Sequential optimization and parallelization of a Particle-In-Cell code

Yann Barsamian, Sever Hirstoaga, Eric Violard

Inria, TONUS and IRMA, Université de Strasbourg

NUMKIN 2016
Strasbourg, October 18, 2016
Outline

1 Framework

2 Sequential code

3 Parallelization
Outline

1 Framework
2 Sequential code
3 Parallelization
General context

- ITER project (nuclear fusion reactions \Rightarrow energy)
- Plasma magnetic confinement in a tokamak
- Strong magnetic field

- Kinetic modeling for electrons by Vlasov-Poisson equations
- 2d2v Vlasov-Poisson with strong magnetic field
- Multiscale behaviour of the solutions
- Large size numerical problems
General context

- ITER project (nuclear fusion reactions ⇒ energy)
- Plasma magnetic confinement in a tokamak
- Strong magnetic field

- Kinetic modeling for electrons by Vlasov-Poisson equations
- 2d2v Vlasov-Poisson with strong magnetic field
- Multiscale behaviour of the solutions
- Large size numerical problems
Particle-In-Cell method:
The unknown is approximated by a collection of macroparticles $\left(X_k(t), V_k(t) \right)_k$

$$f_{N_p}(t, x, v) = \sum_{k=1}^{N_p} \omega_k \delta(x - X_k(t)) \delta(y - V_k(t))$$

which move along the characteristic curves of Vlasov equation

$$\begin{cases}
 X_k'(t) = V_k(t), \\
 V_k'(t) = V_k(t) \times B + E(t, X_k(t)) + I. C.
\end{cases}$$

AIM: Compute efficiently reference solutions for the 4d Vlasov-Poisson systems (multiscale behaviour and long time dynamics) with classical numerical schemes.
Particle-In-Cell algorithm

Initialize particles: \(x, v \).

One time step

1. For each particle:
 - interpolate \(E \) in each particle.
 - update \(v \).
 - update \(x \).
 - deposit the charge on the nearest cells.

2. Solve Poisson equation.

Difficulties

- we address noise by using a large number of particles.
- conventional PIC suffers from frequent data movement (memory/CPU).
Particle-In-Cell algorithm

Initialize particles: x, v.
One time step

1. For each particle:
 - Interpolate E in each particle.
 - Update v.
 - Update x.
 - Deposit the charge on the nearest cells.

2. Solve Poisson equation.

Difficulties

- We address noise by using a large number of particles.
- Conventional PIC suffers from frequent data movement (memory/CPU).
Particle-In-Cell algorithm

Initialize particles: \(x, v \).

One time step

1. For each particle:
 - interpolate \(E \) in each particle. \(\rightsquigarrow \) communications particles \(\leftrightarrow \) field
 - update \(v \). \(\rightsquigarrow \) computations
 - update \(x \).
 - deposit the charge on the nearest cells.

2. Solve Poisson equation.

Difficulties

- we address noise by using a large number of particles.
- conventional PIC suffers from frequent data movement (memory/CPU).
Implementation framework

 - Random initial particles
 - Linear and cubic splines
 - time stepping: leap-frog, RK2
 - Poisson equation: Cartesian grid, periodic boundary condition, FFT

 Landau damping: verification (conservation of the total energy, electric field energy)

 - **guiding center model**, 4d VP with strong magnetic field.
Verify the code on a convergence result: Long time (~ 1) simulations of

$$\begin{cases}
\partial_t g^\varepsilon + \frac{1}{\varepsilon} \left(\mathbf{v} \cdot \nabla_x g^\varepsilon + \left(\mathcal{E}^\varepsilon + \frac{1}{\varepsilon} \mathbf{v}^\perp \right) \cdot \nabla_v g^\varepsilon \right) = 0 \\
+ \text{Poisson}
\end{cases}$$

and of the limit model

$$\partial_t g_{GC} + \mathbf{E}^\perp \cdot \nabla_x g_{GC} = 0 + \text{Poisson}.$$

- Kelvin-Helmholtz test-case
- $f_0(x, \mathbf{v}) = \frac{1}{2\pi} \left(\sin(x_2) + 0.05 \cos(x_1/2) \right) \exp \left(-\frac{v_1^2 + v_2^2}{2} \right)$
- 10 million particles, 256×128 cells

Global relative error at $t = 5$:

$$\left\| g_{GC} - \rho^\varepsilon \right\|_{L^2} / \left\| g_{GC} \right\|_{L^2}$$
Previous work

Aims:
- optimize the serial implementation: K. Bowers: 2001, 2008; VPIC code
- parallelization (multiprocess & multithreading)

Main ingredients: array of structures (AoS), redundant cell-based E/ρ
Previous work

Additional ingredients

- **Particle sorting** (to be done periodically)
- **Hybrid parallelization** MPI/OpenMP
 - distributed memory: 1 process \leftrightarrow a list of particles over the whole domain
 - shared memory: assign different segments of the list to different threads.

Performance on one node of the whole performance (1000 iterations, grid with 512x16 cells):

<table>
<thead>
<tr>
<th>Simulation/Cores</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 million particles</td>
<td>28.7</td>
<td>56.6</td>
<td>104.7</td>
<td>175.4</td>
<td>252.0</td>
</tr>
<tr>
<td>20 million particles</td>
<td>28.6</td>
<td>57.4</td>
<td>106.5</td>
<td>185.4</td>
<td>288.2</td>
</tr>
<tr>
<td>200 million particles</td>
<td>28.0</td>
<td>56.9</td>
<td>103.5</td>
<td>174.4</td>
<td>263.8</td>
</tr>
</tbody>
</table>

Number of particles processed per second (in millions): $N_p \times N_{iter}/T$.

Yann Barsamian, Sever Hirstoaga, Eric Violard

Sequential optimization and parallelization of a Particle-In-Cell code
Previous work

Additional ingredients

- **Particle sorting** (to be done periodically)
- **Hybrid parallelization** MPI/OpenMP
 - distributed memory: **1 process** → **a list** of particles over the whole domain
 - shared memory: assign different segments of the list to different threads.

Performance on one node of the whole performance (1000 iterations, grid with 512x16 cells):

<table>
<thead>
<tr>
<th>Simulation \ Cores</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 million particles</td>
<td>28.7</td>
<td>56.6</td>
<td>104.7</td>
<td>175.4</td>
<td>252.0</td>
</tr>
<tr>
<td>20 million particles</td>
<td>28.6</td>
<td>57.4</td>
<td>106.5</td>
<td>185.4</td>
<td>288.2</td>
</tr>
<tr>
<td>200 million particles</td>
<td>28.0</td>
<td>56.9</td>
<td>103.5</td>
<td>174.4</td>
<td>263.8</td>
</tr>
</tbody>
</table>

Number of particles processed per second (in millions): $N_p \times N_{iter} / T$.
Outline

1 Framework

2 Sequential code

3 Parallelization
Aim: take advantage of SIMD architecture.

Enable vector performances (with both Intel and Gnu compilers) for deposit the charge & update \(x \) loops.

Need to comply with\(^1\) cache reuse, memory alignment, unit-stride accessed data

The new optimizations

- Particles in Structure of Arrays (SoA).
- Redundant cell-based structure for \(\mathbf{E}/\rho \), coupled with space-filling curves for decrease of the cache misses.
- Loop transformation & code rewriting for automatic vectorization of particles deposit and update-positions loops.

\(^1\)H. Vincenti et al., “An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes”, 2016, CPC.
Current development

Aim: take advantage of SIMD architecture.

Enable vector performances (with both Intel and Gnu compilers) for deposit the charge & update x loops.

Need to comply with\(^1\) cache reuse, memory alignment, unit-stride accessed data

The new optimizations

- Particles in *Structure of Arrays (SoA)*.
- Redundant cell-based structure for \(E/\rho\), coupled with space-filling curves for decrease of the cache misses.
- loop transformation & code rewriting for automatic vectorization of particles deposit and update-positions loops.

\(^1\)H. Vincenti et al., “An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes”, 2016, CPC.
Loop transformation

1. For each particle:
 - interpolate E in each particle.
 - update v.
2. For each particle:
 - update x.
3. For each particle:
 - deposit the charge on the nearest cells.
4. Solve Poisson equation.

Reasons:
• efficiently vectorize each loop alone.
• gain of 18%-25% for different data structure.
Rewriting the deposit

Standard deposit: Matrix of ncx rows and ncy columns

double rho[ncx][ncy];
rho[i_x][i_y] += w*(1-dx[i])*(1-dy[i]);
rho[i_x][i_y+1] += w*(dx[i])*(1-dy[i]);
rho[i_x+1][i_y] += w*(1-dx[i])*(dy[i]);
rho[i_x+1][i_y+1] += w*(dx[i])*(dy[i]);

Redundant cell-based deposit\(^2\):
Array of ncx*ncy cells: each cell contains data for the four corners.

double rho[ncx*ncy][4];
for (corner = 0; corner < 4; corner++)
rho[i_{cell}[i]][corner] += w * (cx[corner] + sx[corner] * dx[i])
 * (cy[corner] + sy[corner] * dy[i]);

\(^2\)H. Vincenti et al., “An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes”, 2016, CPC.
Data structure for E/ρ

Space-filling curves

<table>
<thead>
<tr>
<th>Morton-order of a 8 x 8 matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L4D-order of a 128 x 128 matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>511</td>
</tr>
<tr>
<td>519</td>
</tr>
<tr>
<td>527</td>
</tr>
<tr>
<td>1008</td>
</tr>
<tr>
<td>1016</td>
</tr>
<tr>
<td>16376</td>
</tr>
</tbody>
</table>
Number of cache misses3 of different curves: Morton, L4D, Hilbert, and classical row-major.

3computed with library PAPI
Overall performance results

- 128 x 128 cells, 50 million particles, 100 iterations (sort every 20)
- Structure of Arrays (automatic vectorization of the Update x step)

Time spent in different loops (in seconds):

<table>
<thead>
<tr>
<th></th>
<th>Update v</th>
<th>Update x</th>
<th>Deposit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard 2d</td>
<td>30.6</td>
<td>12.5</td>
<td>20.7</td>
<td>74.3</td>
</tr>
<tr>
<td>Row-major</td>
<td>32.3</td>
<td>12.8</td>
<td>14.9</td>
<td>70.5</td>
</tr>
<tr>
<td>L4D</td>
<td>29.7</td>
<td>15.9</td>
<td>12.7</td>
<td>68.8</td>
</tr>
<tr>
<td>Morton</td>
<td>29.6</td>
<td>15.3</td>
<td>12.7</td>
<td>69.0</td>
</tr>
</tbody>
</table>

Thus, 65 million particles processed/second/core on Intel Haswell.
Overall performance results

- 128 x 128 cells, 50 million particles, 100 iterations (sort every 20)
- Structure of Arrays (automatic vectorization of the Update x step)

Time spent in different loops (in seconds):

<table>
<thead>
<tr>
<th></th>
<th>Update v</th>
<th>Update x</th>
<th>Deposit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard 2d</td>
<td>30.6</td>
<td>12.5</td>
<td>20.7</td>
<td>74.3</td>
</tr>
<tr>
<td>Row-major</td>
<td>32.3</td>
<td>12.8</td>
<td>14.9</td>
<td>70.5</td>
</tr>
<tr>
<td>L4D</td>
<td>29.7</td>
<td>15.9</td>
<td>12.7</td>
<td>68.8</td>
</tr>
<tr>
<td>Morton</td>
<td>29.6</td>
<td>15.3</td>
<td>12.7</td>
<td>69.0</td>
</tr>
</tbody>
</table>

Thus, 65 million particles processed/second/core on Intel Haswell.
Outline

1. Framework
2. Sequential code
3. Parallelization
Large problem size \Rightarrow distributed memory parallelization - through (coarse grain) domain decomposition. Good scaling up to a few 10^5 processors.

This is not our approach:

Hybrid parallelization: MPI/OpenMP

- distributed memory: 1 process \Rightarrow a list of particles over the whole domain
- shared memory: assign different segments of the list to different threads.

Applicability to at most 100s of cores4.

Results on one socket

Thanks to Michel Mehrenberger for the DARI 2016 project on GENCI’s supercomputer Curie.

One node: 2×8 cores SandyBridge

<table>
<thead>
<tr>
<th>1 core</th>
<th>2 cores</th>
<th>4 cores</th>
<th>8 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.4</td>
<td>79.6</td>
<td>158</td>
<td>249</td>
</tr>
</tbody>
</table>

Number of particles processed per second (in millions) (128 x 128 grid, 50 million particles, 100 iterations simulation, sorting every 20 iterations).
Strong scaling

800 millions particles - Grid 256x256 - 100 iterations

Number of cores

Number of nodes

Speedup vs. nodes

Ideal speedup

Speedup w.r.t. 1 node
Sequential optimization and parallelization of a Particle-In-Cell code

50 millions particles / core - Grid 128x128 - 100 iterations

Yann Barsamian, Sever Hirstoaga, Eric Violard
Conclusions - Outlook

- Efficient PIC code with classical numerical schemes.

- Gain of 36% in cache misses: L4D-ordering vs. row-major.

- SoA is better than AoS for the deposit charge but not for the interpolation step
 ⋆ to try: use an AoS in memory, change a little portion of the data (before the computations) to benefit from unit stride vectorization.

- A gain of 1.6× on the deposit loop.
 ⋆ in 3D a better scaling of the deposit loop vectorization (cf. Vincenti 2016)

⋆ domain decomposition?
THANK YOU!