these two remarks shows that we can study condition (2) with the value $a_{i}=a_{0}$ (corresponding to h_{0}) and with L fixed and the other parameters $m, c_{1}, c_{2}, c_{3}, R_{1}, \ldots$, $T_{3}, K=K_{0}$ chosen as above with $a_{i}=a_{0}$. When $\Phi\left(K_{0}\right)$ is positive, we also have $\Phi(K)>0$ for the preceding values of $L, m, c_{1}, c_{2}, c_{3}$ and any $a_{i} \geq a_{0}$.

Now consider the conditions $(\mathbf{C} 1),(\mathbf{C 2})$ and $(\mathbf{C} 3)$. For conditions $(\mathbf{C 1})$ and $(\mathbf{C} 2)$ we have in particular

$$
(\mathbf{C} 1) \text { or }(\mathbf{C} 2) \Longrightarrow b_{2} \leq \max \left\{S_{1}, S_{2}\right\}
$$

Condition (C3) will be studied in detail in the next subsection. Put

$$
r_{1}=\delta r_{1}^{\prime}, \quad s_{1}=\delta s_{1}^{\prime},
$$

where

$$
\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)
$$

We just notice, for the second alternative, namely

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}, \quad \text { with } \quad \operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=1
$$

that $r_{1}^{\prime} \mid b_{1}$, say $b_{1}=r_{1}^{\prime} b_{1}^{\prime}$, hence

$$
\left(t_{1} b_{1}^{\prime}+\delta b_{3}\right) s_{1}^{\prime}=b_{2} t_{2}, \quad \text { with } \quad b_{1}=r_{1} b_{1}^{\prime}
$$

If $t_{2} \neq 0$ this shows that $s_{1}^{\prime} \mid b_{2}$, say $b_{2}=s_{1}^{\prime} b_{2}^{\prime}$, so that

$$
t_{1} b_{1}^{\prime}+\delta b_{3}=b_{2}^{\prime} t_{2}, \quad \text { with } b_{1}=r_{1}^{\prime} b_{1}^{\prime}, \text { and } b_{2}=s_{1}^{\prime} b_{2}^{\prime}
$$

[^2]5.3. The degenerate case. We have already seen the (easy) consequences of conditions (C1) or (C2). We focus our attention on the third condition (C3). In this subsection we choose $\chi=1$.

The first subcase is

$$
r_{0} b_{2}=s_{0} b_{1}
$$

with the above bounds for r_{0} and s_{0}. This implies

$$
b_{1}=d_{1} r_{0}, \quad b_{2}=d_{1} s_{0}
$$

and one verifies that essentially (see below)

$$
\left|r_{0}\right| \leq \sqrt{c_{1}} a_{2}, \quad\left|s_{0}\right| \leq \sqrt{c_{1}} a_{1}, \quad \text { where } c_{1} \ll L^{2 / 3}
$$

We consider the linear form Λ as a linear form in two logarithms:

$$
\Lambda=d_{1}\left(s_{0} \log \alpha_{2}-r_{0} \log \alpha_{1}\right)-b_{3} \log \alpha_{3}
$$

and using Theorem 3 we get

$$
\log |\Lambda| \gg-\left(s_{0} a_{2}+r_{0} a_{1}\right) a_{3} \mathcal{D}^{2} \log ^{2} B \gg-\sqrt{c_{1}} a_{1} a_{2} a_{3} \mathcal{D}^{2} \log ^{2} B \gg-a_{1} a_{2} a_{3}(\mathcal{D} \log B)^{7 / 3}
$$

The second subcase is

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} t_{2} b_{2}
$$

If

$$
t_{2}=0
$$

then we easily get

$$
b_{1}=d r_{1}, \quad b_{3}=-d t_{1}, \quad \text { where } d=\operatorname{gcd}\left(b_{1}, b_{3}\right) .
$$

One verifies that essentially

$$
\left|r_{1}\right| \leq \sqrt{c_{1}} a_{3}, \quad\left|t_{1}\right| \leq \sqrt{c_{1}} a_{1}, \quad \text { where } c_{1} \ll L^{2 / 3}
$$

We consider the linear form in two logarithms

$$
\Lambda=b_{2} \log \alpha_{2}-d\left(r_{1} \log \alpha_{1}-t_{1} \log \alpha_{3}\right)
$$

and using Theorem 3 we get now

$$
\log |\Lambda| \gg-\left(\sqrt{c_{1}} a_{3} a_{1}\right) a_{2} \mathcal{D}^{2} \log ^{2} B \gg-a_{1} a_{2} a_{3}(\mathcal{D} \log B)^{7 / 3},
$$

just as before.
Similarly, if

$$
t_{1}=0
$$

then we get

$$
b_{3}=d_{3} t_{2}, \quad b_{2}=d_{3} s_{1}, \quad \text { where } \quad d_{3}=\operatorname{gcd}\left(b_{2}, b_{3}\right)
$$

And we get once more

$$
\log |\Lambda| \gg-\left(\sqrt{c_{1}} a_{3} a_{1}\right) a_{2} \mathcal{D}^{2} \log ^{2} B \gg-a_{1} a_{2} a_{3}(\mathcal{D} \log B)^{7 / 3} .
$$

(In this third case, essentially, $s_{1} \leq \sqrt{c_{1}} \cdot \min \left\{a_{1}, a_{3}\right\}$ and $t_{2} \leq \sqrt{c_{1}} a_{2}$, and then we write Λ as $\left.\Lambda=d_{3}\left(s_{1} \log \alpha_{2}-t_{2} \log \alpha_{3}\right)-b_{1} \log \alpha_{1}.\right)$

Thus we may now restrict our attention to the more serious case $t_{1} t_{2} \neq 0$. Then we have

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} t_{2} b_{2}, \quad \text { with } b_{1}=r_{1}^{\prime} b_{1}^{\prime} \text { and } b_{2}=s_{1}^{\prime} b_{2}^{\prime}
$$

where

$$
r_{1}=\delta r_{1}^{\prime}, \quad s_{1}=\delta s_{1}^{\prime}, \quad \delta:=\operatorname{gcd}\left(r_{1}, s_{1}\right)
$$

And we have

$$
\operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=\operatorname{gcd}\left(r_{1}^{\prime}, s_{1}^{\prime}\right)=1, \quad t_{1} b_{1}^{\prime}+\delta b_{3}=t_{2} b_{2}^{\prime} .
$$

[We have used new notation. The reader should not confuse these new definitions for b_{1}^{\prime} and b_{2}^{\prime} with the previous ones.] To simplify a little the notation, we put

$$
\mathcal{V}_{R}=\mathcal{V}-\max \left\{S_{1}, T_{1}\right\}, \quad \mathcal{V}_{S}=\mathcal{V}-\max \left\{R_{1}, T_{1}\right\}, \quad \mathcal{V}_{T}=\mathcal{V}-\max \left\{R_{1}, S_{1}\right\}
$$

where

$$
\mathcal{V}=\left(\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)\right)^{1 / 2}
$$

satisfies

$$
\mathcal{V} \geq \max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1\right\}
$$

Now the previous bounds read
$0<\left|r_{1} s_{1}\right|<\delta\left(R_{1}+1\right)\left(S_{1}+1\right) / \mathcal{V}_{T}, \quad\left|s_{1}^{\prime} t_{1}\right|<\left(S_{1}+1\right)\left(T_{1}+1\right) / \mathcal{V}_{R}, \quad\left|r_{1}^{\prime} t_{2}\right|<\left(R_{1}+1\right)\left(T_{1}+1\right) / \mathcal{V}_{S}$.
Which essentially implies (notice that $R_{1} \approx c_{1} a_{2} a_{3}, S_{1} \approx c_{1} a_{1} a_{3}, T_{1} \approx c_{1} a_{1} a_{2}$ and $\mathcal{V} \approx c_{1}^{3 / 2} a_{1} a_{2} a_{3}$)

$$
\left|r_{1} s_{1}\right| \leq \delta \sqrt{c_{1}} a_{3}, \quad\left|s_{1}^{\prime} t_{1}\right| \leq \sqrt{c_{1}} a_{1}, \quad\left|r_{1}^{\prime} t_{2}\right| \leq \sqrt{c_{1}} a_{2}
$$

We distinguish three cases according to the size of the terms a_{i} 's.
Case 1: $a_{1}=\min \left\{a_{1}, a_{2}, a_{3}\right\}$
In this case, we write

$$
t_{1} \Lambda=t_{1} r_{1}^{\prime} b_{1}^{\prime} \ell_{1}+t_{1} s_{1}^{\prime} b_{2}^{\prime} \ell_{2}+t_{1} b_{3} \ell_{3}=b_{2}^{\prime}\left(s_{1}^{\prime} t_{1} \ell_{2}+r_{1}^{\prime} t_{2} \ell_{1}\right)+b_{3}\left(t_{1} \ell_{3}-\delta r_{1}^{\prime} \ell_{1}\right)
$$

where $\ell_{j}=\log \alpha_{j}$ for $j=1,2,3$. And applying [9] to this linear form in two logs we get

$$
-\log |\Lambda| \ll\left(\left|s_{1}^{\prime} t_{1}\right| a_{2}+\left|r_{1}^{\prime} t_{2}\right| a_{2}\right)\left(\left|t_{1}\right| a_{3}+\left|r_{1}\right| a_{2}\right) \mathcal{D}^{2} \log ^{2} B
$$

where (being somewhat pessimistic)

$$
B=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|,\left|b_{3}\right|\right\}
$$

and where the implied constant is an absolute constant. And using the upper bounds for the integers $\left|r_{1}\right|, \ldots$, we get

$$
-\log |\Lambda| \ll\left(\sqrt{c_{1}} a_{1} a_{2}\right)\left(\sqrt{c_{1}} a_{1} a_{3}\right) \mathcal{D}^{2} \log ^{2} B \ll a_{1}^{2} a_{2} a_{3} L^{4 / 3} \mathcal{D}^{2} \log ^{2} B
$$

Since we have indeed

$$
\left|\delta r_{1}^{\prime} s_{1}^{\prime}\right| \ll \sqrt{c_{1}} a_{3}, \quad\left|s_{1}^{\prime} t_{1}\right| \ll \sqrt{c_{1}} a_{1}, \quad\left|r_{1}^{\prime} t_{2}\right| \ll \sqrt{c_{1}} a_{2}, \quad \text { where } c_{1} \ll L^{2 / 3}
$$

we get

$$
-\log |\Lambda| \ll a_{1}^{2} a_{2} a_{3}(\mathcal{D} \log B)^{8 / 3}
$$

where the implied constant is absolute.
Case 2: $a_{2}=\min \left\{a_{1}, a_{2}, a_{3}\right\}$
In this second case, we write

$$
t_{2} \Lambda=t_{2} r_{1}^{\prime} b_{1}^{\prime} \ell_{1}+t_{2} s_{1}^{\prime} b_{2}^{\prime} \ell_{2}+t_{2} b_{3} \ell_{3}=b_{1}^{\prime}\left(r_{1}^{\prime} t_{2} \ell_{1}+s_{1}^{\prime} t_{1} \ell_{2}\right)+b_{3}\left(t_{2} \ell_{3}+\delta s_{1}^{\prime} \ell_{2}\right)
$$

Applying [9] to this linear form in two logs we get

$$
-\log |\Lambda| \ll\left(\left|r_{1}^{\prime} t_{2}\right| a_{1}+\left|s_{1}^{\prime} t_{1}\right| a_{2}\right)\left(\left|t_{2}\right| a_{3}+\left|s_{1}\right| a_{2}\right) \mathcal{D}^{2} \log ^{2} B
$$

which, in this case, implies

$$
-\log |\Lambda| \ll a_{1} a_{2}^{2} a_{3}(\mathcal{D} \log B)^{8 / 3}
$$

where the implied constant is absolute.

Case 3: $a_{3}=\min \left\{a_{1}, a_{2}, a_{3}\right\}$
In this last case, we write

$$
\delta \Lambda=\delta r_{1}^{\prime} b_{1}^{\prime} \ell_{1}+\delta s_{1}^{\prime} b_{2}^{\prime} \ell_{2}+\delta b_{3} \ell_{3}=b_{1}^{\prime}\left(r_{1} \ell_{1}-t_{1} \ell_{3}\right)+b_{2}^{\prime}\left(s_{1} \ell_{2}+t_{2} \ell_{3}\right)
$$

In this case, [9] gives

$$
-\log |\Lambda| \ll\left(\left|r_{1}\right| a_{1}+\left|t_{1}\right| a_{3}\right)\left(\left|t_{1}\right| a_{3}+\left|s_{1}\right| a_{2}\right) \mathcal{D}^{2} \log ^{2} B,
$$

which implies

$$
-\log |\Lambda| \ll a_{1} a_{2} a_{3}^{2}(\mathcal{D} \log B)^{8 / 3}
$$

where the implied constant is again absolute.
In is important to notice that, in any case, we have obtained

$$
-\log |\Lambda| \ll a_{1} a_{2} a_{3} \times \min \left\{a_{1}, a_{2}, a_{3}\right\} \times(\mathcal{D} \log B)^{8 / 3},
$$

where the implied constant is absolute. In particular, when $\min \left\{a_{1}, a_{2}, a_{3}\right\}$ is bounded above then we have essentially

$$
-\log |\Lambda| \ll a_{1} a_{2} a_{3}(\mathcal{D} \log B)^{8 / 3}
$$

with an implied constant depending only on $\min \left\{a_{1}, a_{2}, a_{3}\right\}$.
Remark. From the theoretical point of view, the above result is very poor. But, in practice, the problem is with constants and - hopefully - our estimate will lead to good results when compared to the other ones published previously.
5.4. Some special cases. We have just seen that the arithmetical nature of the coefficients b_{1}, b_{2} and b_{3} is very important for the study of the degenerate case. Here we consider some special situations which, indeed, occur frequently in concrete applications to Diophantine problems. In all these special cases we also assume that we have the relation (ii) with $t_{1} t_{2} \neq 0$.

S1: b_{1} is prime or equal to one
We have seen that $b_{1}=r_{1}^{\prime} b_{1}^{\prime}$. Here there are at most two possibilities:

- $b_{1}^{\prime}=1$, then $\left|b_{1}\right|=\left|r_{1}^{\prime}\right| \ll \min \left\{a_{2}, a_{3}\right\} L^{1 / 3}$, where the implied constant is absolute.
- $r_{1}^{\prime}=1$, then

$$
t_{1} b_{1}+\delta b_{3}=t_{2} b_{2}^{\prime}
$$

S2: b_{2} is prime or equal to one
We have seen that $b_{2}=s_{1}^{\prime} b_{2}^{\prime}$. Here there are at most two possibilities:

- $b_{2}^{\prime}=1$, then $\left|b_{2}\right|=\left|s_{1}^{\prime}\right| \ll \min \left\{a_{1}, a_{3}\right\} L^{1 / 3}$, where the implied constant is absolute.
- $s_{1}^{\prime}=1$ and

$$
t_{1} b_{1}^{\prime}+\delta b_{3}=t_{2} b_{2}
$$

S3: b_{3} is prime or equal to one
Since the roles of b_{1} and b_{3} are more or less symmetrical, in this case it may be useful to exchange these two coefficients and, simultaneously, α_{1} and α_{3} (the exchange has to be done from the beginning of the study).
5.5. A corollary of the main result. In this Subsection we give a corollary of our main result, which is much easier to use that this general result and we restrict ourselves to light hypotheses.

Proposition 5.1. We consider three non-zero algebraic numbers α_{1}, α_{2} and α_{3}, which are either all real and >1 or all complex of modulus one and all $\neq 1$. Moreover, we assume that either the three numbers α_{1}, α_{2} and α_{3} are multiplicatively independent, or two of these numbers are multiplicatively independent and the third one is a root of unity. Put

$$
\mathcal{D}=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{R}\right] .
$$

We also consider three positive coprime rational integers b_{1}, b_{2}, b_{3}, and the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3}
$$

where the logarithms of the α_{i} are arbitrary determinations of the logarithm, but which are all real or all purely imaginary.

And we assume also that

$$
b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda| .
$$

We put

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right), \quad d_{3}=\operatorname{gcd}\left(b_{3}, b_{2}\right), \quad b_{2}=d_{1} b_{2}^{\prime}=d_{3} b_{2}^{\prime \prime}
$$

Let $\rho \geq e:=\exp (1)$ be a real number. Put $\lambda=\log \rho$. Let a_{1}, a_{2} and a_{3} be real numbers such that

$$
a_{i} \geq \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D} \mathrm{~h}\left(\alpha_{i}\right), \quad i=1,2,3
$$

and assume further that

$$
\Omega:=a_{1} a_{2} a_{3} \geq 2.5 \quad \text { and } \quad a:=\min \left\{a_{1}, a_{2}, a_{3}\right\} \geq 0.62
$$

Let K and L be positive integers with

$$
L \geq 4+\mathcal{D}, \quad K=\lfloor m \Omega L\rfloor, \quad \text { where } m \geq 3
$$

Ler $\chi>0$ be fixed and ≤ 2. Define

$$
c_{1}=\max \left\{(\chi m L)^{2 / 3}, \sqrt{2 m L / a}\right\}, \quad c_{2}=\max \left\{2^{1 / 3}(m L)^{2 / 3}, \sqrt{m / a} L\right\}, \quad c_{3}=\left(6 m^{2}\right)^{1 / 3} L
$$

and then put

$$
R_{1}=\left\lfloor c_{1} a_{2} a_{3}\right\rfloor, S_{1}=\left\lfloor c_{1} a_{1} a_{3}\right\rfloor, T_{1}=\left\lfloor c_{1} a_{1} a_{2}\right\rfloor, \quad R_{2}=\left\lfloor c_{2} a_{2} a_{3}\right\rfloor, S_{2}=\left\lfloor c_{2} a_{1} a_{3}\right\rfloor, T_{2}=\left\lfloor c_{2} a_{1} a_{2}\right\rfloor
$$

and

$$
R_{3}=\left\lfloor c_{3} a_{2} a_{3}\right\rfloor, \quad S_{3}=\left\lfloor c_{3} a_{1} a_{3}\right\rfloor, \quad T_{3}=\left\lfloor c_{3} a_{1} a_{2}\right\rfloor
$$

Let also

$$
R=R_{1}+R_{2}+R_{3}+1, \quad S=S_{1}+S_{2}+S_{3}+1, \quad T=T_{1}+T_{2}+T_{3}+1
$$

Define

$$
c=\max \left\{\frac{R}{L a_{2} a_{3}}, \frac{S}{L a_{1} a_{3}}, \frac{T}{L a_{1} a_{2}}\right\}
$$

Finally assume that
(3) $\left(\frac{K L}{2}+\frac{L}{4}-1-\frac{2 K}{3 L}\right) \lambda-(\mathcal{D}+1) \log L-3 g L^{2} c \Omega-\mathcal{D}(K-1) \log \tilde{b}-2 \log K+2 \mathcal{D} \log 1.36 \geq 0$,
where

$$
g=\frac{1}{4}-\frac{N}{12 R S T}, \quad b^{\prime}=\left(\frac{b_{1}^{\prime}}{a_{2}}+\frac{b_{2}^{\prime}}{a_{1}}\right)\left(\frac{b_{3}^{\prime \prime}}{a_{2}}+\frac{b_{2}^{\prime \prime}}{a_{3}}\right), \quad \tilde{b}=\frac{e^{3} c^{2} \Omega^{2} L^{2}}{4 K^{2}} \times b^{\prime}
$$

Then either

$$
\log |\Lambda|>-(K L+\log (3 K L)) \lambda
$$

or the condition (C3) of Theorem 2 holds.

Proof. Our first step in this proof is the study of the relationship between Λ and Λ^{\prime}.
Recall that

$$
\Lambda^{\prime}=|\Lambda| \times \frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2 b_{2}}
$$

so that

$$
\Lambda^{\prime} \leq|\Lambda| \times \frac{L S e^{L S|\Lambda| / 2}}{2}
$$

First notice that

$$
c_{1} \leq(m L)^{2 / 3} \times \max \left\{2^{2 / 3}, \sqrt{\frac{2}{0.62}} \times(m L)^{-1 / 6}\right\}=(2 m L)^{2 / 3}
$$

and that

$$
c_{2}=m^{2 / 3} L \times \max \left\{\left(\frac{2}{L}\right)^{1 / 3}, \frac{m^{-1 / 6}}{\sqrt{a}}\right\} \leq \frac{3^{-1 / 6}}{\sqrt{0.62}} \times m^{2 / 3} L<1.058 m^{2 / 3} L
$$

Hence,

$$
S \leq \frac{\Omega}{a}\left((2 m L)^{2 / 3}+1.058 m^{2 / 3} L+\left(6 m^{2}\right)^{1 / 3} L\right)+1 \leq \frac{m^{2 / 3} L \Omega}{a}\left(\left(\frac{4}{L}\right)^{1 / 3}+1.058+6^{1 / 3}\right)+1
$$

thus

$$
S<6.135 m^{2 / 3} L \Omega<4.26 m L \Omega
$$

since $L \geq 5, m \geq 3, \Omega \geq 2.5$ and $a \geq 0.62$. This proves that

$$
S \leq 4.4 K
$$

Then, under our present hypotheses, we have

$$
\Lambda^{\prime} \leq 3 K L|\Lambda| \quad \text { if } \quad|\Lambda| \leq \exp (-K L)
$$

This shows that the lower bound on Λ^{\prime} given in Theorem 2 implies

$$
\log |\Lambda| \geq-K L \lambda-\log (3 K L)
$$

Remark. Under the stronger hypotheses $m \geq 20, L \geq 30$ and $a \geq 4$, one easily sees that

$$
\Lambda^{\prime} \leq K L|\Lambda| \quad \text { if } \quad|\Lambda| \leq \exp (-K L)
$$

We have already seen that in the present case $\Lambda \notin i \pi \mathbb{Q}$, thus we can 'forget' the condition $|\Lambda|<2 \pi / w$ in the statement. (See the footnote of Theorem 2.)

Now we study the present consequences of the conditions (C1) and (C2). With our choices of $R_{1}, S_{1}, \ldots, S_{3}$ and T_{3}, we see that if $(\mathbf{C 1})$ or $(\mathbf{C} 2)$ holds then, using our previous upper bounds for c_{1} and c_{2} we get

$$
b_{1} \leq\left(2 m^{2}\right)^{1 / 3} L a_{2} a_{3}, \quad b_{2} \leq\left(2 m^{2}\right)^{1 / 3} L a_{1} a_{3}, \quad b_{3} \leq\left(2 m^{2}\right)^{1 / 3} L a_{1} a_{2}
$$

But a Liouville estimate (see Lemma 3.3) applied to $\alpha_{1}^{b_{1}} \alpha_{3}^{b_{3}} \alpha_{2}^{-b_{2}}-1$ implies that

$$
\log |\Lambda| \geq-\left(b_{1} h_{1}+b_{2} h_{2}+b_{3} h_{3}\right) \mathcal{D}-\mathcal{D} \log 2 \geq-\frac{3}{2}\left(2 m^{2}\right)^{1 / 3} \Omega L-\mathcal{D} \geq-0.5 m L^{2} \Omega
$$

(where $h_{i}=\mathrm{h}\left(\alpha_{i}\right)$ for $i=1,2,3$), since $a_{i} \geq 2 \mathcal{D} h_{i}$ for $i=1,2,3$, and $L \geq 4+\mathcal{D}, m \geq 3, \Omega \geq 1$. This short study proves that, presently, either (C1) or (C2) implies

$$
\log |\Lambda| \geq-K L \lambda
$$

It follows that we can also 'forget' these conditions in the statement.
Notice that, by definition,

$$
\eta_{0} \cdot \zeta_{0} \leq\left(\frac{c L}{2}\right)^{2}\left(a_{2} a_{3} b_{2}^{\prime}+a_{1} a_{3} b_{1}^{\prime}\right)\left(a_{1} a_{2} b_{2}^{\prime \prime}+a_{1} a_{3} b_{1}^{\prime \prime}\right)=\left(\frac{c L \Omega}{2}\right)^{2} \times b^{\prime}
$$

so that

$$
\log b \leq \log b^{\prime}+2 \log \left(\frac{c L \Omega}{2}\right)-2 \log K+3-2 \frac{\log \left(2 \pi K e^{-3 / 2}\right)}{K-1}+\frac{2+6 \pi^{-2}+\log K}{3 K(K-1)}
$$

by Lemma 3.4. This implies (since here $K \geq\lfloor 3 \times 5 \times 2.5\rfloor \geq 37$)

$$
\log b \leq \log b^{\prime}+\log \left(\frac{e^{3} c^{2} L^{2} \Omega^{2}}{4 K^{2}}\right)-2 \frac{\log (1.36 K)}{K-1}
$$

and we see now that condition (2) of Theorem (2) holds when the inequality (3) is satisfied. This ends the proof of the Proposition.
5.6. Some explicit estimate. In this Subsection we give explicit lower bounds for $|\Lambda|$ under some natural hypotheses, but somewhat stronger than just above.

Here, we work under the following hypotheses:

$$
a:=\min \left\{a_{1}, a_{2}, a_{3}\right\} \geq 4, \quad L \geq 30 \mathcal{D}, \quad \Omega \geq 100
$$

Recall that we choose

$$
R_{1}=\left\lfloor c_{1} a_{2} a_{3}\right\rfloor, S_{1}=\left\lfloor c_{1} a_{1} a_{3}\right\rfloor, T_{1}=\left\lfloor c_{1} a_{1} a_{2}\right\rfloor, \quad R_{2}=\left\lfloor c_{2} a_{2} a_{3}\right\rfloor S_{2}=\left\lfloor c_{2} a_{1} a_{3}\right\rfloor, T_{2}=\left\lfloor c_{2} a_{1} a_{2}\right\rfloor,
$$

and

$$
R_{3}=\left\lfloor c_{3} a_{2} a_{3}\right\rfloor, \quad S_{3}=\left\lfloor c_{3} a_{1} a_{3}\right\rfloor, \quad T_{3}=\left\lfloor c_{3} a_{1} a_{2}\right\rfloor, \quad K=\lfloor m \Omega L\rfloor
$$

where now the parameters c_{1}, c_{2} and c_{3} satisfy (we take $\chi=1$ to simplify the study):

$$
c_{1}=(m L)^{2 / 3}, \quad c_{2}=\max \left\{2^{1 / 3}(m L)^{2 / 3}, \sqrt{m / a} L\right\} \quad \text { and } \quad c_{3}=\left(6 m^{2}\right)^{1 / 3} L
$$

and we assume a priori that the parameter m satisfies

$$
49 \leq m \leq 60
$$

Notice that this implies

$$
K \geq m L \Omega-1 \geq 146,999
$$

and

$$
\log b \leq \log b^{\prime}+2 \log \left(\frac{e^{3 / 2} c L \Omega}{2 K}\right)-2 \frac{\log (\theta K)}{K-1}
$$

where

$$
\log \theta:=\log \left(2 \pi K e^{-3 / 2}\right)-\frac{2+6 \pi^{-2}+\log K}{6 K}>\log 1.4019
$$

We take again

$$
R=R_{1}+R_{2}+R_{3}+1, \quad S=S_{1}+S_{2}+S_{3}+1, \quad T=T_{1}+T_{2}+T_{3}+1
$$

and

$$
c=\max \left\{\frac{R}{L a_{2} a_{3}}, \frac{S}{L a_{1} a_{3}}, \frac{T}{L a_{1} a_{2}}\right\}
$$

Condition (3) (with θ instead of 1.36) holds when
$\Phi:=\left(\frac{K L}{2}+\frac{L}{4}-1-\frac{2 K}{3 L}\right) \lambda-(\mathcal{D}+1) \log L-3 c g L^{2} \Omega-\mathcal{D}(K-1) \log \tilde{b}-2 \log K+2 \mathcal{D} \log \theta$
is non-negative. We choose

$$
L=\left\lceil\frac{5}{\lambda} \mathcal{D} \log \mathcal{B}\right\rceil=\frac{\mu}{\lambda} \mathcal{D} \log \mathcal{B}
$$

(which defines μ), where

$$
\log \mathcal{B}=\max \{10, \log \tilde{b}\}
$$

Thus

$$
5 \leq \mu<\mu_{1}:=5+\frac{\lambda}{\mathcal{D} \log \mathcal{B}} \leq \frac{5 L}{L-1}
$$

Then

$$
\begin{aligned}
& \Phi \geq(m L \Omega-1)\left(\frac{L}{2}-\frac{2}{3 L}\right) \lambda+\frac{L-4}{4} \lambda-3 c g L^{2} \Omega-\frac{\lambda L}{\mu}(m L \Omega-2)-2 \log K-(\mathcal{D}+1) \log L+2 \mathcal{D} \log \theta \\
& =L^{2} \Omega\left(\lambda m\left(\frac{1}{2}-\frac{2}{3 L^{2}}-\frac{1}{\mu}\right)-3 c g\right)-\left(\frac{L+4}{4}+\frac{2}{3 L}-\frac{2 L}{\mu}\right) \lambda-2 \log K-(\mathcal{D}+1) \log L+2 \mathcal{D} \log \theta \\
& \geq L^{2} \Omega\left(\lambda m\left(0.499259-\frac{1}{\mu}\right)-3 c g\right)-L\left(\frac{1}{4}-\frac{2}{\mu}+0.0326\right) \lambda-2 \log K-(\mathcal{D}+1) \log L+2 \mathcal{D} \log \theta \\
& \geq L^{2} \Omega\left(\lambda m\left(0.499259-\frac{1}{\mu}\right)-3 c g\right)+0.1044 L-3 \log L-2 \log (m \Omega)-\mathcal{D} \log \frac{L}{\theta^{2}} \\
& \geq L^{2} \Omega\left(\lambda m\left(0.499259-\frac{1}{\mu}\right)-3 c g\right)-0.2358 L-2 \log (m \Omega)-\mathcal{D} \log \frac{L}{\theta^{2}} .
\end{aligned}
$$

Hence,

$$
\frac{\Phi}{L^{2} \Omega} \geq \lambda m\left(0.499259-\frac{1}{\mu}\right)-3 c g-\frac{0.2358}{L \Omega}-2 \frac{\log (60 \Omega)}{L^{2} \Omega}-2 \frac{1}{30 L \Omega} \log \frac{L}{\theta^{2}}
$$

And finally

$$
\frac{\Phi}{L^{2} \Omega} \geq \lambda m\left(0.499259-\frac{1}{\mu}\right)-3 g c-3 \cdot 10^{-4}
$$

By definition,

$$
c \leq \frac{c_{1}+c_{2}+c_{3}}{L}+\frac{1}{L a^{2}} .
$$

Recall that (here)

$$
c_{1}=(m L)^{2 / 3}, \quad c_{2}=\max \left\{2^{1 / 3}(m L)^{2 / 3}, \sqrt{m / a} L\right\}, \quad c_{3}=6^{1 / 3} m^{2 / 3} L
$$

Notice that

$$
2^{1 / 3}(m L)^{2 / 3} \leq \sqrt{m / a} L \Longleftrightarrow 2 \sqrt{m a^{3}} \leq L
$$

and that this last inequality implies $L \geq 2 \times 7 \times 8=112$ since $m \geq 49$ and $a \geq 4$. It is easy to check that

$$
30^{-1 / 3}+(2 / 30)^{1 / 3}>112^{-1 / 3}+m^{-1 / 6} / \sqrt{a}
$$

hence c satisfies

$$
c \leq\left(30^{-1 / 3}+(2 / 30)^{1 / 3}+6^{1 / 3}+\frac{1}{16 \times 30^{2} \times 49^{2 / 3}}\right) m^{2 / 3}<2.54444 m^{2 / 3}
$$

and

$$
g \leq \frac{1}{4}-\frac{0.99999^{2} m^{2}}{12 c^{3}}<0.244942
$$

And we get
$\frac{\Phi}{\Omega L^{2}} \geq \lambda\left(0.499259-\frac{1}{\mu}\right) m-3 \times 10^{-4}-1.86972 m^{2 / 3}>\lambda\left(0.499259-\frac{1}{\mu}\right) m-1.86975 m^{2 / 3}$.
We take

$$
m=\left(\frac{1.8699}{0.499259-\frac{1}{\mu}}\right)^{3} \cdot \lambda^{-3}
$$

thus

$$
m_{1}:=\left(\frac{1.86975}{0.499259-\frac{1}{\mu_{1}}}\right)^{3} \cdot \lambda^{-3} \leq m \leq\left(\frac{1.86975}{0.499259-\frac{1}{5}}\right)^{3} \cdot \lambda^{-3}<244 \lambda^{-3}
$$

It is easy to see that the worst case for the term $m \mu^{2}$ (occuring in the final estimate) is reached when μ is maximal, i.e. when $\mu=\mu_{1}$, and then $m=m_{1}$.

We have

$$
\tilde{b} \leq \frac{e^{3} c^{2}}{3.999 m^{2}} b^{\prime}, \quad \text { where } \quad b^{\prime}=\left(\frac{b_{2}^{\prime}}{a_{1}}+\frac{b_{1}^{\prime}}{a_{2}}\right)\left(\frac{b_{2}^{\prime \prime}}{a_{3}}+\frac{b_{3}^{\prime}}{a_{2}}\right)
$$

and

$$
\frac{e^{3} c^{2}}{3.999 m^{2}}<32.5175 m^{-2 / 3}
$$

Then - in the non-degenerate case -

$$
\log |\Lambda|>-K L \lambda-\log (K L) \geq-(K L+\log (K L)) \lambda
$$

since $\rho \geq e$, which gives

$$
\log |\Lambda|>-1.000004 K L \lambda \geq-6109.598 \lambda^{-4} \times \Omega \times \mathcal{D}^{2} \log ^{2} \mathcal{B}
$$

For example, if we choose $\rho=5.296$, then $\log \rho=1.6669518 \ldots$ and

$$
L \geq\left\lceil\frac{50 \mathcal{D}}{\lambda}\right\rceil=30 \mathcal{D}, \quad 5 \leq \mu \leq \frac{155}{30}, \quad 49.39124 \leq m<53
$$

as wanted, and then

$$
\log |\Lambda|>-790.9478 \Omega \cdot \mathcal{D}^{2} \log ^{2} \mathcal{B}
$$

where

$$
\log \mathcal{B}=\max \{10 / \mathcal{D}, \log \tilde{b}\} \quad \text { and } \quad \tilde{b} \leq 2.4156 b^{\prime}
$$

With this choice we take

$$
a_{i}=\max \left\{4, \rho \ell_{i}-\log \left|\alpha_{i}\right|+2 \mathcal{D} h_{i}\right\}, \quad \text { for } i=1,2,3,
$$

(with the obvious notation $\ell_{i}=\left|\log \alpha_{i}\right|$), and then
$\log |\Lambda|>-6327.59 \mathcal{D}^{2} \log ^{2} \mathcal{B} \prod_{i=1}^{3} \max \left\{2, \mathcal{D} h_{i}+2.648 \ell_{i}\right\} \geq-307,187 \mathcal{D}^{5} \log ^{2} \mathcal{B} \prod_{i=1}^{3} \max \left\{0.55, h_{i}, \ell_{i} / \mathcal{D}\right\}$,
where

$$
\log \mathcal{B}=\max \left\{0.882+\log b^{\prime}, 10 / \mathcal{D}\right\}
$$

We are now ready to state our explicit estimate.

Proposition 5.2. We consider three non-zero algebraic numbers α_{1}, α_{2} and α_{3}, which are either all real and >1 or all complex of modulus one and all $\neq 1$. Moreover, we assume that either the three numbers α_{1}, α_{2} and α_{3} are multiplicatively independent, or two of these numbers are multiplicatively independent and the third one is a root of unity. Put

$$
\mathcal{D}=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{R}\right]
$$

We also consider three coprime positive rational integers b_{1}, b_{2}, b_{3}, and the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3}
$$

where the logarithms of the α_{i} are arbitrary determinations of the logarithm, but which are all real or all purely imaginary.

And we assume also that

$$
b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda| .
$$

We put

$$
d_{1}=\operatorname{gcd}\left(b_{1}, b_{2}\right), \quad d_{3}=\operatorname{gcd}\left(b_{3}, b_{2}\right), \quad b_{2}=d_{1} b_{2}^{\prime}=d_{3} b_{2}^{\prime \prime}
$$

Let a_{1}, a_{2} and a_{3} be real numbers such that

$$
a_{i} \geq \max \left\{4,5.296 \ell_{i}-\log \left|\alpha_{i}\right|+2 \mathcal{D} \mathrm{~h}\left(\alpha_{i}\right)\right\}, \quad \text { where } \ell_{i}=\left|\log \alpha_{i}\right|, \quad i=1,2,3
$$

and

$$
\Omega:=a_{1} a_{2} a_{3} \geq 100
$$

Put

$$
b^{\prime}=\left(\frac{b_{1}^{\prime}}{a_{2}}+\frac{b_{2}^{\prime}}{a_{1}}\right)\left(\frac{b_{3}^{\prime \prime}}{a_{2}}+\frac{b_{2}^{\prime \prime}}{a_{3}}\right)
$$

and

$$
\log \mathcal{B}=\max \left\{0.882+\log b^{\prime}, 10 / \mathcal{D}\right\}, \quad \Omega=a_{1} a_{2} a_{3}
$$

Then either

$$
\log |\Lambda|>-790.95 \cdot \Omega \cdot \mathcal{D}^{2} \log ^{2} \mathcal{B}>-307,187 \times \mathcal{D}^{5} \log ^{2} \mathcal{B} \times \prod_{i=1}^{3} \max \left\{0.55, h_{i}, \ell_{i} / \mathcal{D}\right\}
$$

or the following condition holds:

- either there exist two non-zero rational integers r_{0} and s_{0} such that

$$
r_{0} b_{2}=s_{0} b_{1}
$$

with

$$
\left|r_{0}\right| \leq 5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{2} \quad \text { and } \quad\left|s_{0}\right| \leq 5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{1}
$$

- or there exist rational integers r_{1}, s_{1}, t_{1} and t_{2}, with $r_{1} s_{1} \neq 0$, such that

$$
\left(t_{1} b_{1}+r_{1} b_{3}\right) s_{1}=r_{1} b_{2} t_{2}, \quad \operatorname{gcd}\left(r_{1}, t_{1}\right)=\operatorname{gcd}\left(s_{1}, t_{2}\right)=1
$$

which also satisfy
$\left|r_{1} s_{1}\right| \leq \delta \cdot 5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{3}, \quad\left|s_{1} t_{1}\right| \leq \delta \cdot 5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{1}, \quad\left|r_{1} t_{2}\right| \leq \delta \cdot 5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{2}$, where

$$
\delta=\operatorname{gcd}\left(r_{1}, s_{1}\right)
$$

Moreover, when $t_{1}=0$ we can take $r_{1}=1$, and when $t_{2}=0$ we can take $s_{1}=1$.

Proof. The only remaining point is concerned with condition (C3) of Theorem 2. First, notice that, for $\chi=1$,

$$
\mathcal{V}:=\left(\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)\right)^{1 / 2} \geq c_{1}^{3 / 2} \Omega=m L \Omega
$$

Moreover,

$$
\max \left\{R_{1}, S_{1}, T_{1}\right\} \leq c_{1} \Omega / a
$$

Thus,

$$
\frac{\mathcal{V}}{\max \left\{R_{1}, S_{1}, T_{1}\right\}} \geq a \sqrt{c_{1}}=a(m L)^{1 / 3}
$$

and we have

$$
\mathcal{V}>\max \left\{R_{1}, S_{1}, T_{1}\right\}
$$

(Remark: it would certainly be more clever to choose some $\chi<1$, but this does not improve a lot the result. Nevertheless, the freedom given by this parameter may be useful in concrete cases: see the two examples given below where we choose χ in order that the estimate obtained in the non-degenerate case for three logarithms is essentially the same than the estimate obtained in the degenerate case with lower bounds of linear forms in two logarithms. Notice that the first estimate is better when χ is small, whereas the second one increases when when χ decreases.)

We have chosen

$$
R_{1}=\left\lfloor c_{1} a_{2} a_{3}\right\rfloor
$$

hence

$$
R_{1}+1 \leq c_{1} a_{2} a_{3}\left(1+\frac{1}{16(m L)^{2 / 3}}\right)<1.0005 c_{1} a_{2} a_{3}
$$

since our choices give $m \geq 49$ and $L \geq 30$. For the same reasons,

$$
S_{1}+1<1.0005 c_{1} a_{1} a_{3},
$$

which implies ${ }^{4}$

$$
B_{T}:=\frac{\left(R_{1}+1\right)\left(S_{1}+1\right)}{\mathcal{V}-\max \left\{R_{1}, S_{1}, T_{1}\right\}}<\frac{1.0005^{2}}{1-\left(4 \sqrt{c_{1}}\right)^{-1}} \sqrt{c_{1}} a_{3}<3.843 L^{1 / 3} a_{3}<5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{3}
$$

Similarly,

$$
B_{R}:=\frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{V}-\max \left\{R_{1}, S_{1}, T_{1}\right\}}<3.843 L^{1 / 3} a_{3}<5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{1}
$$

and

$$
B_{S}:=\frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{V}-\max \left\{R_{1}, S_{1}, T_{1}\right\}}<3.843 L^{1 / 3} a_{3}<5.61(\mathcal{D} \log \mathcal{B})^{1 / 3} a_{2}
$$

This proves that our last claims are consequences of condition (C3) and this ends the verification of the result.

It may be interesting to compare the above result with the main theorem of [1], which is the following.

[^3]Proposition 5.3. We consider three non-zero rational numbers α_{1}, α_{2} and α_{3}, which are all >1 and multiplicatively independent.

We also consider three positive rational integers b_{1}, b_{2}, b_{3} with $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$, and the linear form

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}-b_{3} \log \alpha_{3}
$$

where the logarithms of the α_{i} are the ordinary determinations of the logarithm. We assume that Λ is non-zero and that

$$
b_{2}\left|\log \alpha_{2}\right|=b_{1}\left|\log \alpha_{1}\right|+b_{3}\left|\log \alpha_{3}\right| \pm|\Lambda| .
$$

Let $a_{1}^{\prime}, a_{2}^{\prime}$ and a_{3}^{\prime} be real numbers such that

$$
a_{i}^{\prime} \geq \max \left\{1, \mathrm{~h}\left(\alpha_{i}\right)\right\}, \quad i=1,2,3 .
$$

Put

$$
b^{\prime \prime}=\left(\frac{b_{1}}{a_{2}^{\prime}}+\frac{b_{2}}{a_{1}^{\prime}}\right)\left(\frac{b_{3}}{a_{2}^{\prime}}+\frac{b_{2}}{a_{3}^{\prime}}\right)
$$

and

$$
\mathcal{B}^{\prime}=\max \left\{\log b^{\prime \prime}, 10\right\}, \quad \Omega^{\prime}=a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime}
$$

Then either

$$
\log |\Lambda|>-4.5 \times 10^{5} \times \Omega^{\prime} \log ^{2} \mathcal{B}^{\prime}
$$

or there exists a non trivial relation

$$
u_{1} b_{1}+u_{2} b_{2}+u_{3} b_{3}=0
$$

over the rational integers with

$$
\left|u_{1}\right|,\left|u_{3}\right| \leq 10^{4} \times \log \mathcal{B}^{\prime} \times a_{1}^{\prime} a_{3}^{\prime}, \quad \text { and } \quad\left|u_{2}\right| \leq 10^{4} \times \log \mathcal{B}^{\prime} \times a_{2}^{\prime} \times \min \left\{a_{1}^{\prime}, a_{3}^{\prime}\right\}
$$

With the same hypotheses, our result gives

- either

$$
\log |\Lambda|>-1.974 \times 10^{5} \times h_{1} h_{2} h_{3} \times \log ^{2} \mathcal{B} \geq-1.974 \times 10^{5} \times \Omega^{\prime} \log ^{2} \mathcal{B}^{\prime}
$$

where

$$
\log \mathcal{B}=\max \left\{10,0.882+\log b^{\prime}\right\} \leq \max \left\{10, \log b^{\prime \prime}-0.59\right\}
$$

[take $a_{i}=6.296 h_{i}$ for $i=1,2,3$ and notice that $a_{i} \geq 6.296 \log 2>4.364$ for $i=1,2,3$ and also that $\left.a_{1} a_{2} a_{3} \geq 6.296^{3} \log 2 \cdot \log 3 \cdot \log 5>300\right]$

- or there exists a non trivial relation

$$
u_{1} b_{1}+u_{2} b_{2}+u_{3} b_{3}
$$

over the rational integers with

$$
\left|u_{i}\right|<36\left(\max \left\{10,0.882+\log b^{\prime}\right\}\right)^{1 / 3} h_{i}, \quad i=1,2,3
$$

This result may also be compared to the estimate implied by Matveev's theorem., which gives unconditionally

$$
\log |\Lambda|>-1.7 \times 10^{10} \times \mathrm{h}_{1} h_{2} h_{3} \times \log (4.08 B)
$$

where

$$
B=\max \left\{1, \max \left\{b_{j} h_{j} / h_{i} ; 1 \leq j \leq 3\right\}\right\}
$$

6. A first example

Using the previous estimates, we can prove:
Theorem 6.1. All the solutions of equation

$$
x^{n}-2^{\alpha} 5^{\beta} y^{n}= \pm 1
$$

in integers $x, y \geq 1, n \geq 3$ prime and $0 \leq \beta<n$, with $\alpha=1,2,3$ satisfy

$$
n \leq 3.88 \cdot 10^{7}
$$

Proof. It is clear that $x>y$. First, we give an upper bound for the exponent n using Matveev's estimate.

Let

$$
\Lambda_{1}=1-\frac{2^{\alpha} 5^{\beta} y^{n}}{x^{n}}
$$

so that $\left|\Lambda_{1}\right|=1 / x^{n}$. Set

$$
\Lambda=n \log x / y-\alpha \log 2-\beta \log 5
$$

then

$$
|\Lambda| \leq 2 x^{-n}
$$

Matveev's theorem gives (for $x \geq 5$)

$$
\log |\Lambda| \geq-5 \cdot 16^{5} \cdot 1.5^{2} \cdot e^{4} \cdot(20.2+5.5 \log 3) \cdot \log x \cdot \log 2 \cdot \log 5 \cdot(\log n+1.41)
$$

and we obtain $n \leq 5.36 \cdot 10^{11}$.
We suppose

$$
n>2 \times 10^{7}
$$

and it is possible to restrict our study to the case (see...)

$$
\log x>5000
$$

For this linear form Λ in three logarithms, we keep the notation of the previous parts. Set

$$
\alpha_{1}=2, \quad \alpha_{2}=x / y, \quad \alpha_{3}=5
$$

We take $\chi=0.5$ and

$$
L=100, \quad m=41.28955, \quad \rho_{1}=\rho=7
$$

$$
\begin{gathered}
a_{1}=(\rho+1) \log 2, \quad a_{2}=6(\log 2+\log 5)+2 \log x, \quad a_{3}=(\rho+1) \log 5, \\
b_{1}=\alpha=1,2,3, \quad b_{2}=n, \quad b_{3}=\beta
\end{gathered}
$$

and finally

$$
c_{1}=162.133741 \ldots, \quad c_{2}=324.267482 \ldots, \quad c_{3}=2170.753371 \ldots
$$

Using these values we get

$$
R_{1}=\left\lfloor c_{1} a_{2} a_{3}\right\rfloor=\lfloor 4176.8434 \log x\rfloor, \quad R_{2}=\left\lfloor c_{2} a_{2} a_{3}\right\rfloor=\lfloor 8353.6867 \log x\rfloor,
$$

and

$$
R_{3}=\left\lfloor c_{3} a_{2} a_{3}\right\rfloor=\lfloor 55922.3320 \log x\rfloor,
$$

further

$$
S_{1}=\left\lfloor c_{1} a_{1} a_{3}\right\rfloor=11575, \quad S_{2}=\left\lfloor c_{2} a_{1} a_{3}\right\rfloor=23151, \quad S_{3}=\left\lfloor c_{3} a_{1} a_{3}\right\rfloor=154985
$$

and finally

$$
T_{1}=\left\lfloor c_{1} a_{1} a_{2}\right\rfloor=\lfloor 1798.8684 \log x\rfloor, \quad T_{2}=\left\lfloor c_{2} a_{1} a_{2}\right\rfloor=\lfloor 3597.7370 \log x\rfloor
$$

and

$$
T_{3}=\left\lfloor c_{3} a_{1} a_{2}\right\rfloor=\lfloor 24084.4374 \log x\rfloor
$$

Put

$$
\mathcal{V}=\left(\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)\right)^{1 / 2}
$$

then

$$
\chi \mathcal{V} \geq \max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1\right\}
$$

and

$$
B_{R}:=\frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\chi \mathcal{V}-\max \left\{S_{1}, T_{1}\right\}} \leq 143, \quad B_{T}:=\frac{\left(R_{1}+1\right)\left(S_{1}+1\right)}{\chi \mathcal{V}-\max \left\{R_{1}, S_{1}\right\}} \leq 338
$$

independently of x (for $x>e^{5000}$).
We have

$$
K=\left\lfloor L m a_{1} a_{2} a_{3}\right\rfloor=\lfloor 589834.7288 \log x\rfloor .
$$

As seen above, these choices imply that the conditions (i)-(iv) of Theorem 2 hold. Moreover the above choices have been made so that condition (2) holds.

Thus we have

$$
\log |\Lambda| \geq-K L \log \rho-\log (K L)>-114.777 \cdot 10^{6} \log x
$$

and we get

$$
n<115 \cdot 10^{6}
$$

In the cases (C1) and (C2) we obtain

$$
n \leq \max \left\{S_{1}, S_{2}\right\}<30000
$$

which is excluded since we assume $n>10^{7}$. Moreover, the first case case of condition (C3), i.e. the case $r_{0} b_{2}=s_{0} b_{1}$ cannot hold because of the bound on s_{0} (namely $\left|s_{0}\right| \leq B_{R}$) and the fact that $b_{2}=n$ is prime. On supposing that (C3) holds then we have necessarily

$$
s^{\prime} t^{\prime} \alpha+r^{\prime} t^{\prime \prime} n+r^{\prime} s^{\prime} \beta=0,
$$

where $\alpha=1,2,3$ and the factors of β, n, b_{3} are bounded as in the main theorem. We have

$$
\operatorname{gcd}\left(r^{\prime}, s^{\prime}\right)=\delta, \quad \operatorname{gcd}\left(r^{\prime}, t^{\prime}\right)=\operatorname{gcd}\left(s^{\prime}, t^{\prime \prime}\right)=1
$$

and we put

$$
r^{\prime}=\delta r_{1}^{\prime}, \quad s^{\prime}=\delta s_{1}^{\prime}
$$

With this notation

$$
s_{1}^{\prime} t^{\prime} \alpha+r_{1}^{\prime} t^{\prime \prime} n+\delta r_{1}^{\prime} s_{1}^{\prime} \beta=0 .
$$

Then $s_{1}^{\prime} \mid t^{\prime \prime} n$ and using that n is prime, $\left|s_{1}^{\prime}\right|<n$ and $\operatorname{gcd}\left(s^{\prime}, t^{\prime \prime}\right)=1$ we get $s_{1}^{\prime}=1$, and thus

$$
t^{\prime} \alpha+r_{1}^{\prime} t^{\prime \prime} n+\delta r_{1}^{\prime} \beta=0
$$

where $\operatorname{gcd}\left(r_{1}^{\prime}, t^{\prime}\right)=1$. Since $\alpha \in\{1,2,3\}$, we have $\left|r_{1}^{\prime}\right|=1$ or $\left|r_{1}^{\prime}\right|=\alpha$. In the first case,

$$
\pm t^{\prime} \alpha+t^{\prime \prime} n+\delta \beta=0
$$

and, in the second case,

$$
\pm t^{\prime}+t^{\prime \prime} n+\delta \beta=0
$$

Clearly, $t^{\prime \prime}$ and δ are not of the same sign and we may assume that $\delta>0$ and $t^{\prime \prime} \leq 0$.
This implies

$$
\left|t^{\prime \prime}\right| \leq \delta+\frac{3\left|t^{\prime}\right|}{n}<\delta+1
$$

where

$$
0<\left|r_{1}^{\prime} \delta\right| \leq 143
$$

We rewrite Λ as a linear form in two logarithms:

$$
\Lambda=n \log \left(\left(\frac{x}{y}\right)^{t^{\prime}} 2^{r_{1}^{\prime} t^{\prime \prime}}\right)-\beta \log \left(5^{t^{\prime}} 2^{-r_{1}^{\prime} \delta}\right)
$$

Proposition 4.1 (applied four consecutive times with the interpolation radius $\rho_{2}=18$) yields the estimate

$$
n<39 \times 10^{6} .
$$

Thus we have proved that $n \leq 1.15 \cdot 10^{8}$.
From this upper bound for n we iterate four times this process, but with the choices $L=90$, $\chi=0.29, \rho_{1}=7.1$ and $\rho_{2}=20$. We get a better bound for n, namely, $n<3.88 \times 10^{7}$.

7. A second example

Using the previous estimates, we can also prove:
Theorem 7.1. All the solutions of equation

$$
2^{\alpha} x^{n}-5^{\beta} y^{n}= \pm 1
$$

in integers $x, y \geq 1$, where $n \geq 3$ is prime and $0 \leq \alpha, \beta<n$, satisfy

$$
n \leq 4.96 \cdot 10^{7}
$$

if we suppose $\max \{x, y\}>e^{50}$. Whereas the weaker assumption $\max \{x, y\} \geq 3$ leads to

$$
n \leq 3.3 \cdot 10^{8}
$$

Proof. In a first time, we consider more generally the Diophantine equation

$$
p^{\alpha} x^{n}-q^{\beta} y^{n}=1
$$

We consider the linear form

$$
\pm \Lambda=\alpha \log p+n \log (x / y)-\beta \log q
$$

If $x>y$ we write

$$
\Lambda=\beta \log q-n \log (x / y)-\alpha \log p
$$

and define

$$
\alpha_{1}=x / y, \alpha_{2}=q, \alpha_{3}=p, \quad b_{1}=n, b_{2}=\beta, b_{3}=\alpha
$$

according to the conventions of our main theorem.
Whereas, if $x<y$ then we write

$$
\Lambda=\alpha \log p-n \log (y / x)-\beta \log q
$$

and define

$$
\alpha_{1}=y / x, \alpha_{2}=p, \alpha_{3}=q, \quad b_{1}=n, b_{2}=\alpha, b_{3}=\beta
$$

again according to the conventions of our main theorem. Except for notation, this is similar to the first case. In both cases we have

$$
\Lambda=\varepsilon \alpha \log p-n|\log (x / y)|-\varepsilon \beta \log q
$$

where $\varepsilon= \pm 1$. Changing notation if necessary, we limit our study to the case $\varepsilon=1$.
We put

$$
z=\max \{x, y\}
$$

It is easy to see that

$$
|\Lambda|<2 z^{-n}
$$

First, we give an upper bound for the exponent n using Matveev's theorem, which gives (for $z \geq \max \{p, q\})$

$$
\log |\Lambda| \geq-5 \cdot 16^{5} \cdot 1.5^{2} \cdot e^{4} \cdot(20.2+5.5 \log 3) \cdot \log z \cdot \log p \cdot \log q \cdot(\log n+1.41)
$$

and - for example - we obtain $n \leq 5.36 \cdot 10^{11}$ when $\{p, q\}=\{2,5\}$ and $z \geq 5$.
We suppose

$$
n>2 \times 10^{7}
$$

and we first restrict our study to the case

$$
\log z>50
$$

Now we apply our result on linear forms for $p=5$ and $q=2$, taking $\chi=1$ and

$$
L=100, \quad m=47.6623398, \quad \rho_{1}=\rho=7
$$

$$
\begin{gathered}
a_{1}=(\rho-1) \log p+2 \log z, \quad a_{2}=(\rho+1) \log p, \quad a_{3}=(\rho+1) \log q, \\
b_{1}=n, \quad b_{2}=\alpha, \quad b_{3}=\beta,
\end{gathered}
$$

and finally

$$
c_{1}=283.2154268 \ldots, \quad c_{2}=c 2=356.82907799 \ldots, \quad c_{3}=2388.73142356 \ldots
$$

Using these constants we get

$$
R_{1}=\left\lfloor c_{1} a_{2} a_{3}\right\rfloor=20220, \quad R_{2}=\left\lfloor c_{2} a_{2} a_{3}\right\rfloor=25476, \quad R_{3}=\left\lfloor c_{3} a_{2} a_{3}\right\rfloor=170548
$$

further,

$$
S_{1}=\left\lfloor c_{1} a_{1} a_{3}\right\rfloor \leq\lfloor 3444.261 \log z\rfloor, \quad S_{2}=\left\lfloor c_{2} a_{1} a_{3}\right\rfloor \leq\lfloor 4339.501 \log z\rfloor
$$

and

$$
S_{3}=\left\lfloor c_{3} a_{1} a_{3}\right\rfloor \leq\lfloor 29050.101 \log z\rfloor
$$

and finally

$$
T_{1}=\left\lfloor c_{1} a_{1} a_{2}\right\rfloor \leq\lfloor 7997.341 \log z\rfloor, \quad T_{2}=\left\lfloor c_{2} a_{1} a_{2}\right\rfloor \leq\lfloor 100726.021 \log z\rfloor
$$

and

$$
T_{3}=\left\lfloor c_{3} a_{1} a_{2}\right\rfloor \leq\lfloor 67452.241 \log z\rfloor
$$

Put

$$
\mathcal{V}=\left(\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)\right)^{1 / 2}
$$

then

$$
\chi \mathcal{V} \geq \max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1\right\}
$$

and

$$
B_{S}:=\frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\chi \mathcal{V}-\max \left\{R_{1}, T_{1}\right\}} \leq 220, \quad B_{T}:=\frac{\left(R_{1}+1\right)\left(S_{1}+1\right)}{\chi \mathcal{V}-\max \left\{R_{1}, S_{1}\right\}} \leq 94
$$

independently of z (for $z>e^{50}$).
As seen above, these choices imply that the conditions (i)-(iv) hold. Moreover, these choices have been made (with the help of a computer) so that inequality (2) holds.

Thus we have

$$
\log |\Lambda| \geq-K L \log \rho-\log (K L)>-145.25 \cdot 10^{6} \log z
$$

and

$$
n<145.3 \cdot 10^{6} .
$$

In the cases (C1) or (C2) we have

$$
n \leq \max \left\{R_{1}, R_{2}\right\}<30000
$$

which is excluded since we assume $n>10^{7}$. Moreover, the first case of condition (C3), i.e. $r_{0} b_{2}=s_{0} b_{1}$ cannot hold because of the bound on r_{0} (namely $\left|r_{0}\right| \leq B_{S}$) and the fact that $b_{1}=n$ is prime. On supposing that (C3) holds then we necessarily have

$$
s^{\prime} t^{\prime} n+r^{\prime} t^{\prime \prime} \alpha+r^{\prime} s^{\prime} \beta=0
$$

where the factors of α, n and β are bounded as in the main theorem. We have

$$
\operatorname{gcd}\left(r^{\prime}, s^{\prime}\right)=\delta, \quad \operatorname{gcd}\left(r^{\prime}, t^{\prime}\right)=\operatorname{gcd}\left(s^{\prime}, t^{\prime \prime}\right)=1
$$

and we put

$$
r^{\prime}=\delta r_{1}^{\prime}, \quad s^{\prime}=\delta s_{1}^{\prime}
$$

With this notation

$$
s_{1}^{\prime} t^{\prime} n+r_{1}^{\prime} t^{\prime \prime} \alpha+\delta r_{1}^{\prime} s_{1}^{\prime} \beta=0 .
$$

Then $r_{1}^{\prime} \mid t^{\prime} n$ and using that n is prime, $\left|r_{1}^{\prime}\right|<n$ and $\operatorname{gcd}\left(r_{1}^{\prime}, t^{\prime}\right)=1$ we get $r_{1}^{\prime}=1$, and thus

$$
s_{1}^{\prime} t^{\prime} n+t^{\prime \prime} \alpha+\delta s_{1}^{\prime} \beta=0
$$

where $\operatorname{gcd}\left(s_{1}^{\prime}, t^{\prime \prime}\right)=1$.
This implies

$$
\left|s_{1}^{\prime} t^{\prime}\right| \leq\left|t^{\prime \prime}\right|+\left|\delta s_{1}^{\prime}\right|,
$$

where

$$
\left|t^{\prime \prime}\right| \leq B_{S} \quad \text { and } \quad\left|\delta s_{1}^{\prime}\right| \leq B_{T}
$$

Thus

$$
\left|s_{1}^{\prime} t^{\prime}\right| \leq B_{S}+B_{T} \leq 314
$$

whenever is $z \geq e^{50}$.
We rewrite $t^{\prime \prime} \Lambda$ as a linear form in two logarithms:

$$
t^{\prime \prime} \Lambda=\beta \log \left(5^{t^{\prime \prime}} \times 2^{\delta s_{1}^{\prime}}\right)-n \log \left((x / y)^{ \pm t^{\prime \prime}} \times 2^{-s_{1}^{\prime} t^{\prime}}\right)
$$

Proposition 4.1 (applied twice with the choice $\rho_{2}=20$) yields

$$
n<58 \times 10^{6}
$$

Thus we have proved that $n \leq 1.46 \cdot 10^{8}$.
From this upper bound for n we iterate four times this process, choosing now $L=90$ and $\chi=0.65$, but keeping $\rho_{1}=7$ and $\rho_{2}=20$. We get a better bound for n, namely $n<4.96 \times 10^{7}$ in the first case.

In the second case, the conclusion is obtained with the choices $L=90, \rho_{1}=7, \chi=0.91$ and $\rho_{2}=6$.

References

[1] C. D. Bennett, J. Blass, A. M. W. Glass, D. B. Meronk, R. P. Steiner, Linear forms in the logarithms of three positive rational numbers, J. Théor. Nombres Bordeaux 9 (1997), 97-136.
[2] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, submitted.
[3] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and Modular Approaches to Exponential Diophantine Equations II. The Lebesgue-Nagell Equation, submitted.
[4] N. Gouillon, Un lemme de zéros, Comptes Rendus Acad. Sci. Paris, Ser. I, 335 (2002), 167-170.
[5] M. Laurent, Sur quelques résultats récents de transcendance, Astérisque 198-200 (1991), 209-230.
[6] M. Laurent, Hauteurs de matrices d'interpolation, Approximations diophantiennes et nombres transcendants, Luminy (1990), ed. P. Philippon, de Gruyter (1992), 215-238.
[7] M. Laurent, Linear form in two logarithms and the interpolation determinants, Acta Arith. 66 (1994), 181-199.
[8] M. Laurent, Personal communication, Nov. 2003.
[9] M. Laurent, M. Mignotte and Yu. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 255-265.
[10] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. English transl. in Izv. Math. 64 (2000), 12171269.
[11] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arith., 86.2 (1998), $101-111$.
[12] M. Waldschmidt, Diophantine approximation on linear algebraic groups, Springer, Berlin, 2000.
Maurice Mignotte, Université Louis Pasteur, U. F. R. De mathématiques, 7, rue René Descartes, 67084 Strasbourg Cedex, France

E-mail address: mignotte@math.u-strasbg.fr

[^0]: Date: February 7, 2008.
 2000 Mathematics Subject Classification. Primary 11D61, 11J86, Secondary 11D59, 11Y50.
 Key words and phrases. linear forms in logarithms,

[^1]: ${ }^{2}$ If D is the degree of this number field then $\varphi(w) \leq D$, where φ is the Euler totient function. It is easy to prove that $\varphi(w) \geq(w / 2)^{0.63}$, which implies $w<2 D^{1.6}$. Hence the previous condition on Λ is satisfied if $0<|\Lambda| \leq \pi D^{-1.6}$ and then $\Lambda \notin i \pi \mathbb{Q}$. Trivially, this last condition is also satisfied when Λ is real and non-zero.

[^2]: ${ }^{3}$ More precisely, we never use the exact value of this term b but consider its upper bound implied by Lemma 3.4, and the resulting quantity is a decreasing function of a_{i}.

[^3]: ${ }^{4}$ Since the function $x \mapsto \frac{1}{1-(4 \sqrt{x})^{-1}} \sqrt{x}$ is increasing for $x>1$, for the term in the middles the worst case is obtained when c_{1} is maximum, i.e. for m maximum, and we get an upper bound repleacing m by 53, which implies the second inequality. The last one comes from the definition of L, namely $L=\lceil(5 / \lambda) \mathcal{D} \log \mathcal{B}\rceil$.

